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ABSTRACT  

 

 

 

 

 Rise in sea level is one of the disastrous effects of climate change. A 

relatively small increase in sea level could affect the natural coastal system. This 

study presents an approach to estimate before interpreting  the precise sea level trend 

based on a combination of multi-sensor techniques in the Malaysian region over a 

period of 19 years. In the study, six altimeter missions were used to derive the 

absolute sea levels which were processed in the Radar Altimeter Database System. 

Next, 21 tide gauge stations along the coastlines of Malaysia were utilised to derive 

the rate of relative sea levels that took into account sea level changes and vertical 

land motions. To obtain absolute sea level at tide gauge, vertical land motions at 

these stations were removed by employing  three techniques, namely GPS, Persistent 

Scatterers Interferometric Synthetic Aperture Radar and altimeter minus tide gauge. 

Bernese software with double difference strategy was employed to process  data 

from 87 local and 30 international GPS stations. Using Persistent Scatterers 

Interferometric Synthetic Aperture Radar, the Stanford Method for Persistent 

Scatterer software  processed 111 images.  Besides that,  the satellite altimeter and 

tide gauges were used to retrieve the differential rates estimated by altimetry and 

tidal data to obtain the rate of vertical land motion.  Following that,  absolute sea 

level rates from the tide gauge stations and multi-satellite altimeter missions were 

combined. This combination produced the regional sea level trend of the Malaysian 

seas. The findings from the multi-sensor techniques showed that the regional sea 

level trend has been rising at a rate of 2.65 ± 0.86 mm/yr to 6.03 ± 0.79 mm/yr for 

the chosen sub-areas, with an overall mean of 4.47 ± 0.71 mm/yr.  Upon completion 

of the study, a Sea Level Information System for the Malaysian seas was developed 

to facilitate users in analysing, manipulating and interpreting sea level and vertical 

land motion data. This system is expected to be valuable for a wide variety of 

climatic applications to study environmental issues related to flood and global 

warming in Malaysia 
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ABSTRAK 

 

 

 

 

Kenaikan paras laut adalah salah satu kesan buruk perubahan iklim. 

Peningkatan kecil dalam paras laut boleh menjejaskan sistem semula jadi pantai. 

Kajian ini membentangkan satu pendekatan untuk menganggarkan sebelum 

mentafsir trend paras laut tepat berdasarkan kombinasi teknik multi-sensor di rantau 

Malaysia dalam tempoh 19 tahun. Dalam kajian, enam misi altimeter telah digunakan 

untuk memperolehi paras laut mutlak yang telah diproses dalam Sistem Pangkalan 

Data Altimeter Radar. Seterusnya, 21 stesen tolok pasang surut di sepanjang garis 

pantai Malaysia telah digunakan untuk mendapatkan kadar paras laut relatif yang 

mengambil kira perubahan paras laut dan pergerakan tanah menegak. Untuk 

mendapatkan paras laut mutlak pada tolok pasang surut, pergerakan tanah menegak 

di stesen-stesen ini telah dikeluarkan dengan menggunakan tiga teknik, iaitu GPS, 

Radar Aperture Sintetik Interferometri Sebaran Berterusan dan altimeter tolak tolok 

pasang surut. Perisian Bernese dengan strategi perbezaan ganda dua telah digunakan 

untuk memproses data daripada 87 stesen tempatan dan 30 stesen GPS antarabangsa. 

Menggunakan Radar Aperture Sintetik Interferometri Sebaran Berterusan, perisian 

Kaedah Stanford untuk Sebaran Berterusan telah memproses 111 imej. Di samping 

itu, altimeter satelit dan tolok pasang surut telah digunakan untuk memperolehi kadar 

perbezaan anggaran dengan data altimeter dan tolok pasang surut untuk mendapatkan 

kadar pergerakan tanah menegak. Berikutan itu, kadar paras laut mutlak dari stesen 

tolok pasang surut dan misi altimeter multi-satelit telah digabungkan. Gabungan ini 

telah menghasilkan trend paras laut serantau di laut Malaysia. Penemuan daripada 

teknik multi-sensor menunjukkan trend paras laut serantau telah meningkat pada 

kadar 2.65 ± 0.86 mm/tahun kepada 6.03 ± 0.79 mm/tahun untuk sub-kawasan yang 

dipilih, dengan min keseluruhan 4.47 ± 0.71 mm/tahun. Dalam menyelesaikan kajian, 

