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ABSTRACT 
 

 
 

 
            Classifying tropical wood species pose a considerable economic challenge 
and failure to classify the wood species accurately can have significant effects on 
timber industries. Hence, an automatic tropical wood species recognition system was 
developed at Centre for Artificial Intelligence and Robotics (CAIRO), Universiti 
Teknologi Malaysia. The system classifies wood species based on texture analysis 
whereby wood surface images are captured and wood features are extracted from 
these images which will be used for classification.  Previous research on tropical 
wood species recognition systems considered methods for wood species 
classification based on linear features. Since wood species are known to exhibit 
nonlinear features, a Kernel-Genetic Algorithm (Kernel-GA) is proposed in this 
thesis to perform nonlinear feature selection. This method combines the Kernel 
Discriminant Analysis (KDA) technique with Genetic Algorithm (GA) to generate 
nonlinear wood features and also reduce dimension of the wood database. The 
proposed system achieved classification accuracy of 98.69%, showing marked 
improvement to the work done previously. Besides, a fuzzy logic-based pre-classifier 
is also proposed in this thesis to mimic human interpretation on wood pores which 
have been proven to aid the data acquisition bottleneck and serve as a clustering 
mechanism for large database simplifying the classification. The fuzzy logic-based 
pre-classifier managed to reduce the processing time for training and testing by more 
than 75% and 26%  respectively. Finally, the fuzzy pre-classifier is combined with 
the Kernal-GA algorithm to improve the performance of the tropical wood species 
recognition system. The experimental results show that the combination of fuzzy pre-
classifier and nonlinear feature selection improves the performance of the tropical 
wood species recognition system in terms of memory space, processing time and 
classification accuracy. 
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ABSTRAK 
 
 
 
 
Pengelasan spesies kayu tropika menimbulkan cabaran ekonomi yang besar 

dan kegagalan untuk mengelaskan spesies kayu dengan tepat boleh memberi kesan 
yang ketara kepada industri kayu. Oleh itu, sebuah sistem mengenal spesies kayu 
tropika automatik telah dibangunkan di Pusat Kecerdikan Buatan dan Robotik 
(CAIRO), Universiti Teknologi Malaysia. Sistem ini membuat pengelasan spesies 
kayu menggunakan analisis tekstur dimana gambar pelbagai imej permukaan kayu 
dirakam dan ciri-ciri diekstrak dari imej-imej ini sebelum digunakan untuk 
pengelasan. Sebelum ini, kajian-kajian pengelasan spesies kayu tropika 
menggunakan kaedah pengelasan spesies berdasarkan ciri-ciri linear. 
Memandangkan spesies kayu dikenali untuk mempamerkan ciri-ciri tidak linear, 
penggunaan Kernel-Algoritma Genetik (Kernel-GA) dicadangkan di dalam tesis ini 
untuk melaksanakan pemilih ciri tidak linear. Kaedah ini menggabungkan Analisis 
Diskriminan Kernel (KDA) dengan algoritma genetik untuk menjana ciri-ciri tidak 
linear dan juga mengurangkan dimensi pangkalan data kayu. Sistem yang 
dicadangkan mencapai 98.69% ketepatan pengelasan, dengan menunjukkan 
peningkatan yang ketara berbanding kerja yang dilakukan sebelum ini. Selain itu, 
pra-pengelas berdasarkan logik kabur juga dicadangkan di dalam tesis ini untuk 
meniru tafsiran manusia pada liang kayu yang telah terbukti dapat membantu 
kesesakan perolehan data dan bertindak sebagai mekanisme kelompok bagi 
pangkalan data yang besar bagi memudahkan pengelasan. Penggunaan pra-pengelas 
berdasarkan logik kabur mampu mengurangkan masa pemprosesan untuk latihan dan 
ujian melebihi 75% dan 26% masing-masing. Akhirnya, pra-pengelas berdasarkan 
logik kabur digabungkan dengan Kernel-GA untuk meningkatkan prestasi sistem 
mengenal spesies kayu tropika automatik. Keputusan eksperimen menunjukkan 
bahawa penggabungan pra-pengelas berdasarkan logik kabur dengan pemilih ciri 
tidak linear berdasarkan Kernel-GA meningkatkan presasi sistem mengenal spesies 
kayu tropika automatik dari segi ruang memori, masa pemprosesan dan ketepatan 
pengelasan. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 

 
 
 

1.1  Introduction 
 
 

Malaysia is blessed with abundance of wood supply. Statistics from 

Malaysian Timber Industry Board (MTIB) shows that exports of timber and timber 

products for the period of January to August 2012 were RM13.18 billion. India, USA 

and Japan were the major importers for timber and timber products from Malaysia 

contributing RM 893 million, RM 1.66 billion and RM 2.66 billion worth of export 

respectively.  

