METHOD FOR SOLVING NONLINEARITY IN RECOGNISING TROPICAL WOOD SPECIES

ANIS SALWA BINTI MOHD KHAIRUDDIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > APRIL 2014

To my beloved husband and daughter

ACKNOWLEDGEMENT

Alhamdulillah. Thank you Allah The Almighty for enabling me to successfully complete my doctor of philosophy's research.

I would like to express my sincere gratitude to my late supervisor Allahyarham Prof. Datuk Dr. Marzuki Khalid and my current supervisor Prof. Datin Dr. Rubiyah Yusof for their guidance, encouragement and advice. I am very thankful to both of them for their patience and guidance in helping me to complete my doctor of philosophy's degree successfully. I look up to both of them as great mentors, great researchers and great life motivators.

My heartfelt sincere thanks also goes to all researchers and friends in Centre for Artificial Intelligence and Robotics (CAIRO). Their support keeps me motivated to complete my doctor of philosophy's research.

I am grateful to my husband, Muhammad Sallehin bin Zainorashid for his support and understanding during my period of study thus enabling me to fulfil my wish. My gratitude also goes to my parents for their prayers and encouragement which were the source of inspiration from the beginning until the end.

ABSTRACT

Classifying tropical wood species pose a considerable economic challenge and failure to classify the wood species accurately can have significant effects on timber industries. Hence, an automatic tropical wood species recognition system was developed at Centre for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia. The system classifies wood species based on texture analysis whereby wood surface images are captured and wood features are extracted from these images which will be used for classification. Previous research on tropical wood species recognition systems considered methods for wood species classification based on linear features. Since wood species are known to exhibit nonlinear features, a Kernel-Genetic Algorithm (Kernel-GA) is proposed in this thesis to perform nonlinear feature selection. This method combines the Kernel Discriminant Analysis (KDA) technique with Genetic Algorithm (GA) to generate nonlinear wood features and also reduce dimension of the wood database. The proposed system achieved classification accuracy of 98.69%, showing marked improvement to the work done previously. Besides, a fuzzy logic-based pre-classifier is also proposed in this thesis to mimic human interpretation on wood pores which have been proven to aid the data acquisition bottleneck and serve as a clustering mechanism for large database simplifying the classification. The fuzzy logic-based pre-classifier managed to reduce the processing time for training and testing by more than 75% and 26% respectively. Finally, the fuzzy pre-classifier is combined with the Kernal-GA algorithm to improve the performance of the tropical wood species recognition system. The experimental results show that the combination of fuzzy preclassifier and nonlinear feature selection improves the performance of the tropical wood species recognition system in terms of memory space, processing time and classification accuracy.

ABSTRAK

Pengelasan spesies kayu tropika menimbulkan cabaran ekonomi yang besar dan kegagalan untuk mengelaskan spesies kayu dengan tepat boleh memberi kesan yang ketara kepada industri kayu. Oleh itu, sebuah sistem mengenal spesies kayu tropika automatik telah dibangunkan di Pusat Kecerdikan Buatan dan Robotik (CAIRO), Universiti Teknologi Malaysia. Sistem ini membuat pengelasan spesies kayu menggunakan analisis tekstur dimana gambar pelbagai imej permukaan kayu dirakam dan ciri-ciri diekstrak dari imej-imej ini sebelum digunakan untuk pengelasan. Sebelum ini, kajian-kajian pengelasan spesies kayu tropika menggunakan kaedah pengelasan spesies berdasarkan ciri-ciri linear. Memandangkan spesies kayu dikenali untuk mempamerkan ciri-ciri tidak linear, penggunaan Kernel-Algoritma Genetik (Kernel-GA) dicadangkan di dalam tesis ini untuk melaksanakan pemilih ciri tidak linear. Kaedah ini menggabungkan Analisis Diskriminan Kernel (KDA) dengan algoritma genetik untuk menjana ciri-ciri tidak linear dan juga mengurangkan dimensi pangkalan data kayu. Sistem yang dicadangkan mencapai 98.69% ketepatan pengelasan, dengan menunjukkan peningkatan yang ketara berbanding kerja yang dilakukan sebelum ini. Selain itu, pra-pengelas berdasarkan logik kabur juga dicadangkan di dalam tesis ini untuk meniru tafsiran manusia pada liang kayu yang telah terbukti dapat membantu kesesakan perolehan data dan bertindak sebagai mekanisme kelompok bagi pangkalan data yang besar bagi memudahkan pengelasan. Penggunaan pra-pengelas berdasarkan logik kabur mampu mengurangkan masa pemprosesan untuk latihan dan ujian melebihi 75% dan 26% masing-masing. Akhirnya, pra-pengelas berdasarkan logik kabur digabungkan dengan Kernel-GA untuk meningkatkan prestasi sistem mengenal spesies kayu tropika automatik. Keputusan eksperimen menunjukkan bahawa penggabungan pra-pengelas berdasarkan logik kabur dengan pemilih ciri tidak linear berdasarkan Kernel-GA meningkatkan presasi sistem mengenal spesies kayu tropika automatik dari segi ruang memori, masa pemprosesan dan ketepatan pengelasan.

TABLE OF CONTENTS

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	XX

1 INTRODUCTION

1.1 Introduction	1	
1.2 Automatic Tropical Wood Species Recognition		
System	2	
1.3 Research Objectives		
1.4 Study Scope and Limitations		
1.5 Research contributions		
1.6 Thesis Outline	6	

2 LITERATURE REVIEW

2.1 Introduction	7
2.2 Manual Wood Recognition	8
2.3 Nonlinearity In Tropical Wood Features	14

2.4 Techniques of Wood Species Recognition	17
2.4.1 Wood Species Classification Systems based on	
Spectral Analysis	19
2.4.2 Wood Species Classification Systems Based	
on Image Analysis	23
2.5 The Structure of Automatic Wood Species	
Recognition System	28
2.5.1 Data Acquisition System	28
2.5.2 Image Pre-processing	30
2.5.2.1 Image Sharpening by High Pass	
Filtering and Contrast Enhancement by	
Histogram Equalization	30
2.5.2.2 Homomorphic Filtering	33
2.5.3 Feature Extraction	34
2.5.3.1 Grey Level Co-occurrence Matrix	
(GLCM)	35
2.5.3.2 Basic Grey Level Aura Matrix	
(BGLAM)	37
2.5.3.3 Statistical Properties of Pores	
Distribution	41
2.5.3.4 Features Fusion	44
2.5.3.5 Kernel Discriminant Analysis (KDA)	45
2.5.4 Classification	47
2.6 Nonlinear Features	49
2.6.1 Nonlinear Features Extraction	51
2.6.1.1 Kernel Functions	52
2.6.1.2 Nonlinear Extension of PCA	54
2.6.1.3 Nonlinear Extension of LDA	56
2.6.2 Feature Selection	60
2.6.2.1 Genetic Algorithm	64
2.6.2.2 Nonlinear Feature Selection	67
2.7 Pre-classifier	68
2.7.1 Pre-classification Techniques	69