Sistem Maklumat Paras Laut untuk laut Malaysia telah dibangunkan bagi 

membolehkan pengguna menganalisis, memanipulasi dan mentafsirkan data paras 

laut dan pergerakan tanah menegak. Sistem ini dijangka berharga untuk pelbagai 

aplikasi iklim untuk mengkaji isu-isu alam sekitar yang berkaitan dengan banjir dan 

pemanasan global di Malaysia. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

In the recent report by the Intergovernmental Panel on Climate Change 

(IPCC), sea level rise has been explicitly named as one of the major challenges for 

human society in the 21
st
 century. A rise of just 20 centimetres could result in the 

endangerment of more than 300 million people (Parry et al., 2007). Scientific 

research has produced concrete evidence on sea level trends and the general public 

has observed, and often suffering from the consequences of coastal flooding, 

shoreline erosion, and storm damages.  In the coming decades, sea level rise will 

impose a substantial burden on people and societies, especially for a country like 

Malaysia as it is surrounded by coastlines. Thus, effective mitigation and adaptation 

measures must be put in place to prevent and compensate for the impacts of sea level 

rise. 

 

 

The impact of even a mild rate of sea level rise is disastrous, especially for 

islands and highly populated coastal regions. In fact, if there is an increment in sea 

level rate of about 2 mm per year in the 21
st
 century, the economic and social 

burdens will be severely affected. This is based on the grounds that an increase in sea 

level significantly increases the impact of storms on low-lying coastal areas (Church 

et al., 2008). It is a matter of immediate action needed to be taken to quantify the 

amount and causes of sea level rise so that mitigation activities are able to commence 

as soon as possible. 
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In the past, global sea level studies used tide gauges from all over the world 

to deduce sea level rate. However, for regional studies, quantifying such a threat is 

not simple as, additional issues related to the actual amount and cause of sea level 

rise requires an in-depth study. Though the rate of sea level from tide gauge data may 

be unequivocal, it may be affected by vertical movement due to active tectonic 

activities in the region. Therefore, a ‘next level’ comprehensive study on sea level 

change is needed which associates sea level change with regional geodynamics 

studies by utilising instruments such as tide gauges, satellite altimeter, InSAR and 

collocated GPS measurements. 

 

 

This study presents an effort to quantify and interpret sea level rate in the 

region of Malaysia within a period of 19 years, beginning from 1993 to 2011 using 

multi-mission satellite altimeter, tide gauge, Global Positioning System (GPS) and 

Persistent Scatterer Interferometric Synthetic Aperture Radar (PS InSAR) 

techniques. This quantification and interpretation of sea level covers all sea level and 

vertical land motion information. For acquiring information on sea level, tide gauges 

and satellite altimeter are used to retrieve the relative and absolute sea level rate, 

respectively. Meanwhile, GPS and PS InSAR techniques are used to quantify the rate 

of vertical land displacement.  

 

 

This study is the first systematic investigation on the sea level phenomena by 

combination of sea level and vertical land motion information for the Malaysian 

region, based on relatively long (~19 years) oceanographic and geodetic analysis. 

These results are expected to be valuable for a wide variety of climate applications 

and to study environmental issues related to flood and global warming in Malaysia. 
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1.2 Problem Statement 

 

 

The Southeast Asian region is characterised by its unique geographical and 

geophysical settings. It shares continental and archipelago parts. The archipelago 

consists of thousands of islands. The entire area is located in the boundaries between 

two continents, Asia and Australia, and between two major oceans, the Pacific and 

Indian Oceans. Most of Southeast Asian countries are bordered by the sea and a large 

population inhabits low lands in coastal areas including Malaysia. Geographically, 

Malaysia is surrounded by water: the South China Sea, the Malacca Strait, the Sulu 

Sea and the Celebes Sea. 

