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ABSTRACT

Stretching technique used in material fundamental is not a new technology. It

has been adopted in silicon industry to overcome the limitations arisen by scaling

down the size of the conventional metal oxide semiconductor Field Effect Transistor

(FET). This technique is known as strain technology. As the semiconductor industry

grows in their maturity, the replacement of strained silicon with another material

offering a higher potential quasi-ballistic-carrier velocity and higher mobility is

importance. Recent enlisted superior material is quasi-one dimensional Graphene

NanoRibbons (GNR). GNR is the most promising material for future nanoelectronic

that inherited most properties from graphene and Carbon NanoTube (CNT) itself. To

characterize the effect made by strain technology in silicon, an analytical model of

strained GNRFET is presented in this work to analyse the suitability of this material

for future FET. This works presents a simple model of current-voltage characteristic

in the function of strain for different widths. By using a tight-binding approximation

and analytical solution, the strained GNR bandstructure, density of states and carrier

statistic are presented. Further observation on their carrier transport and their

current-voltage characteristic is also investigated and presented in this research. It is

found in this research that strain gives significant effect according to different width

groups. It is successful in tailoring the energy gap and linearly changing the carrier

statistic and carrier transport. In terms of physical and electrical performance,

strained 3m+1 GNR is found to be a good material for future FET with enhanced

mobility due to the energy gap alteration by strain. Strained GNRFET also was

found to be 55mV/dec in subthreshold slope, which is smaller than normal

GNRFET, which means the transistor has faster switching. Besides, the current

voltage characteristic is reported to have delayed saturation region compared to

published model due to the different in quantum effect consideration.
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CHAPTER 1

INTRODUCTION

1.1 Background

The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) has been

utilized for several decades as the basic building blocks for almost all integrated

circuit. A MOSFET is a transistor that functioned like a 'heart' in everything from

mobile phones, computers, laptop, cameras and other electronics devices. Rapid

advances in electronic technologies have increased the demands of transistors with

higher processing speed and lower power consumption. Meanwhile, the size of the

transistor needs to be smaller enough to squeeze more devices on a chip in order to

achieve the required performance. Famous prediction, known as Moore's Law has

stated that, the number of transistors in a die will be doubled every 18 to 24 months.

The graph is shown as in Figure 1.1.

Since decades ago, semiconductor manufacturing is struggling to fulfill and

prolonged the Moore's Law. They are focusing on the size shrinking of MOSFET by

scaling down its physical properties. However, continued to decrease the size of

transistors into nanoscale regime has led to the severe technology challenges and

lithography restriction as shown in Figure 1.2. The scaling method becomes harder
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particularly after shrinking the size into sub 100 nm. Instead of several physical

limitations on doping concentration and gate oxide thickness, the most severe

problem is the presence of short channel effect (SeEs). These limitations has resulted

in the device performance is not as expected. The challenges due to the lithography

process are another problem. Smaller dimension devices increased complexity of

process and equipment cost (Schaller, 2004).
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Figure 1.1: The graph of Moore's Law (Scherer, 2015)

The Advanced Lithography 2014 has shown that 13nm half pitch teclmology

is appears to be the end of the line for shrinks. Different teclmology and devices is

required to go below 13 run. A group of semiconductor industry experts via the

International Roadmap of Semiconductor (lTRS) has opened a new paradigm of

technologies to extend CMOS platform. The new technologies were introduced

under extended plan called 'Beyond Moore ' which includes new structures of

transistor such as dual gate, FinFet, silicon-on-insulator (SOl) and also introduced

new materials to replace current conventional and strained silicon. Candidate

materials include strained Ge, SiGe, and a variety of III-V compound
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semiconductors, carbon nanotubes, and graphene (ITRS, 2014) . These novel

materials and devices were predicted by ITRS to replace the silicon based technology

before reach its limit by the year 2020.

Figure 1.2 : Advanced Lithography 2014 (Kim, 2010)

The priority and primary challenge of semiconductor industry is aimed on

how to produce absolutely small devices while boosting the performance standard to

meet consumer demands. Introduction of non-silicon materials such as carbon

nanotubes (CNT) and graphene as the field effect transistor (FET) channel seems to

be a most promising solution. However, semiconductor expertise encountered a

problem to deal with the CNT chirality (Liang et al., 2007). CNT formed a mixture

of metal and semiconductor especially during the fabrication process. Same goes to

graphene. Despites of having great features for future FET, it has zero presence of

energy gap and behaves in metallic manner (Zhu et al., 2010, Geim and Novoselov,

2007). It is hard to open up the gap eventhough strain technology is used (Ni et al.,

2008, Mohiuddin et al., 2009 , Li et al., 2010).
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Patterning graphene into a narrow channel width can provide graphene with

an energy gap (Li et aI., 2008, Lu and Guo, 2010). It called quasi one-dimensional

(lD) graphene nanoribbon (GNR). The 1-2 nm width ofGNR can open up a suitable

energy gap useable for PET channel. But, ultra-narrow GNRs (2: 2 nm) with smooth

edges are not easy to be formed. The smooth ribbon edge is important to decrease the

scattering effect that may cause the mobility and conductivity of GNR to be

degraded. Wider GNR width (>15 nm) have a higher tolerance of edge roughness,

therefore their mobility and conductivity show the higher compared to ultra-narrow

GNR (Guo, 2012). Unfortunately, the wider the ribbon width, the smaller the energy

gap splits (Son et aI., 2006). So, it is desirable to change the GNR energy gap for

high performance applications.