2.7.2 Fuzzy Logic Algorithm for Human Reasoning	
Classification	70
2.8 Summary of literature reviews	73

3 METHODOLOGY

3.1 Introduction to Automatic Tropical Wood Species	
Recognition System	76
3.2 Nonlinear Feature Selection Algorithm using	
KDA-GA	81
3.2.1 Implementation of Kernel-GA as Nonlinear	
Feature Selector in The Automatic Tropical	
Wood Species Recognition System	83
3.2.2 Stage 1 : GA Algorithm	85
3.2.3 Stage 2 : KDA Algorithm	88
3.3 Fuzzy Logic-based Pre-classifier for Automatic	
Tropical Wood Species Recognition System	90
3.3.1 Implemenation of Fuzzy Logic based Pre-	
classifier in The Automatic Tropical Wood	
Species Recognition System	93
3.4 Automatic Tropical Wood Species Recognition	
System using Both Nonlinear Feature Selection and	
Fuzzy Logic-based Pre-classification	100
3.4.1 Training Phase	101
3.4.2 Testing phase	104
3.5 Final Classification	106

RESULTS AND DISCUSSIONS

4.1	Introduction	109
4.2	Experimental Setup	109
4.3	The Nonlinearity of The Tropical Wood Features	113

4.4 Experiment A : Nonlinear Feature Generation Using	
a Kernel Function	121
4.4.1 Determine The Best Parameter for RBF Kernel	122
4.4.2 Determine The Best Feature Extractors	124
4.4.3 Nonlinear Feature Generation using KDA	
Technique	125
4.5 Experiment B : Nonlinear Feature Selection	
Algorithm Using Kernel-GA	131
4.5.1 The Combination of Kernel Technique with	
Genetic Algorithm to Perform Nonlinear	
Feature Selection	131
4.5.2 Comparison Between Nonlinear Feature	
Selection With Basic GA Feature Selection	133
4.6 Experiment C : Fuzzy Logic-based Pre-classifier for	
Automatic Tropical Wood Species Recognition	
System	135
4.6.1 Wood Species In Different Fuzzy Groups	135
4.6.2 Multigroups Wood Species	141
4.6.3 Fuzzy Logic-based Pre-classifier	143
4.7 Experiment D : Combination of Fuzzy Logic-based	
Pre-classifier and Nonlinear Feature Selection for	
Automatic Tropical Wood Species Recognition	
System	148
4.7.1 Setup of The Proposed System	149
4.7.2 Performance Analysis	151
CONCLUSION	
5.1 Conclusion	155
5.2 Future works	157

REFERENCES

5

159

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	The measurement of pore size	12
2.2	List of 52 wood species	29
2.3	Number of BGLAM features for different grey levels	40
2.4	Classification of vessels or pores sizes on wood texture	42
2.5	Density of vessels and pores in wood surfaces	42
2.6	List of previous works on various wood database	73
2.7	Summary of literature reviews on GA feature selection	74
2.8	Summary of literature reviews on fuzzy logic-based pre- classifier	75
3.1	List of tropical wood species with the corresponding quantity of pores	96
3.2	The fuzzy rule base with 2 inputs and 1 output	97
3.3	The example of a confusion matrix	107
4.1	Confusion matrix for 3 wood species	114
4.2	The confusion list for 52 wood species when using linear classifier	114
4.3	Comparison of final classification accuracy for linear feature generation and nonlinear feature generation when using different feature extractors	124
4.4	Classification accuracy of the 52 wood species	126
4.5	The comparison of dimension size and classification speed when performing linear LDA and nonlinear KDA feature generation	129

4.6	The comparison of dimension size database and classification accuracy of performing enhanced feature selection compared to previous work mentioned in the literature review.	134
4.7	The comparison of speed and memory when performing nonlinear feature selection and without performing nonlinear feature selection.	135
4.8	List of wood species in their respective groups	140
4.9	The comparison of dimension size with and without including the fuzzy pre-classifier technique in the wood recognition system.	145
4.10	The comparison of classification accuracy with and without including the fuzzy pre-classifier technique in the wood recognition system.	146
4.11	The improvement in processing time (in percentage) after performing fuzzy logic pre classifier.	147
4.12	The number of features for each wood image after performing GA feature selection.	150
4.13	The comparison of dimension size and memory when implementing different types of configurations of fuzzy logic pre-classifier in the tropical wood species recognition system	151
4.14	The comparison of classification accuracy with different types of configurations of fuzzy logic pre-classifier in the tropical wood species recognition system.	152

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	(a) Manual inspection by using special magnifier and(b) the image of wood texture surface through the magnifier lens	9
	-	
2.2	Pores on wood surface	10
2.3	Types of pores arrangement on wood surface	11
2.4	Example of wood surface with (a) high density and (b) low density (Image dimension is 768 x 576 pixels).	11
2.5	Diffuse parenchyma on the wood surface with image dimension 768 x 576 pixels.	12
2.6	Short tangential lines parenchyma on the wood surface (Image dimension is 768 x 576 pixels).	13
2.7	Banded parenchyma on the wood surface (Image dimension is 768 x 576 pixels).	13
2.8	The variation of resin canals on wood surface of the same wood species Hopea spp (a) two resin canals on wood texture and (b) four resin canals on wood texture (Image dimension is 768 x 576 pixels).	15
2.9	Some of the pores are filled with pores deposit for wood species (a) Dryobalanops aromatica and (b) Dipterocarpus baudii (Image dimension is 768 x 576 pixels).	16
2.10	Wood texture of 'Shorea laevis' taken from (a) heartwood region and (b) sapwood region (Image dimension is 768 x 576 pixels).	17
2.11	An example of timber section	18