 

 

Due to the aforementioned facts, better knowledge on sea level behavior in 

this region is important.  Currently, sea level rise and the threats related to it are 

receiving great attention across the globe. According to AVISO’s Sea Level 

Research Team, it is confirmed that since January 1993 to February 2012, the Global 

Mean Sea Level (GMSL) has increased to a rate of 3.11 ± 0.6 mm/yr (AVISO, 

2013). Therefore, an understanding of past and future changes in sea level and 

related ocean dynamics are important, especially for coastal management.  

 

 

For the past centuries, coastal tide gauges have been the main technique to 

measure sea level change. However, there are gaps in monitoring sea level changes 

using tide gauge data for the Malaysia region. The gaps are due to these two 

following issues: 

 

 

i. Uneven geographical distributions of tide gauge stations installed at coastal 

areas and there are no long term tide records for the deep ocean (Azhari, 2003; 

Ami Hassan, 2010; PSMSL, 2014).  

 

ii. As the tide gauges are attached to land, vertical land motion will be induced in 

the tide gauge records. The estimated sea level rate at any tide gauge is only 

able to produce relative sea level (Douglas, 2001; Church et al., 2008). 
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An alternative method in order to overcome those problems is to measure the 

absolute sea level from space, i.e., satellite altimeter technique, as a complementary 

tool to the tide gauge. Satellite altimeter then provides good potential as a 

complementary tool to the traditional coastal tide gauge instruments for monitoring 

sea level change of Malaysian seas, especially for the deep ocean.   

 

 

However, altimetry data contains geophysical effects such as undulation of 

geoid, tidal height variation, sea state bias and ocean surface response to atmospheric 

pressure loading. These geophysical effects must be modelled and removed from the 

sea surface height in order to derive the absolute sea level. In this study, the Radar 

Altimeter Database System (RADS), developed by the Technical University of Delft, 

is used for altimeter data processing (Naeije et al., 2000). To obtain the best absolute 

sea level results for the Malaysian region, refinements in data processing parameters 

and algorithm have to be taken into account since most of the suggested corrections 

or models in RADS are for the global case.  

 

 

Recently, much issues discussed are related to the cause of sea level rise; yet 

it must be understood that the cause may only be determined with accurate data. As 

mentioned, the rate of sea level from tide gauge data is influenced by vertical land 

movement due to active tectonic activities in the region (Church et al., 2010; Din et 

al., 2012). In this case, the impact of crustal motion has to be removed to obtain true 

or absolute measurements of sea level rate. This can be achieved by removing the 

estimated vertical land motion derived from Global Positioning System (GPS) 

records. This also reduces (though not completely removed) the impact of local and 

non-oceanographic processes in a regional analysis of tide gauge records. 

 

 

Despite the tremendous advances in GPS measurements during the last 

decade, a major limitation of this technique is the lack of deformation data in many 

areas since GPS observations are station-dependent providing only point-wise data. 

Currently, in Malaysia, the only GNSS Continuously Operating Reference Stations 

(CORS) is the Malaysia Real Time Kinematic GNSS Network (MyRTKnet) which 

consists of 78 stations, with a spacing of between 30 to 100 km between one another 

in Peninsular Malaysia, and 30 to 200 km in Sabah and Sarawak (Mohamed, 2009). 



 5 

In recent years, Interferometic Synthetic Aperture Radar (InSAR) has proven 

a very effective technique for measuring vertical crustal deformation for large areas. 

InSAR is a satellite-based remote sensing technique that is able to measure 

centimetre-level ground surface deformation over a 100 km² area (scene). As a result, 

a combination of GPS and InSAR techniques is an effective way to measure vertical 

changes of the land surface. The study by Watson et al. (2002) demonstrated the 

method of which GPS and satellite-based InSAR can be used to complement each 

other.  Both InSAR and GPS show the same annual trends, but InSAR was able to 

spatially fill in the gaps.  