 

The need for automatic wood identification system is becoming critical in the 

timber industry with the intention to sustain and improve productivity and quality of 

the timber products in furniture industries and housing industries (Piuri, 2010). The 

accurate classification of the wood species is very crucial to guarantee that the timber 

merchandise has the necessary features and characteristics. For instance, the correct 

wood species must be used for the safety in construction industries. Choosing and 

ensuring the correct wood to be used is very important to construct a dependable roof 

truss.  In addition, wood with satisfactory strength should be used.  
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Illegal logging is one of the concerns encountered by timber exporting 

countries for instance Malaysia. According to a report issued by the United Nations 

Environment Programme (UNEP) and INTERPOL, it is estimated that prohibited 

logging accounts for 50-90% and 15-30% of the volume of entire forestry in key 

producer tropical countries and globally respectively. In the meantime, the economic 

value of global illegal logging which includes processing is expected to worth 

between US$30 and US$ 100 billion. Any acts related to logging not with 

accordance to the national law are considered illegal logging including harvesting, 

transporting, buying, selling and processing illegally logged timber.  These acts are 

made legal by fraudulent labeling of timber.  

 

There are many negative environmental impacts from illegal logging. Wood 

species diversity will be reduced because of the widespread illegal logging. Illegal 

logging also drives climate change. Fewer forests will increase the amounts of 

greenhouse gases entering the atmosphere which will then contribute to global 

warming. In addition to the environmental damage, fraudulent labeling practiced by 

some timber exporters will reduce the country’s incomes generated by tax. This is 

because lower tax will be imposed when high quality wood is labeled as low quality 

(Ruhong Li, 2008).  

 

One of the ways to prevent illegal logging is by providing a more strict 

inspection at trading checkpoints. These would require trained wood species 

inspector to classify the wood species. 

 
 
 
 
1.2  Automatic Tropical Wood Species Recognition System 

 

With more demands in timber industries and more tightly controlled 

international requirements, many of these countries are required to meet tighter 

security requirements as well as higher technical demands such as more accurate 

recognition of the correct timber species, prevention of fraud and illegal logging, and 

Environmental Investigation Agency (EIA) requirements, to name a few. In many 
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timber industries one of the major problems is to find good wood graders. This is 

because there are more than 3000 tropical wood species and it is impossible to be 

able to classify each one of them without lengthy, years of training experience. 

Moreover, the possibilities of biasness and mistakes by human wood graders have to 

be considered. Besides that, it is impractical and cost ineffective for a human to 

analyze and identify large number of timber species (Khairuddin et al.  2011). 

Therefore, a reliable automatic wood recognition device is needed in order to classify 

the wood species efficiently.  

 

This thesis presents a nonlinear feature selection algorithm to solve the 

nonlinearities in the wood features and the large variations of features within inter 

and intra wood species. The nonlinear feature selection is a novel approach to the 

tropical wood species recognition system. The limitations regarding the preservation 

of class discrimination are shown when classes are originally separated by nonlinear 

decision boundaries. The implementation of the nonlinear feature selection aims to 

maintain the most salient nonlinear wood features that minimizes the inter-class 

distance and maximizes the intra-class distance in order to classify the wood species 

efficiently. Another objective of implementing nonlinear feature selection algorithm 

is to find a transformation that maps data to a lower dimensional space where 

important information is largely preserved.  

 

In this thesis, the strong capability of the Genetic Algorithm (GA) in feature 

selection is effectively combined with the capability of the Kernel Discriminant 

Analysis (KDA) which can perform nonlinear dimension reduction without 

substantially downgrading the system’s performance. KDA is a nonlinear extension 

of linear discriminant analysis (LDA) by using radial basis function (RBF) kernel.  