2.12	The microwave test bed to measure intrinsic properties of wood.	19
2.13	The structure of the acquisition system using fluorescent spectra analysis.	21
2.14	The experimental setup for stress-wave studies to identify wood species.	22
2.15	Examples of wood surface texture: Shorea laevis, (b) Durio spp, (c) Kokoona littoralis , (d) Hopea pachycarpa	24
2.16	Examples of China wood images.	25
2.17	Pores distribution on wood surface	27
2.18	The basic structure of an automatic wood species recognition system	28
2.19	(a) Original image, (b) Image after sharpening using high pass filter	31
2.20	(a) Image after sharpening using high pass filter,(b) Image after performing contrast enhancement using histogram equalization.	32
2.21	Histogram plot of (a) before histogram equalization and (b) after histogram equalization.	32
2.22	The flowchart of homomorphic filtering process where ln is the natural log, DFT is Discrete Fourier Transform, IDFT is Inverse Discrete Fourier Transform and exp is exponential.	33
2.23	(a) Original image and (b) image after homomorphic filtering	34
2.24	Illustration of BGLAM feature extractor on how it works.	38
2.25	Illustration of BGLAM image in different rotation	39
2.26	(a) Homomorphic image, (b) Binary images showing the black pores only and (c) Binary images showing the white pores only	43
2.27	The distribution of 170 samples of five subjects.	50

2.28	The distribution of face samples of five subjects in (a) DLDA-based subspace and (b) KDDA-based subspace.	57
2.29	The distribution of multi-view face patterns in the first two significant PCA, LDA, KPCA and KDA dimensions.	63
3.1	The block diagrams for previous automatic tropical wood species recognition system designed by (a) Khalid <i>et al.</i> (2008) and (b) Khairuddin <i>et al.</i> (2011).	78
3.2	The block diagram of the proposed tropical wood species recognition system.	80
3.3	(a) 3 wood species can be separated linearly,(b) 5 wood species can only be separated using nonlinear boundaries	82
3.4	Block diagram of the proposed methodology of tropical wood recognition system.	84
3.5	The selection of features based on chromosome 1's and 0's.	85
3.6	Fitness evaluation for chromosome 1 (C1) for training database	86
3.7	Fitness evaluation for chromosome 1 (C1) for testing database	86
3.8	The implementation of LDA classifier wrapped in the GA	87
3.9	Two different wood species that have different size and quantity of pores (a) Wood species Shorea laevis and (b) wood species Durio spp.	91
3.10	The nonlinear scatter of 70 training wood samples of the same species Shorea uliginosa that are separated into 3 groups based on their size of pores and pores arrangement.	92
3.11	The flowchart of the proposed fuzzy logic pre- classifier in tropical wood species recognition system.	94
3.12	The membership function for (a) input size and (b) input quantity.	99

3.13	Block diagram of the proposed wood species recognition system with fuzzy pre-classifier and nonlinear feature selection (training phase).	102		
3.14	Block diagram of the proposed wood species recognition system with fuzzy pre-classifier and nonlinear feature selection (testing phase).	104		
4.1	The wood data acquisition process : (a) wood samples, (b) image acquisition system and (c) microscopic image of wood texture	110		
4.2	Images of wood surface are stored to build an image database			
4.3	Enhanced images of wood surface stored in an enhanced image database.	112		
4.4	(a) 3 wood species can be separated linearly,(b) 5 wood species can only be separated using nonlinear boundaries	120		
4.5	Three different views on the same data with different type of separation boundary: (a) linear separation for nonlinear distribution of data in input space, (b) nonlinear separation for nonlinear distribution of data in input space and (c) linear separation in feature space	122		
4.6	(a) Gaussian RBF with $\sigma = 10$, (b) Gaussian with $\sigma = 1000$, (c) Gaussian with $\sigma = 300$	123		
4.7	Variation of classification accuracy for different values of the KDA parameter	123		
4.8	The comparison of classification accuracy when performing KDA technique and LDA technique	125		
4.9	The misclassified wood species for wood species Shorea maxwelliana	128		
4.10	The comparison of precision results for 52 wood species when implementing LDA and KDA technique in the wood species recognition system.	130		
4.11	The comparison of recall results for 52 wood species when implementing LDA and KDA technique in the wood species recognition system.	131		

4.12	Distribution of 5 wood species based on (a) original 157 wood features and (b) GA selected 79 wood features	132
4.13	The two different views on the same data with different type of separation boundary for 2 wood species (a) input space before performing kernel-GA feature selection and (b) feature space after performing kernel-GA feature selection	133
4.14	The graph of quantity of wood pores for 20 samples in group S	136
4.15	The graph of quantity of wood pores for wood samples in group L	136
4.16	The graph of quantity of wood pores for wood samples in group SM	137
4.17	The graph of quantity of wood pores for wood samples in group MM	137
4.18	Wood images from group S (a) Hopea ferrea (b) Hopea apiculata	138
4.19	Wood images from group L (a) Durio spp (b) Shorea uliginosa	138
4.20	Wood images in group SM (a) Cynometra malaccensis (b) Artocarpus kemando	139
4.21	Wood images in group MM (a) Shorea laevis (b) Shorea exelliptica	139
4.22	Example of multigroups for wood species Shorea uliginosa that belong to (a) Group SM (b) Group MM (c) Group L	142
4.23	Example of multigroups for wood species Dryobalanops aromatic that belong to (a) Group SM (b) Group MM (c) Group L.	143
4.24	The classification error of the 4 wood database when using KNN classifier, LDA classifier and multilayer feedforward neural network to classify the wood species.	144
4.25	The comparison of precision results for 52 wood species when including and excluding the fuzzy pre- classifier in the wood species recognition system.	148

4.26	The comparison of recall results for 52 wood species when including and excluding the fuzzy pre-classifier in the wood species recognition system.	148
4.27	The comparison of precision results for 52 wood species when performing fuzzy logic pre classifier with neural network and fuzzy logic with nonlinear feature selection.	153
4.28	The comparison of recall results for 52 wood species when performing fuzzy pre-classifier with neural network and fuzzy pre-classifier with nonlinear feature selection.	154