 

 

A relatively recent analysis technique called the Persistent Scatterer (PS) 

InSAR is an extension to the conventional InSAR techniques, which addresses and 

overcomes the major limitations of repeat pass SAR interferometry: temporal and 

geometrical decorrelation, and variations in atmospheric conditions. In this study, a 

new persistent scatterer analysis method is used to compute the velocity of the 

vertical land deformation. The software used for identifying the PS points is known 

as Stanford Method for Persistent Scatterers (StaMPS). StaMPS is able to identify 

and extract deformation signals even in the absence of bright scatterers. StaMPS is 

also applicable in areas undergoing non-steady deformation, with no prior knowledge 

of the variations in deformation rate (Hooper, 2006). 

 

 

Therefore, this research performs a comprehensive study on sea level 

interpretation in the region of Malaysia, by associating oceanographic and geodetic 

analysis, and including multi-sensor technology: tide gauges, satellite altimeter, PS 

InSAR and collocated GPS measurements. The byproduct of this research: a Sea 

Level Information System (SLIS) for Malaysian seas is developed. The system 

comprises of real-time data analysis of sea level and vertical land motion for the 

Malaysian region. Besides acting as a data archive and analysis platform for sea level 

and vertical land motion information, this system also facilitates users to analyse, 

manipulate and interpret the data for their own interest. 
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1.3 Research Objectives 

 

 

The aim of this study is to interpret the precise sea level trend for the 

Malaysian region using a combination of multi-sensor technology: tide gauges, 

satellite altimeter, Global Positioning System (GPS) and Persistent Scatterers 

Interferometric Synthetic Aperture Radar (PS InSAR) techniques. In pursuit of the 

aim of this research, this study specifically addresses several objectives as follows: 

 

 

1) To develop a method for deriving sea level anomaly from multi-satellite 

altimetry data using Radar Altimeter Database System (RADS) for 

Malaysian seas. 

 

 

2) To determine the magnitude of vertical land motion using GPS and PS 

InSAR techniques to support sea level rise interpretation for the Malaysian 

region 

 

 

3) To quantify and interpret the sea level rate within a 19-year period, 

beginning 1993 to 2011, for the region of Malaysia based on sea level and 

vertical land motion measurements. 

 

 

 

 

1.4 Research Scope 

 

 

This research intends to establish a complete methodology for quantifying 

and interpreting the sea level rate within a 19-year period, from 1993 to 2011, for the 

region of Malaysia based on sea level and vertical land motion measurements.  Since 

the lunar nutation effect is able to be corrected by applying at least 18.6 years of 

data, thus a 19-year period of time series has been employed in this study in order to 

discover the actual rate of sea level rise in this region (Trisirisatayawong et al., 2011; 

Din et al., 2012). The research involves the following research scope: 
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1) Study area 

The study area covered in this research is shown in Figure 1.1, it ranges between 

0° N ≤ Latitude ≥ 12°N and 95° E ≤ Longitude ≥ 125°E, encompassing the entire 

Malaysian region. Satellite altimeter and tide gauge analysis are focused on 

Malaysian seas, which consists of the South China Sea, Malacca Straits, the Sulu 

Sea and the Celebes Sea. Meanwhile, GPS and PS InSAR analysis are 

concentrated on land areas, especially at tide gauges and GPS stations around 

Malaysia.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Study area 

 

 

2) Satellite Altimeter Missions Data 

Six satellite altimeter missions are used in this study: TOPEX, Jason-1, Jason-2, 

ERS-1, ERS-2 and EnviSat. The period of the altimetry data covers from January 

1993 to December 2011 (~ 19 years). Detailed descriptions on the data are as 

follows:  

 

a) TOPEX altimetry data (NASA/CNES Agency) are analysed for the 

Malaysian seas from January 1993 to July 2002 (cycle 11 – cycle 363).  

b) Jason-1 altimetry data (NASA/CNES Agency) are analysed for the 

Malaysian seas from August 2002 to December 2011 (cycle 21- cycle 368).  

c) Jason-2 altimetry data (NASA/CNES Agency) are analysed for the 

Malaysian seas from July 2008 to December 2011 (cycle 01- cycle 128).  
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d) ERS-1 altimetry data (ESA Agency) are analysed for the Malaysian seas 

from January 1993 to April 1995 (cycle 91 – cycle 156). 

e) ERS-2 altimetry data (ESA Agency) are analysed for the Malaysian seas 

from May 1995 to September 2002 (cycle 1 – cycle 78).  

f) EnviSat altimetry data (ESA Agency) are analysed for the Malaysian seas 

from October 2002 to December 2011 (cycle 10 – cycle 110).  