Strain technology can be applied to GNR in order to tune the energy gap.

Currently, strained GNRs are yet to be produced on an industrial scale. The intensive

studies are still undergoing to reveal its suitability as PET channel. Strained GNR is

absolutely new material which its characteristics are still unclear. Building a device

using new material with several uncertainties is high cost and time consuming.

Therefore, modeling and simulation is a good choice to study the characteristics of

strained GNR based devices before it is fabricated and produced by the industry.

1.2 Problem Statements

Strain in semiconductor industry is not a new technology. It has been applied in

silicon technology and helps boosting the silicon-based devices performance. Not to forget

that, strain also normally introduced in semiconductor material due to the lattice mismatch

during a fabrication process. Thus, this is a need to understand the behaviour of material

under strain. In this research we focused on GNR, upon tensile uniaxial strain. One

approach to investigate the strain effect on GNR is using the tight binding model and
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ab-initio calculation. An analytical modeling approach IS also used to model the

strained GNR around low energy limit region.

There has been a number of computational works such as work done by Mei

et.al and Guo et.al on the modeling and simulation pertaining to strained GNR

physical and electrical properties. However the simulation tends to focus on the

simple tight-binding band structures of GNR and exclude the main effect which is the

third nearest neighbour (3NN) and edge bond relaxation. Eventhough the simulations

on strained GNR electrical characteristic are overflowing, there are still a bunch of

question remain unclear. Question arisen especially on how straining the lattice

affects the carrier's statistic and transport in GNR which is not much studied. As the

GNR behaviour depends strongly on the width, it is still questionable how strain

reacts in the certain GNR width to further change the normality.

Proposed GNRFET experimentally and theoretically proved have better

current characteristic. Thus, investigations the strain effect on the carrier statistic and

carrier transport are paramount important to further answer the questions arising

from GNR current-voltage characteristic upon strain. These works is important in

order to observe the performance of strained GNR at device level for the next

generation FET.

1.3 Research Objectives

This research is focusing on modeling the strained GNR field effect

transistor. The following are the objectives of this research:

I. Study the effect of strain to GNR carrier statistic and carrier transport

2. Model the current-voltage characteristic of strained GNRFET
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3. Evaluate the strained GNRFET in term of electrical performance by

comparing the formulated current-voltage model with the experimental or

published data.

1.4 Research Scopes

The following scopes are conducted in order to achieve the objectives of this

research:

I. Analytical derivation is performed to formulate strained GNR carrier statistic

and carrier transport model from the bandstructure modified by strain.

2. Modeling the current-voltage characteristic of strained GNR.

3. Simulate the formulated model using MATLAB simulation software.

4. Analysed and validate the suitability of fonnulated strained GNRFET in term

of electronic and electrical performance

1.5 Research Contributions

Strained GNRFETs are structures in which the conventional planar MOSFET

channel is replaced with a strained graphene nanoribbon. Work on strained based

material is currently becomes trend and proceeding at a rapid pace. But for the new

material like strained GNR, there are still many issues to address and discover. The

purpose of this study is to investigate the characteristic of strained GNR properties

and provide a better understanding of strained GNR behaviour through analytical

modeling. This is important to predict the suitability of strained GNR as a future

channel material for FET. This research also provides a simulation of strained
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GNRFET to explain in detail the overall device performance. Therefore, this research

can be used as a preliminary analysis to further develop the device at the state-of-the

art for future nanoelectronics.

1.6 Thesis Organization

The research is conducted to model the strained GNRFET through analytical

and simulation method. The thesis work had been divided into 6 chapters. Chapter I

discusses the background of the research study by stating the problem statements,

research objectives, research scopes and contributions of the research. The literature

review that provides the root of the studies about graphene, graphene nanoribbon and

strained graphene nanoribbon was performed in Chapter 2. This chapter also

presented the previous studies done by other researches in the same field.

Chapter 3 discussed the research flow and methodology adopted in this

research. The research activities, research flowchart and software tools used to

complete the research are also briefly reported in this chapter. The results and

findings from the research were demonstrated in Chapter 4 and Chapter 5. The

modeling in this chapter includes the modeling of strained GNR bandstructures, the

carrier statistic and carrier transport model. In the carrier statistic part, the brief

explanation about the states and carrier densities were presented. This thesis also

demonstrated the carrier flow and electrical characteristic for strained GNR in the

carrier transport model sub-topic.

The formulated model performance evaluation as well as the validation was

discussed in Chapter 5. The evaluation on the suitability of strained GNR over the

other devices in term of electrical performance was also discussed in this chapter.

Finally, all the works done in this research was concluded in the Chapter 6.
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