LIST OF ABBREVIATIONS

APG	-	Angiosperm Phylogeny Group
ASF	-	Adaptive Sequential Floating
BGLAM	-	Basic Grey Level Aura Matrix
BPNN	-	Back Propagation Neural Network
BVO	-	binary vector optimization
CAIRO	-	Centre for Artificial Intelligence and Robotics
CFS	-	Correlation based Feature Selection
c2DPCA	-	column-directional 2DPCA
DFT	-	Discrete Fourier Transform
DLDA	-	Direct Linear Discriminant Analysis
DPSS	-	Diode-Pumped Solid-State
ECG	-	Electrocardiography
EEG	-	Electroencephalogram
EKG	-	Electrocardiogram
exp	-	exponential
FHR	-	Fetal Heart Rate
FN	-	False Negative
FP	-	False Positive
FRIM	-	Forestry Research Institute of Malaysia
FSV	-	Feature Selection Concave
GA	-	Genetic Algorithm

GA-KPLS	-	Genetic Algorithm-Kernel Partial Least Square
GLAM	-	Grey Level Aura Matrix
GLCM	-	Grey Level Co-occurrence Matrices
GNN	-	GA Neural Networks
GSVD	-	Generalized Singular Value Decomposition
IDFT	-	Inverse Discrete Fourier Transform
KDA	-	Kernel Discriminant Analysis
KDDA	-	Kernel Direct Linear Discriminant Analysis
K-GA	-	Kernel-Genetic Algorithm
KNN	-	K-Nearest Neighbours
KPCA	-	Kernel Principle Component Analysis
LDA	-	Linear Discriminant Analysis
LFDA	-	Local Fisher Discriminant Analysis
LI	-	Lumen-Intima
MA	-	Media-Adventitia
maxPores	-	maximum pores
mBm	-	multi-fractional Brownian motion
MF	-	Membership Function
MTIB	-	Malaysian Timber Industry Board
MMG	-	Mechanomyography
mm ²	-	per square millimetres
MRI	-	Magnetic Resonance Imaging
N-East	-	North-East
NN	-	Neural Network
PCA	-	Principle Component Analysis
PF	-	Posterior-Fossa
PLS	-	Partial Least Regression

PPGs	-	Photoplethysmograms
PSO	-	Particle Swarm Optimization
PZMI	-	Pseudo Zernike Moment Invariant
RBF	-	Radial Basis Function
RNN	-	Recurrent Neural Network
S-East	-	South-East
SEM	-	Scanning Electron Microscopy
SFFS	-	Sequential Floating Forward Selection
SPPD	-	Statistical Properties of Pores Distribution
SSS	-	Small Sample Size
SVD	-	Singular Value Decomposition
SVM	-	Support Vector Machines
ТР	-	True Positive
VSDP	-	Vision System Development Transform
w-KNN	-	Weighted KNN
1-NN	-	1-Nearest Neighbour
$(2D)^2 PCA$	-	two-Directional two-Dimensional PCA

CHAPTER 1

INTRODUCTION

1.1 Introduction

Malaysia is blessed with abundance of wood supply. Statistics from Malaysian Timber Industry Board (MTIB) shows that exports of timber and timber products for the period of January to August 2012 were RM13.18 billion. India, USA and Japan were the major importers for timber and timber products from Malaysia contributing RM 893 million, RM 1.66 billion and RM 2.66 billion worth of export respectively.

The need for automatic wood identification system is becoming critical in the timber industry with the intention to sustain and improve productivity and quality of the timber products in furniture industries and housing industries (Piuri, 2010). The accurate classification of the wood species is very crucial to guarantee that the timber merchandise has the necessary features and characteristics. For instance, the correct wood species must be used for the safety in construction industries. Choosing and ensuring the correct wood to be used is very important to construct a dependable roof truss. In addition, wood with satisfactory strength should be used.

Illegal logging is one of the concerns encountered by timber exporting countries for instance Malaysia. According to a report issued by the United Nations Environment Programme (UNEP) and INTERPOL, it is estimated that prohibited logging accounts for 50-90% and 15-30% of the volume of entire forestry in key producer tropical countries and globally respectively. In the meantime, the economic value of global illegal logging which includes processing is expected to worth between US\$30 and US\$ 100 billion. Any acts related to logging not with accordance to the national law are considered illegal logging including harvesting, transporting, buying, selling and processing illegally logged timber. These acts are made legal by fraudulent labeling of timber.

There are many negative environmental impacts from illegal logging. Wood species diversity will be reduced because of the widespread illegal logging. Illegal logging also drives climate change. Fewer forests will increase the amounts of greenhouse gases entering the atmosphere which will then contribute to global warming. In addition to the environmental damage, fraudulent labeling practiced by some timber exporters will reduce the country's incomes generated by tax. This is because lower tax will be imposed when high quality wood is labeled as low quality (Ruhong Li, 2008).

One of the ways to prevent illegal logging is by providing a more strict inspection at trading checkpoints. These would require trained wood species inspector to classify the wood species.

1.2 Automatic Tropical Wood Species Recognition System

With more demands in timber industries and more tightly controlled international requirements, many of these countries are required to meet tighter security requirements as well as higher technical demands such as more accurate recognition of the correct timber species, prevention of fraud and illegal logging, and Environmental Investigation Agency (EIA) requirements, to name a few. In many timber industries one of the major problems is to find good wood graders. This is because there are more than 3000 tropical wood species and it is impossible to be able to classify each one of them without lengthy, years of training experience. Moreover, the possibilities of biasness and mistakes by human wood graders have to be considered. Besides that, it is impractical and cost ineffective for a human to analyze and identify large number of timber species (Khairuddin *et al.* 2011). Therefore, a reliable automatic wood recognition device is needed in order to classify the wood species efficiently.

This thesis presents a nonlinear feature selection algorithm to solve the nonlinearities in the wood features and the large variations of features within inter and intra wood species. The nonlinear feature selection is a novel approach to the tropical wood species recognition system. The limitations regarding the preservation of class discrimination are shown when classes are originally separated by nonlinear decision boundaries. The implementation of the nonlinear feature selection aims to maintain the most salient nonlinear wood features that minimizes the inter-class distance and maximizes the intra-class distance in order to classify the wood species efficiently. Another objective of implementing nonlinear feature selection algorithm is to find a transformation that maps data to a lower dimensional space where important information is largely preserved.

In this thesis, the strong capability of the Genetic Algorithm (GA) in feature selection is effectively combined with the capability of the Kernel Discriminant Analysis (KDA) which can perform nonlinear dimension reduction without substantially downgrading the system's performance. KDA is a nonlinear extension of linear discriminant analysis (LDA) by using radial basis function (RBF) kernel. The proposed kernel-GA method acts as an enhanced feature selection, to perform nonlinear feature selection.