 

The time period of the altimeter missions used in this study are almost different 

from one another due to the limited life time of altimeter missions. Hence, in 

order to continue retrieving the sea level data for a period of 19 years, six satellite 

altimeters from the different missions have been employed.    

 

 

3) Tide Gauges Data 

Monthly tide gauge data is taken from the Permanent Service for Mean Sea Level 

(PSMSL) website. The tide gauge data covers from 1993 until 2011, over 19 years 

of data span. The Malaysian coastal tide gauge stations used in this study is listed 

in Table 1.1. 

 

 

4) GPS Data 

9 Malaysian Active GPS System (MASS) stations (1999 to 2003) and 78 

Malaysia Real Time Kinematic GNSS Network (MyRTKnet) stations (2004 to 

2011) are used in this study. The GPS data is collected from the Department of 

Survey and Mapping Malaysia (DSMM). Additionally, 30 stations of GPS data 

from International GNSS Service (IGS) are downloaded from the IGS FTP 

(ftp://igscb.jpl.nasa.gov/network/netindex.html).  

 

 

5) PS InSAR Data 

SAR data from ERS-2 and EnviSat satellite missions are used in this research. 

There are 7 locations selected for PS InSAR analysis: Kota Bharu (Kelantan), 

Kuala Terengganu (Terengganu), Johor Bahru (Johor), Klang (Selangor), Sungai 

Petani (Kedah), Kuching (Sarawak) and Kota Kinabalu (Sabah). The total SAR 

satellite images processed in this study are 111 images, where 93 images are from 

ERS-2 and 18 images are from EnviSat. 
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Table 1.1: List of tide gauge stations and locations used in this study (PSMSL, 2014) 

Number Tide Gauge  Latitude Longitude 

1 Geting 6° 13’ 35” 102° 06’ 24” 

2 Cendering 5° 15’ 54” 103° 11’ 12” 

3 Tanjung Gelang 3° 58’ 30” 103° 25’ 48” 

4 Pulau Tioman 2° 48’ 26” 104° 08’ 24” 

5 Port Klang 3° 03’ 00” 101° 21’ 30” 

6 Pulau Pinang 5° 25’ 18” 100° 20’ 48” 

7 Lumut 4° 14’ 24” 100° 36’ 48” 

8 Johor Bahru 1° 27’ 42” 103° 47’ 30” 

9 Kukup 1° 19’ 31” 103° 26’ 34” 

10 Pulau Langkawi 6° 25’ 51” 99° 45’ 51” 

11 Tanjung Sedili 1° 55’ 54” 104° 06’ 54” 

12 Tanjung Keling 2° 12’ 54” 102° 09’ 12” 

13 Bintulu 3° 15’ 44” 113° 03’ 50” 

14 Kudat 6° 52’ 46” 116° 50’ 37” 

15 Kota Kinabalu 5° 59’ 00” 116° 04’ 00” 

16 Sandakan 5° 48’ 36” 118° 04’ 02” 

17 Tawau 4° 14’ 00” 117° 53’ 00” 

18 Labuan 5° 16’ 22” 115° 15’ 00” 

19 Lahat Datu 5° 01’ 08” 118° 20’ 46” 

20 Miri 4° 32’ 00” 113° 58’ 00” 

21 Sejingkat 1° 34’ 58” 110° 25’ 20” 

 

 

 

6) Software 

a) Radar Altimeter Database System (RADS). 

Multi-mission satellite altimetry data are processed using RADS. The final 

output of altimetry processing is absolute sea level anomaly data with respect 

to DTU10 Mean Sea Surface (MSS) in daily and monthly solutions. 

b) Bernese high precision GNSS processing software version 5.0. 

GPS data are processed with Bernese version 5.0 using double-difference QIF 

strategy in daily, weekly and monthly solutions. 

c) Delft Object-oriented Radar Interferometric Software (DORIS) Software. 

