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ABSTRACT 

 

 

 

Fingerprint classification is a technique used to assign fingerprints into five 

established classes namely Whorl, Left loop, Right loop, Arch and Tented Arch 

based on their ridge structures and singular points’ trait.  Although some progresses 

have been made thus far to improve accuracy rates, problem arises from ambiguous 

fingerprints is far from over, especially in large intra-class and small inter-class 

variations.  Poor quality images including blur, dry, wet, low-contrast, cut, scarred 

and smudgy, are equally challenging.  Thus, this thesis proposes a new classification 

technique based on template matching using fingerprint salient features as a 

matching tool.  Basically, the methodology covers five main phases: enhancement, 

segmentation, orientation field estimation, singular point detection and classification.  

In the first phase, it begins with greyscale normalization, followed by histogram 

equalization, binarization, skeletonization and ends with image fusion, which 

eventually produces high quality images with clear ridge flows.  Then, at the 

beginning of the second phase, the image is partitioned into 16x16 pixels blocks - for 

each block, local threshold is calculated using its mean, variance and coherence.  

This threshold is then used to extract a foreground.  Later, the foreground is 

enhanced using a newly developed filling-in-the-gap process.  As for the third phase, 

a new mask called Epicycloid filter is applied on the foreground to create true-angle 

orientation fields.  They are then grouped together to form four distinct homogenous 

regions using a region growing technique.  In the fourth phase, the homogenous areas 

are first converted into character-based regions.  Next, a set of rules is applied on 

them to extract singular points.  Lastly, at the classification phase, basing on singular 

points’ occurrence and location along to a symmetric axis, a new set of fingerprint 

features is created. Subsequently, a set of five templates in which each one of them 

represents a specific true class is generated.  Finally, classification is performed by 

calculating a similarity between the query fingerprint image and the template images 

using x
2
 distance measure.  The performance of the current method is evaluated in 

terms of accuracy using all 27,000 fingerprint images acquired from The National 

Institute of Standard and Technology (NIST) Special Database 14, which is de facto 

dataset for development and testing of fingerprint classification systems.  The 

experimental results are very encouraging with accuracy rate of 93.05% that 

markedly outpaced the renowned researchers’ latest works. 
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ABSTRAK 

 

 

 

Pengkelasan cap jari adalah satu teknik untuk mengklasifikasi cap jari kepada lima 

kelas rasmi iaitu Pusaran, Putaran kiri, Putaran kanan, Lengkungan dan Lengkungan 

terlangkup berdasarkan ciri-ciri struktur rabung dan titik tunggal. Walaupun terdapat 

kemajuan setakat ini dalam memperbaiki kadar ketepatan, masalah yang dihadapi 

dalam menangani cap jari yang kabur masih tidak dapat diselesaikan, terutamanya 

dalam perkara berkaitan perbezaan besar intra-kelas dan perbezaan kecil inter-kelas. 

Cabaran yang sama juga dihadapi bagi kualiti imej yang tidak baik termasuk kabur, 

kering, basah, kontras rendah, terpotong, berparut dan comot. Oleh itu, tesis ini 

mencadangkan satu teknik pengkelasan baru berdasarkan pemadanan templat 

menggunakan ciri-ciri utama cap jari sebagai peranti pemadanan. Secara asasnya, 

kaedah ini meliputi lima fasa utama: peningkatan, segmentasi, anggaran medan 

orientasi, pengesanan titik tunggal dan klasifikasi. Dalam fasa yang pertama, ia 

dimulai dengan normalisasi skala kelabu, diikuti dengan penyamaan histogram, 

binarisasi, pengkerangkaan dan diakhiri dengan gabungan imej, yang akhirnya akan 

membuahkan imej yang berkualiti tinggi dengan aliran rabung yang jelas. Kemudian, 

pada permulaan fasa yang kedua, imej dipecahkan kepada blok piksel 16x16 - untuk 

setiap blok, ambang setempat dikira melalui min, varians dan koheren. Ambang ini 

kemudian diguna untuk mendapatkan latar depan. Selepas itu, latar depan tersebut 

diperbaiki menggunakan proses mengisi tempat kosong yang baru dibangunkan. 

Untuk fasa ketiga, satu topeng yang dipanggil penapis Epicycloid digunakan pada 

latar depan untuk mewujudkan medan orientasi sudut sebenar. Kemudian mereka 

digabungkan bersama bagi membentuk empat kawasan sekata yang berbeza melalui 

teknik peningkatan kawasan. Dalam fasa keempat, kawasan yang sekata tersebut 

ditukarkan kepada kawasan berdasarkan aksara.  Ini diikuti dengan penggunaan satu 

set peraturan untuk mendapatkan titik tunggal. Akhir sekali, semasa fasa klasifikasi, 

berdasarkan kewujudan titik tunggal di sepanjang paksi simetri, satu set ciri-ciri cap 

jari baru dijana. Setelah itu, satu set lima templat di mana setiap satunya mewakili 

satu kelas tulen yang spesifik dihasilkan. Akhirnya, proses klasifikasi dilakukan 

dengan menghitung persamaan di antara imej cap jari carian dan imej templat 

menggunakan pengukur x
2
. Prestasi kaedah ini dinilai dari aspek ketepatannya 

dengan menggunakan 27,000 imej cap jari yang diperolehi daripada The National 

Institute of Standard and Technology (NIST) Special Database 14 yang merupakan 

satu set data piawai untuk pembangunan dan ujian sistem pengkelasan cap jari. 