Besides that, large wood databases presented a problem of large processing time especially for online wood recognition system. In view of this problem, this thesis proposes the use of a fuzzy-based pre-classifier which mimics the human interpretation on wood pores as a means of treating uncertainty to improve the classification accuracy of tropical wood recognition system. The pre-classifier serves as a clustering mechanism for the large database simplifying the classification process making it more efficient. The proposed pre-classifier also aims to reduce the processing time in the training and testing stages of the wood species classification, albeit the existence of the bottleneck in building automatic wood species recognition system.

The linguistic interpretation of the human behavior, provided by a fuzzy model, could be useful to experts in determining the wood species. Moreover, it could improve the man-machine interface in environments for computer-aided training of human operators. The advantage for using fuzzy if-then rules for wood classification problem is that knowledge acquisition can be achieved for users by carefully checking these rules discovered from the training patterns.

1.3 Research Objectives

The objectives of this research are as follows:

- a) To analyze the effect of the nonlinearity of the wood features to the classification accuracy of the wood recognition system.
- b) To use suitable kernel technique to generate the most discriminative nonlinear features
- c) To develop and implement a nonlinear feature selection algorithm using Kernel-Genetic Algorithm (K-GA)
- d) To develop a pre-classifier based on fuzzy logic to improve the efficiency of the tropical wood species recognition system
- e) To analyze the effectiveness of combination of the proposed nonlinear feature selection with fuzzy logic pre classifier.

1.4 Study Scope and Limitations

- a) A tropical wood species database which consists of 52 wood species was built in CAIRO using the wood samples provided by FRIM to perform this project.
- b) The feature extractors used are grey level co-occurrence matrices (GLCM), basic grey level aura matrix (BGLAM) and statistical properties of pores distribution (SPPD)
- c) This research focuses on solving nonlinear problems in classifying wood species. The nonlinear methods that are studied to solve the nonlinear problems in tropical wood species recognition system are kernel-genetic algorithm (K-GA) as nonlinear feature selection and fuzzy-based preclassifier.
- d) This research focuses on kernel extension of LDA
- e) System's efficiency includes : classification accuracy, database size and processing speed.

1.5 Research Contributions

- a) Proposed a nonlinear feature selection technique by using kernel-genetic algorithm.
- b) Proposed a fuzzy-based pre-classifier to pre-classify the wood species based on pores characteristics which mimics human interpretation on wood texture.
- c) Proposed the combination of fuzzy-based pre-classifier and nonlinear feature selection to improve the performance of the tropical wood species recognition system.

1.6 Thesis Outline

The arrangement of this thesis is as follows:

• Chapter 1 - Introduction

This chapter explains the need of the automatic wood species recognition system and the algorithms proposed to improve the performance of the tropical wood species recognition system. Problem statement, objectives, scope of study and also the research contributions of this doctor of philosophy research were included in this chapter.

• Chapter 2 - Literature Review

This chapter presents the process of manual wood inspection, the nonlinearity in tropical wood features, and the basic process of an automatic wood species recognition system. This chapter also discussed in detail the work done by other researchers that inspire this research and provide knowledge on various techniques and algorithms that can be used in this research.

• Chapter 3 - Methodology

This chapter explains the proposed methodologies and processes involved in implementing and improving the automatic tropical wood species recognition system in this research.

• Chapter 4 - Experimental Results and Discussions

This chapter presents the results of various experiments conducted in this research along with the analysis and discussions.

• Chapter 5 - Conclusions

This chapter concludes the work done for this doctor of philosophy's research and future works that can be done to improve this research.

REFERENCES

- Ahmed, S., Iftekharuddin, K.M., Vossough, A. (2011). Efficacy of texture, shape and intensity feature fusion for posterior-fossa tumor segmentation in MRI. *IEEE Transactions on Information Technology in Biomedicine*. 206-213.
- Aitkenhead, M.J. and McDonald, A.J.S. (2003). A neural network face recognition system. *Engineering applications of artificial intelligence*. 16: 167-176.
- Alhanjouri, M. and Alfarra, B. (2011). Ant colony versus genetic algorithm based on travelling salesman problem. *Computer Technology and Applications*. 2(3): 570-578.
- Baas, P., Wheeler, E., (2000). Dicotyledonous wood anatomy and the APG system of angiosperm classification. *Botanical Journal of the Linnean Society*. 134(1-2): 3-17.
- Benoit, F., Heeswijk, M. V., Miche, Y., Verleysen, M., Lendasse, A. (2012). Feature selection for nonlinear models with extreme learning machines. *Neurocomputing*. 102: 111-124.
- Belhumeur, P.N., Hespanha, J.P. and Kriegman, D.J.(1997). Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. *IEEE Trans. Pattern Analysis and Machine Intelligence*. 19(7): 711-720.
- Bock, R, Limbrecht-Eckludt, K., Siegert, I., Walter, S., Wendemuth, A. (2013). Audio-based pre classification for semi-automatic facial expression coding. *Human-Computer Interaction, part V.* 301-309.
- Bremanath, R., Nithiya, B., Saipriya, R. (2009). Wood Species Recognition Using GLCM and Correlation. International Conference on Advances in Recent Technology in Communication and Computing. 615-619.
- Caimao, Y., Dongmei, S., Di, L., Siu-Yeung, C., Yanqiang, Z. (2010). A research on feature selection and fusion in palmprint recognition. *Intrnational workshop* on Emerging Techniques and Challenges for Hand-Based Biometrics. 1-6.
- Cao, W., Zeng, Y., Xia, C.M., Cao, H. (2011). Identifying hand-motion patterns via kernel discriminant analysis based dimension reduction and quadratic

classifier. International Conference on Wavelet Analysis and Pattern Recognition. 1-6.