DORIS software is used to carry out interferometric processing for 

interferogram formation. 
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d) Stanford Method for Persistent Scatterer (StaMPS) Software. 

Persistent scatterer points are identified using PS InSAR processing in 

StaMPS.  

e) MATLAB Software 

MATLAB is used for analysing sea level and vertical land motion data. 

Besides, this software is also used to develop a system called Sea Level 

Information System (SLIS) for the Malaysian seas.  

 

 

7) Data interpretation and analysis 

As for data analysis, it is to quantify and interpret the precise sea level rate within 

a 19-year period, from 1993 to 2011, in the region of Malaysia based on sea level 

and vertical land motion information. The scope of analyses is limited to: 

 

 

a) Quantify and interpret a long time series of relative sea level rate using tidal 

data. 

b) Quantify and interpret a long time series of absolute sea level rate using 

altimetry data. 

c) Quantify and interpret the rate of vertical land motion derived from satellite 

altimeter and tide gauge via “altimeter minus tide gauge”. 

d) Quantify and interpret the rate of vertical land motion using GPS at MASS and 

MyRTKnet stations.  

e) Quantify and interpret the rate of vertical land motion using PS InSAR at 

selected areas. 

f) Compare the rate of vertical land motion between ‘altimeter minus tide gauge’, 

GPS and PS InSAR techniques. 

g) Quantify and interpret the regional sea level rate over the Malaysian seas from 

multi-satellite altimetry and vertical land motion corrected for tidal data. 
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1.5 Contribution of the Research 

 

 

The contribution of this research is summarised as follows: 

 

 

1) This study aims to highlight the importance of precise sea level 

information for Malaysia’s development, security and coastal 

management. From sea level information, government authorities are able 

to take effective mitigation and adaptation measures to prevent and 

compensate for sea-related or sea level impacts. 

 

 

2) The initial step is to interpret and quantify the regional rate of sea level 

changes using a combination of multi-sensor technology: tide gauges, 

satellite altimeter, GPS and PS InSAR. This is also the first systematic 

investigation of sea level phenomena for the Malaysia region based on 

relatively long (~19 years) oceanographic and geodetic analysis. These 

results are expected to be valuable for a wide variety of climate 

applications, as well as to study environmental issues related to flood and 

global warming in Malaysia. 

 

 

3) This study intends to demonstrate the potential of multi-mission satellite 

altimeter in deriving sea level data and to understand sea level trends over 

the Malaysian seas. This technology will evidently be a complementary 

tool to the traditional coastal tide gauge measurement in monitoring sea 

level change, especially in the deep ocean. 

 

 

4) This research initiates the assessment to adopt the latest InSAR Persistent 

Scatterer (PS) algorithms in environmental, climatic and topographic 

conditions of the tropical area. Thus, it opens a gateway for the practice of 

PS InSAR technique in the Malaysian region. 
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1.6 Research Methodology 

 

The general methodology of this study is divided into five (5) phases as 

illustrated in Figure 1.2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2  Overview of the research methodology 
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PHASE 1 

 

Literature Review 

This stage concentrates on reviewing essential topics such as: 

i. Theory of sea level, vertical land motion, tides, satellite image and coordinate 

systems 

ii. Principle of satellite altimeter, GPS, Persistent Scatterer InSAR and tide gauge 

iii. Altimeter Processing Software: Radar Altimeter Database Software (RADS) 

iv. High Precision GPS Processing software : Bernese version 5.0 

v. PS InSAR Processing software: Delft Object-oriented Radar Interferometric 

Software (DORIS) and Stanford Method for Persistent Scatterers (StaMPS) 

vi. MATLAB programming language 

vii. Linux shell script, and 

viii. Ubuntu operating system 

 

Research Area Identification 

The area of study covers the Malaysian region as shown in Figure 1.1.  

 

 

PHASE 2 

 

Data Acquisition and Processing 

There are four techniques used to gather the data as follows: 

 

1) Tide Gauge 

There are 21 tide gauge stations involved in this research. List of tide gauges used 

is given in Table 1.1. This type of data does not require any complex processing 

unlike altimeter, GPS and PS InSAR techniques. Tidal data only requires cleaning 

any outlier or bad data before using them to perform analysis. Data cleaning is 

executed in Microsoft Excel and/ or Textpad.  