The proposed kernel-GA method acts as an enhanced feature selection, to perform 

nonlinear feature selection.   

 

Besides that, large wood databases presented a problem of large processing 

time especially for online wood recognition system. In view of this problem, this 

thesis proposes the use of a fuzzy-based pre-classifier which mimics the human 
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interpretation on wood pores as a means of treating uncertainty to improve the 

classification accuracy of tropical wood recognition system. The pre-classifier serves 

as a clustering mechanism for the large database simplifying the classification 

process making it more efficient. The proposed pre-classifier also aims to reduce the 

processing time in the training and testing stages of the wood species classification, 

albeit the existence of the bottleneck in building automatic wood species recognition 

system. 

 

The linguistic interpretation of the human behavior, provided by a fuzzy 

model, could be useful to experts in determining the wood species. Moreover, it 

could improve the man-machine interface in environments for computer-aided 

training of human operators. The advantage for using fuzzy if-then rules for wood 

classification problem is that knowledge acquisition can be achieved for users by 

carefully checking these rules discovered from the training patterns. 

 
 
 
 
1.3 Research Objectives 
 

The objectives of this research are as follows: 

a) To analyze the effect of the nonlinearity of the wood features to the 

classification accuracy of the wood recognition system. 

b) To use suitable kernel technique to generate the most discriminative 

nonlinear features 

c) To develop and implement a nonlinear feature selection algorithm using 

Kernel-Genetic Algorithm (K-GA) 

d) To develop a pre-classifier based on fuzzy logic to improve the efficiency of 

the tropical wood species recognition system 

e) To analyze the effectiveness of combination of the proposed nonlinear feature 

selection with fuzzy logic pre classifier. 
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1.4 Study Scope and Limitations 
 

a) A tropical wood species database which consists of 52 wood species was 

built in CAIRO using the wood samples provided by FRIM to perform this 

project.  

b) The feature extractors used are grey level co-occurrence matrices (GLCM), 

basic grey level aura matrix (BGLAM) and statistical properties of pores 

distribution (SPPD) 

c) This research focuses on solving nonlinear problems in classifying wood 

species. The nonlinear methods that are studied to solve the nonlinear 

problems in tropical wood species recognition system are kernel-genetic 

algorithm (K-GA) as nonlinear feature selection and fuzzy-based pre-

classifier.  

d) This research focuses on kernel extension of LDA  

e) System’s efficiency includes : classification accuracy, database size and 

processing speed. 

 
 
 
 
1.5   Research Contributions 

 

a) Proposed a nonlinear feature selection technique by using kernel-genetic 

algorithm. 

b) Proposed a fuzzy-based pre-classifier to pre-classify the wood species based 

on pores characteristics which mimics human interpretation on wood texture. 

c) Proposed the combination of fuzzy-based pre-classifier and nonlinear feature 

selection to improve the performance of the tropical wood species recognition 

system. 
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1.6 Thesis Outline 
 
 
The arrangement of this thesis is as follows: 
 
• Chapter 1 - Introduction  

This chapter explains the need of the automatic wood species recognition system 

and the algorithms proposed to improve the performance of the tropical wood 

species recognition system. Problem statement, objectives, scope of study and 

also the research contributions of this doctor of philosophy research were 

included in this chapter. 

• Chapter 2 - Literature Review  

This chapter presents the process of manual wood inspection, the nonlinearity in 

tropical wood features, and the basic process of an automatic wood species 

recognition system. This chapter also discussed in detail the work done by other 

researchers that inspire this research and provide knowledge on various 

techniques and algorithms that can be used in this research.  

• Chapter 3 - Methodology  

This chapter explains the proposed methodologies and processes involved in 

implementing and improving the automatic tropical wood species recognition 

system in this research. 

• Chapter 4 - Experimental Results and Discussions 

This chapter presents the results of various experiments conducted in this 

research along with the analysis and discussions. 

• Chapter 5 - Conclusions 

This chapter concludes the work done for this doctor of philosophy’s research 

and future works that can be done to improve this research. 
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