- Chen, S.H., Liao, Y.F., Chiang, S.M., Chang, S. (1998). An RNN-based preclassification method for fast continuous mandarin speech recognition. *IEEE Transacions on Speech and Audio Processing*. 6(1): 86-90.
- Chin, T.J. and Suter, D. (2007). Incremental kernel principle component analysis. *IEEE Transactions on image processing*. 16(6) : 1662-1674.
- Choras, M. (2008). Image pre-classification for biometrics identification systems. Advances in Information Processing and Protection. 361-370.
- Chou, P.W., Hsieh, P.F. and Hsieh, C.C. (2008). Kernel-based nonlinear feature extraction for image classification. *IEEE International Conference on Geoscience and Remote Sensing Symposium*. 2 : 931-934.
- Choffel, D. (1999). Automation of wood mechanical grading coupling of vision and microwave devices. *Proceedings of SPIE 1999- The International Society for Optical Engineering*, Boston, MA, USA.
- Clausi, D.A. and Deng, H. (2005). Design-based texture feature fusion using Gabor filters and co-occurrence probabilities. *IEEE Transactions on Image Processing*. 14(7): 925-936.
- Diamantaras, K.I. and Kung, S.Y. (1996). Principal Component Neural Networks. Wiley, New York.
- Ding, Z., Wang, F., Zhou, P. (2011). Fetal ECG extraction based on different kernel functions of SVM. International Conference on Computer Research and Development. 205-208
- Dinwoodie, J.M. (1975). Timber, its Nature and Behaviour. *Journal of Microscopy*, 104(1).
- Eberhart, R.C., Shi, Y. (1998). Comparison between genetic algorithms and particle swarm optimization. *Lecture notes in Computer Science, Evolutionary Programming VII.* 1447: 611-616.
- Ekenel, H.K., and Stiefelagen, R. (2007). Two-class linear discriminant analysis for face recognition. *IEEE International Conference on Signal Processing and Communications Applications*. 1-4.
- Evangelista, P.F. (2006). Taming the curse of dimensionality in kernels and novelty detection. *Applied soft computing technologies*. 1—10.

- Fei, H., Fan, X., Yiyang, S., Yibo, X., Jun, L. (2011). Accelerating application identification with two-stage matching and pre-classification. *Tsinghua Science and Technology*. 16(4): 422-431.
- Foo, S.Y., Stuart, G., Harvey, B., Meyer-Baese, A. (2002). Neural network based EKG pattern recognition. *Engineering applications of artificial intelligence*. 15: 253-260.
- Fuentealba, C., Simon, C., Choffel, D., Charpentier, P., Masson, D. (2004). Wood products identification by internal characteristics readings. *Proceedings of the IEEE International Conference on Industrial Technology*,2 : 763-768..
- Gehler, P. and Nowozin, S. (2009). On feature combination for multiclass object classification. *IEEE International Conference on Computer Vision*. 221– 228.
- Gonza'lez, M.J., Caballero, J., Tundidor-Camba, A., Helguera, A.H. (2006). Modeling of farnesyltransferase inhibition by some thiol and non-thiol peptidomimetic inhibitors using genetic neural networks and RDF approaches. *Bioorganic and Medicinal Chemistry*. 14(1): 200-213.
- Goudelis, G., Zafeiriou, S., Tefas, A., Pitas, I. (2007). Class-specific kerneldiscriminant analysis for face verification. *IEEE Transactions on Information Forensics and Security*. 2(3): 570-587.
- Hadhoud, M.M. (1999). Image contrast enhancement using homomorphic processing and adaptive filters. *Proceedings of the Sixteenth National Radio ScienceConference, NRSC '99.*
- Haralick, R.M. (1979). Statistical and Structural Approaches to Texture. *Proceedings* of the IEEE. 67: 786-894.
- Haralick, R.M., Shanmugam, K. & Dinstein, I., (1973). Textural Features for Image Classification. *IEEE Transactions on Systems, Man, and Cybernetics*. 3(6): 610-621.
- Hastie, T., Tibshirani, R. Friedman, J. (2009). *The Elements of Statistical Learning:* Data Mining, Inference, and Prediction (2nd ed). Springer Series in Statistics.
- Howland,P and Park, H. (2004). Generalizing Discriminant Analysis Using the Generalized Singular Value Decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence. 26(8), 995-1006.

- Huan, L. and Lei, Y. (2005). Toward integrating feature selection algorithms for classification and clustering. *IEEE Transactions on Knowledge and Data Engineering*. 17(4): 491 – 502.
- Huang, C.L. and Huang, W.Y. (1998). Sign language recognition using model-based tracking and a 3D Hopfield neural network. *Machine vision and applications*. 10: 292-307.
- Huang, D.S. (1998). The local minima free condition of feedforward neural networks for outer-supervised learning. *IEEE Transaction Systems, Man, Cybernet.* 3: 477–480.
- Hussein, F., Ward, R., Kharma, N. (2001). Genetic Algorithms for Feature Selection and Weighting, A Review and Study. Sixth International Conference on Document Analysis and Recognition (ICDAR'01), 2001. 1240.
- Jones, K. O. (2005). Comparison Of Genetic Algorithm And Particle Swarm Optimisation. *International Conference on Computer Systems and Technologies.* 1-6.
- Kahler, B. and Blasch, E. (2010). Predicted radar/optical feature fusion gains for target identification. *IEEE National Proceedings on Aerospace and Electronics Conference*. 405-412.
- Kanan, H. and Faez, K., (2008). GA-based optimal selection of PZMI features for face recognition. Applied mathematics and computation. 205, 706-715.
- Kartalopoulos, S. (1996). Understanding neural networks and fuzzy logic: Basic concepts and applications. *Wiley-IEEE Press Ebook Chapters*. 121-152.
- Khairuddin, U., Yusof, R., Khalid, M., Cordova, F. (2011). Optimized Feature Selection for Improved Tropical Wood Species Recognition System. *ICIC Express Letters Part B: Applications*. 2(2): 441-446.
- Khalid, M., Eileen L.Y.L., Yusof, R., Nadaraj, M. (2008). Design of an Intelligent Wood Species Recognition System. *International Journal of Simulation Systems, Science & Technology*. 9(3): 9-19.
- Kim, K.I., Park, S.H., Kim, H.J. (2001). Kernel principle component analysis for texture classification. *IEEE Signal Processing Letters*. 8(2): 39-41.
- Kim, K.I., Jung, K., Kim, H. (2002). Face recognition using kernel principal component analysis. *IEEE Signal Processing letters*. 9(2).