 

2) Satellite Altimeter 

In this study, Radar Altimeter Database System (RADS) is used for satellite 

altimeter mission data retrieval and processing, i.e., TOPEX, Jason-1, Jason-2, 

ERS-1, ERS-2 and EnviSat. The important data derived from altimeter processing 
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is absolute sea level anomaly.The details regarding the processing methodology 

and enhancement of RADS are discussed in Chapter 3.  

 

3) Global Positioning System (GPS) 

For high precision GPS data processing, Bernese version 5.0 software is used. The 

details regarding the processing flow are discussed in Chapter 4. The GPS data are 

gathered from 9 MASS stations (1999 to 2003), 78 MyRTKnet stations (2004 to 

2011) and 30 stations IGS stations (1999 to 2011). 

 

4) Persistent Scatterer Interferometric Synthetic Aperture Radar (PS InSAR) 

The SAR images are requested from European Space Agency (ESA) through 

EOLI-SA (as shown in Figure 1.3). Due to the declaration of SAR data as 

restrained dataset under ESA, a proper proposal has to be submitted for SAR data 

application (https://earth.esa.int/web/guest/data-access). Appendix A shows the 

list of ERS and EnviSat SAR data that is requested from ESA. The details on PS 

InSAR processing are further discussed in Chapter 5. 

 

 

 

Figure 1.3  EOLI-SA interface for requesting SAR data 

 

 

 

 

 

 

 

 

https://earth.esa.int/web/guest/data-access
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PHASE 3 

 

Sea Level Rate Quantification 

Altimetry data which is derived from RADS needs to be verified before performing 

analyses. In this study, sea level anomaly data is compared with ground-truth data, 

i.e., tidal data. The verification is focused on the sea level pattern and the correlation 

of the data comparison. The time series of the sea level trend for the Malaysian seas 

is quantified using robust fit regression analysis. Robust fit analysis is a standard 

statistical technique that simultaneously deals with solution determination and outlier 

detection. In this robust fit approach, a linear trend is fitted to the annual sea level 

time series of each station in an iteratively re-weighted least squares (IRLS) 

procedure (Holland and Welsch, 1977; Trisirisatayawong et al., 2011).  

 

Vertical Land Motion Quantification 

In this study, vertical land motion of the Malaysian region was quantified based on 

GPS and PS InSAR techniques. The rate of vertical land motion is also computed 

using robust fit approach. For PS InSAR processing verification, the rate of vertical 

land changes was verified with the GPS results from MASS and MyRTKnet stations.  

 

 

PHASE 4 

 

Sea Level Interpretation 

This stage will quantify and interpret the sea level rate within a 19-year period, from 

1993 to 2011, for the region of Malaysia based on ocean and land information. The 

method of interpretation and quantification is as follows: 

 

i. Relative sea level variation using tidal data 

ii. Relative sea level rate using tidal data 

iii. Absolute sea level variation using multi-mission satellite altimetry 

iv. Absolute sea level rate using multi-mission satellite altimetry 

v. Comparison of trend rates between tidal and altimetry data at coastal tide gauge 

stations 

vi. Absolute sea level trend mapping over the Malaysian seas 



 16 

vii. Vertical land motion rate from the difference of rates between the estimated 

altimetry and tidal data 

viii. GPS-derived vertical land motion rate 

ix. PS InSAR-derived vertical land motion rate 

x. Comparison of vertical land motion rates from GPS and PS InSAR 

xi. Vertical land motion rate comparison between “altimeter minus tide gauge”, 

GPS and PS InSAR techniques 

xii. Regional sea level rates over the Malaysian seas from multi-satellite altimetry 

and vertical land motion corrected tidal data 

 

Sea Level Information System (SLIS) 

Sea Level Information System (SLIS) for the Malaysian seas was developed in this 

study as a byproduct of the research.  The system comprises of real-time data 

analysis of sea level and vertical land motion for the Malaysian region which are 

derived from tide gauges, satellite altimeter, GPS and PS InSAR data. Besides acting 

as data archive and analysis platform for sea level and vertical land motion 

information, this system will also provide opportunity to users to analyse, manipulate 

and interpret the data. The Graphical User Interface Development Environment 

(GUIDE) function in the MATLAB programming software is employed to develop 

the interface for manipulating the data. The capabilities of SLIS have been 

summarised in Appendix B. 