- Kim, K. I., Franz, M. O., Scholkopf, B. (2005). Iterative kernel principal component analysis for image modeling. *IEEE Transactions on Pattern Analysis and Machine Intelligence*. 27: 1352–1366.
- Kuncheva, L.I. (2000). How good are fuzzy if-then classifiers. *IEEE Transactions on Systems, Man and Cybernetics Part B.* 30(4) : 501-509.
- Lee, G., Rodriguez, C. and Madabhushi, A. (2008). Investigating the efficacy of nonlinear dimensionality reduction schemes in classifying gene and protein expression studies. *IEEE Transactions on Computational Biology and Bioinformatics*. 5 (3): 368-384.
- Li, K. and Warren, S. (2011). Principle component analysis on photoplethysmograms: Blood oxygen saturation estimation and signal segmentation. *IEEE International Conference on Engineering in Medicine* and Biology Society. 7171-7174.
- Li, Y., Gong, S., Liddell, H. (2003). Recognising trajectories of facial identities using kernel discriminant analysis. *Image and Vision Computing*. 21:1077-1086.
- Liang, Y.C. and Smith, A.E. (2004). An ant colony optimization algorithm for the redundancy allocation problem (RAP). *IEEE Transactions on Reliability*. 53(3):417-423.
- Lin, K.L., Chun, Y. L., Chuen D. H., Hsiu M. C., Chiao Y. Y., Chin T. L., Chuan Y. T., Hsu, D.F. (2007). Feature selection and combination criteria for improving accuracy in protein structure prediction. *IEEE Transactions on NanoBioscience*. 6(2): 186-196.
- Liu, H., Dougherty, E.R., Dy, J.G., Torkkola, K., Tuv, E., Peng, H., Ding, C., Long, F., Berens, M., Parsons, L., Zhao, Z., Yu, L., Forman, G. (2005). Evolving Feature Selection. *Intelligent Systems, IEEE*. 20(6): 64 – 76.
- Lixin, Z., and Ruwei, D. (2000). Off-line handwritten Chinese character recognition with nonlinear pre-classification. Advances in Multimodal Interfaces. 473-479.
- Lu, D., Xu, H., Chen, Q., Xie, M. (2006). An approach to handwritten chinese character preclassification based on fuzzy logic and similarity measure. *IEEE International Conference on Mechatronics and Automation*. 2399-2403.
- Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N. (2003). Face recognition using kernel direct discriminant analysis algorithms. *IEEE Transactions on Neural Networks*. 14(1): 117-126

- Malik, A., Tarrio-Saavedra, J., Francisco-Fernandez, Naya, S. (2011). Classification of wood micrographs by image segmentation. *Chemometrics and Intelligent Laboratory Systems*, 107: 351-362,
- Marcelli, A., Likhareva, N., Pavlidis, T. (1993). A structural indexing method for character recognition. *International Conference on Document Analysis and Recognition*. 175-178.
- Marinakis, Y., Dounias, G., Jantzen, J. (2009). Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection and nearest neighbor classification. *IEEE Computers in Biology and Medicine* 39: 69 – 78.
- Mehdi, J.H. and Kyani, A. (2007). Application of genetic algorithm-kernel partial least square as a novel nonlinear feature selection method: Activity of carbonic anhydrase II inhibitors. *European journal of medicine chemistry*. 42: 649-659.
- Menon, P.K.B., Ani Sulaiman, Choon, L.S. (1993). Structure and identification of Malayan woods. *Malayan Forests Records No 25*, Forest Research Institute Malaysia, Malaysia.
- Mitchell, T. (1997). Machine Learning. McGRAW-Hill.
- Molinari, F., Gaetano, L., Balestra, G. (2010). Role of fuzzy pre-classifier for high performance LI/MA segmentation in B-mode longitudinal carotid ultrasound images. *IEEE International Conference on Engineering in medicine and Biology Society*. 4719-4722.
- Mu, T., Pataky, T. C., Findlow, A. H., Aung, M. S. H., Goulermas, J.Y. (2010). Automated nonlinear feature generation and classification of foot pressure lesions. *IEEE Transactions on Information Technology in Biomedicine*. 14(2).
- Nasien, D., Haron, H., Yuhaniz, S.S. (2010). Metaheuristics methods (GA & ACO) for minimizing the length of Freeman Chain Code from handwritten isolated characters. World Academy of Science, Engineering and Technology. 38: 230-235
- Nithiya, R. and Santhi, B. (2011). Mammogram classification using maximum difference feature selection method. *Journal of Theoretical and Applied Information Technology*. 33(2) : 197-204.

- Paige, C. C. and Saunders, M. A., (1981). Towards a generalized singular value decomposition. *SIAM J. Numer. Anal.* 18 (3): 398–405.
- Pan, S. and Kudo, M. (2011). Segmentation of pores in wood microscopic images based on mathematical morphology with a variable structuring element. *Computers and Electronics in Agriculture*. 75: 250-260.
- Park, C.H. and Park, H. (2005). Nonlinear discriminant analysis using kernel functions and the generalized singular value decomposition. SIAM Journal on Matrix Analysis and Applications. 27(1): 87-102.
- Piuri, V., Scotti, F. (2010). Design of an Automatic Wood Types Classification System by Using Fluorescence Spectra. *IEEE Transactions on Systems, Man,* and Cybernetics, Part C: Applications and Reviews. 40(3): 358-366.
- Qin, X. and Yang, Y.H. (2004). Similarity measure and learning with gray level aura matrices (GLAM) for texture image retrieval. *Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR*. 1: I-326 - I-333.
- Qin, X. and Yang, Y.H. (2005). Basic gray level aura matrices: theory and its application to texture synthesis. 10th IEEE conference on computer vision. 1, 128-135.
- Qin, X. and Yang, Y.H. (2007). Aura 3D textures. *IEEE Transactions on visualization and computer graphics*. 13(2), 379-389.
- Raymer, M., Punch, W., Goodman, E., Kuhn, L., and Jain, A. (2000). Dimensionality Reduction Using Genetic Algorithms. *IEEE Transactions on Evolutionary Computations*. 4(2).
- Raymer, M., Punch, W., Goodman, E., Sanschagrin, P., Kuhn, L. (1997). Simultaneous feature extraction and selection using a masking genetic algorithm. *Proceedings of the 7th International Conference on Genetic Algorithm*.
- Renner, G. and Ekart, A. (2003). Genetic algorithms in computer aided design. *Computer aided design.* 35: 709-726.
- Rojas, J.A.M., Alpuente, J., Postigo, D., Rojas, I.M., Vignote, S. (2011). Wood species identification using stress-wave analysis in the audible range. *Applied Acoustics*. 72: 934-942.

- Ruhong Li, J. Buongiorno, J.A. Turner, S. Zhu, J. Prestemon (2008). Long term effects of eliminating illegal logging on the world forest industries, trade, and inventory. *Forest Policy and Economics*. 107(7-8): 480-490.
- Scholkopf, B., Smola, A., Muller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. *Neural Computation*. 10(5): 1299 - 1319.
- Sharkawy, R., Ibrahim, K., Salama, M. M. A., Bartnikas, R. (2011). Particle Swarm Optimization Feature Selection For The Classification Of Conducting Particles In Transformer Oil. *IEEE Transactions on Dielectrics and Electrical Insulation*, 18(6): 1897-1907.
- Sola, J., Sevilla, J. (1997). Importance of input data normalization for the application of neural networks to complex industrial problems. *IEEE Transactions on Nuclear Science*. 3(3): 1464-1468.
- Solberg, A.H.S. and Jain, A.K. (1997). Texture fusion and feature selection applied to SAR imagery. *IEEE Transaction on Geosciences and Remote Sensors*. 35(2): 475-479.
- Spilka, J., Chudacek, V., Koucky, M., Lhotska, L., Huptych, M., Janku, P., Georgoulas, G., Stylios, C. (2012). Using nonlinear features for fetal heart rate classification. *Biomedical Signal Processing and Control.* 7:350-357.
- Stefano, C.D., Cioppa, A.D., Mrcelli, A. (2002). Character preclassification based on genetic programming. *Pattern Recognition Letters*. 23 : 1439-1448.
- Sukanesh, R. and Harikumar, R. (2007). A structured soft (max-min) decision trees for patient specific fuzzy classifier in the classification of epilepsy risk levels from EEG signals. *International Conference on Comptational Intelligence and Multimedia Aplications*. 435-439.
- Sun, Y., Babbs, C., Delp, E. (2005a). A Comparison of Feature Selection Methods for the Detection of Breast Cancers in Mammograms: Adaptive Sequential Floating Search vs. Genetic Algorithm. *Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.*
- Sun, Z.L., Huang, D.S., Cheun, Y.M. (2005b). Extracting nonlinear features for multispectral images by FCMC and KPCA. *Digital Signal Processing*. 15: 331-346.
- Tang, Y. B., Cai, C., Zhao, F.F. (2009). Wood Identification Based on PCA, 2DPCA and (2D)²PCA. *Fifth International Conference on Image and Graphics*. 784-789.

- Thawonmas, R. and Abe, S. (1997). A novel approach to feature selection based on analysis of class regions. *IEEE Transactions on Systems, Man, and Cybernetics, Pert B: Cybernetics.* 27(2) : 196-207.
- Tuceryan, M., Jain, A.K. (1998). *Texture analysis. In: The handbook of pattern recognition and computer vision* (2nd ed). Springer.
- Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer, NewYork.
- Vapnik, V. (1998). Statistical Learning Theory. Wiley, New York.
- Wang, A., Zhao, Y., Hou, Y., Li, Y. (2010). A novel construction of SVM compound kernel function. *International Conference on Logistics Systems and Intelligent Management*. 1462-1465.
- Wang, J.P., Jheng, Y.C., Huang, G.M., Chien, J.H. (2011). Artificial neural network approach to authentication of coins by vision-based minimization. *Machine vision and applications*. 22: 87-98.
- Wang, K., Li, X., Wang, W. and Duan, S. (2007). Application of kernel method on face feature extraction. *IEEE International conference on mechatronics and automation*.
- Weinberger, K.Q. and Saul, L.K. (2009). Distance metric learning for large margin nearest neighbour classification. *Machine learning research*. 10: 207-244.
- Woods, R.E., Gonzalez, R.C. (1981). Real-time Digital Image Enghancement. *Proceedings of IEEE*, 69(5): 643 – 654.
- Woods, R.E., Gonzalez, R.C. (2008). *Digital Image Processing* (3rd ed). Prentice Hall.
- Wu, J., Gaoyun A., Qiuqi R. (2009a). Independent gabor analysis of discriminant features fusion for face recognition. *IEEE Signal Processing Leters*. 16(2): 97-100.
- Wu, J., Gaoyun A., Qiuqi R. (2009b). Independent gabor analysis of discriminant features fusion for face recognition. *IEEE Transaction on Visualization and Computer Graphics*. 13(2): 97-100.
- Wu, J., Wang, J., Liu, L. (2007). Feature extraction via KPCA for classification of gait patterns. *Human Movement Science*. 26: 393-411.
- Yan, H.B. and Liu, Y.S. (2012). Image retrieval in data stream using principle component analysis. *International Conference on Consumer Electronics*, *Communications and Networks*. 2634-2637.

- Yang, Q. and Tian, Y., (2011). Gait recognition based on KDA and SVM. IEEE Joint International Conference on Information Technology and Artificial Intelligence. 160-163
- Ye, F., Shi, Z., Shi, Z. (2009). A comparative study of PCA, LDA and kenel LDA for image classification. *International Symposium on Ubiquitous Virtual Reality*. 51-54.
- Ye, J., Janardan, R., Park, C. H., and Park, H., (2004). An optimization criterion for generalized discriminant analysis on undersampled problems. *IEEE Trans. Pattern Anal. Mach. Intell.* 26 (8): 982–994.
- Yuan, Z., Wu, Y., Wang, G., Li, J. (2006). Motion-information-based video retrieval system using rough pre-classification. *Transactions on Rough Sets V.* 306-333.
- Zhang, Y., Zhou, X., Witt, R.M., Sabatini, B.L. (2007). Automated spine detection using curvilinear structure detector and LDA classifier. *IEEE International Conference on Biomedical Imaging from Nano to Macro.* 528-531.
- Zhang, G.P. (2000). Neural networks for classification: A survey. IEEE Transactions on Systems, Man, and Cybernetics-Part C : Applications and Reviews. 30(4) : 451-462.
- Zhou, D. and Tang, Z. (2010). A modification of kernel discriminant analysis for high-dimensional data with application to face recognition. *Signal Processing*. 90: 2423-2430.
- Zomorodian, M.J., Adeli, A., Sinaee, M., Hashemi, S. (2012). Improving nearest neighbor classification by elimination of noisy irrelevant features. *Intelligent Information and Database Systems*. 7197: 11-21.