 

 

PHASE 5 

 

Data Analyses and Results 

The analyses are focused on analysing and discussing sea level and vertical land 

motion rate, pattern and trend in the region of Malaysia.  

 

Conclusion and Recommendation 

The conclusions are based on the objectives and results of the study. Then, 

suggestions and recommendations for future studies are also provided. 
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1.6 Outline of the Thesis 

 

 

The thesis focuses on the estimation and interpretation of sea level rise in the 

Malaysian region using tide gauges, satellite altimeter, Global Positioning System 

(GPS) and Persistent Scatterers Interferometric Synthetic Aperture Radar (PS 

InSAR) techniques. The structure of the thesis is divided into seven chapters as 

follows: 

 

 

Chapter 1 introduces the research topic, and outlines the research aim and 

objectives. A general research methodology for this study is also discussed in this 

chapter.  

 

 

Chapter 2 reviews the sea level changes associated with climate change and 

discussions on the scientific evidence of Holocene sea level rise: present and future 

projections globally and locally. At the end, a new approach to estimate sea level rise 

by combining sea level and vertical land motion information from multi-sensor 

technology is discussed in this chapter. 

 

 

Chapter 3 describes how to derive sea level data from multi-mission satellite 

altimeter using Radar Altimeter Database System (RADS). Here, details on the 

RADS processing methodology particularly for the Malaysian seas are described 

extensively.  Furthermore, this chapter discusses the derivation of tide gauge data for 

the determination of sea level anomaly and as verification for altimeter data. Besides, 

the robust fit regression analysis for computing the trend of sea level and vertical 

land motion is demonstrated in this chapter. Subsequently, a comparison of near-

simultaneous altimeter and tide gauges data is assessed to verify the altimeter data 

processed from RADS. 

 

 

Chapter 4 discusses on how to quantify the rate of vertical land motion from 

GPS measurements. The Bernese GNSS processing software framework and 

processing strategy employed in this study to achieve the high accuracy requirements 

of vertical land motion monitoring are described in detailss.  
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Chapter 5 describes the alternative technique that is applied to quantify the 

vertical land motion by using Persistent Scatterer (PS) InSAR. This chapter discusses 

the Stanford Method for Persistent Scatterer (StaMPS) framework as well as the 

Persistent Scatterer InSAR processing chain and parameter settings specifically 

suited for tropical regions such as Malaysia. The rate of vertical land motion derived 

in this chapter and the previous chapters are used to support sea level rise 

interpretation for the Malaysian region. 

 

 

Chapter 6 discusses the final results and interpretation of sea level and 

vertical land motion trend over the Malaysian region based on various approaches. 

However, the primary focus of Chapter 6 is to provide the precise regional sea level 

trend over the Malaysian seas, based on multi-mission satellite altimetry and vertical 

land motion corrected tidal data. 

 

 

Chapter 7 summarises the major findings and conclusions of this study, as 

well as provide suggestions and recommendations for future work. 



260 

adjustment algorithm, the estimation of nonlinear vertical land motion from 

“altimeter minus tide gauge” will yield a great improvement (Kuo et al., 2007). 

 

 

c) Conduct a study on sea level rise projection.  

The present study only focuses on the derivation of regional sea level trend from 

multi-sensor techniques. It is better if the regional sea level rate derived in this 

study can be extended to look into sea level rise projections for this region, 

particularly at flood prone areas, by including the vertical land motion effects as 

well. A solid and convincing result for the projections of sea level rise along 

Malaysian coasts is vital as it will become an important reference for the 

Malaysian coastal development in future.  

 

 

d) Process additional SAR images 

Add more SAR images (more than 30 images in the same study area) in PS 

InSAR processing using StaMPS software in order to better remove phase 

unwrapping errors and also to obtain better results, particularly at rural and 

vegetated areas.  
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