Keputusan eksperimen adalah sangat menggalakkan dengan kadar ketepatan 93.05% 

yang mana dengan ketaranya mengatasi prestasi kerja terkini penyelidik tersohor.
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CHAPTER 1 

INTRODUCTION 

1.1 Overview  

Biometrics are measurable characteristics based on physiological and 

behavioural traits that are used in the identification of individuals.  The most 

important type of human biometrics is fingerprints.  Fingerprints have been used for 

personal recognition in forensic applications such as criminal investigation tools and 

in civilian applications, as well as border access control systems, national identity 

card validation and authentication processors.  The uniqueness and immutability of 

fingerprint patterns as well as the low cost of associated biometric equipment make 

fingerprints more desirable than the other types of biometrics (Maltoni and Cappelli, 

2009).  Fingerprints develop during the fourth or the fifth month after conception.  

The pattern of a person’s fingerprints remain much the same until his death, or until 

he gets injured in an accident.  Age of a person does not change a person’s 

fingerprints but injury does.  Schaeuble J (1932) and Babler W (1991) had proven 

that fingerprints of twins sharing similar DNAs are different.  Fingerprint biometric 

identification is low-cost because it involves pattern recognition using IT equipment 

and does not  require  laboratory wet tests (such as blood test) Kücken M., and 

Newell A. C (2004).  

Generally, fingerprint-based recognition systems work in two modes: 

verification and identification.  In verification mode, the systems verify the person’s 

identity using a 1:N comparison between the person’s fingerprints and those stored in 
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the record.  Verification process confirms whether the identity of the person with the 

fingerprint is the valid person.  However, the process used in fingerprint 

identification systems is more complex than the process employed in print 

verification especially for large databases because fingerprint identification requires 

the input fingerprints to be compared with all the fingerprints in the database to find 

a match.  While verification uses 1:1 comparison for matching, fingerprints 

identification requires 1:N comparison to establish if the individual is present in the 

database (Maltoni et al., 2005). 

In fingerprint identification, both matching accuracy and processing time are 

critical issues.  To achieve an efficient identification of a fingerprint, fingerprints in 

the database are organized into a number of mutually exclusive classes that share 

certain similar properties.  This process is called fingerprint classification.  In order 

to design an automatic system for identification which has better accuracy, pre-

processing of the fingerprints have to be carried out to enhance and extract the 

fingerprint features (Wu et al., 2007). 

1.2 Background of Research 

The most important part of an Automatic Fingerprint Identification System 

(AFIS) is the fingerprint classification because it provides an indexing mechanism 

and facilitates the matching process with the large databases.  When a class of a 

query fingerprint is known, matching the fingerprint only requires that the print is 

compared with a similar class of prints.  

Evidence suggests that people were aware of the presence of fingerprints in 

ancient times.  However, there is no indication that anyone recognised the full 

potential of fingerprints as a means of personal identification (Yager and Amin, 

2004a).  Sir Francis Galton (1892) was the first person to study of fingerprint-based 

identification.  Among many contributions to the field, his work led to the first 
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formally recognized system for fingerprint classification.  Galton’s classification was 

introduced as a means of indexing fingerprints in order to facilitate the search for a 

particular fingerprint within a collection of many prints and proposed three basic 

fingerprint classes: the Arch, the Loop, and the Whorl shown in Figure 1.1.  Galton’s 

other major contribution was the first study into the uniqueness of fingerprints.  In 

addition to permanence, uniqueness is also necessary for a fingerprint to be a viable 

method of personal identification.  

 

Figure 1.1 Examples of Galton’s three classes (Maltoni, 2009)  

Building on Galton’s work, Edward Henry (1990) subdivided two of the three 

main classes into more specific sub-classes.  Henry distinguished between the Arch, 

Tented-arch, Left Loop, Right Loop and the Whorl, as shown in Figure 1.2.  He also 

introduced the concept of fingerprint ‘‘Core’’ and ‘‘Delta’’ points and used them as 

aids for fingerprint classification.  Henry’s classification scheme constitutes the basis 

for most modern classification schemes (Yager and Amin, 2004). 

 

Figure 1.2 An example of Henry’s five classes (Yager and Amin, 2004) 
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The distribution of the classes in nature is not uniform.  The probabilities of 

the classes are approximately 3.7%, 2.9%, 33.8%, 31.7%  𝑎𝑛𝑑 27.9% for the 

Arch, Tented-arch, Left Loop, Right Loop, and Whorl, respectively (Jain et al., 1999; 

Wilson et al., 1994).  Left Loop, Right Loop and Whorl are the most common, 

making up 93.4% of all fingerprints (Yager and Amin, 2004).  To develop and test a 

classification system, it is important to use a suitable dataset with a large enough 

sample size that is representative of the natural distribution of human fingerprint 

classes in the population.  However, most researchers so far have used the National 

Institute of Standard and Technology NIST database 4 which provided an 

insufficient sample size (less than 10,000 prints) for testing and validating their 

experiments (Jain et al., 1999; Jain et al., 2002; Hou et al. 2008; Wang and Xie 

2004.).  Thus, the validity of their experimental results is disputable, and the 

performance of their proposed classification methods implausible.  As a result of 

these limitations, the NIST Special Database 14 was created and became the de facto 

standard dataset for developing and testing of automatic fingerprint classification 

systems (Maltoni and Cappelli., 2009). 

Unfortunately, there are still a number of remaining issues related to 

fingerprint classification.  These include the challenge of classifying ambiguous 

fingerprint which cannot be easily classified, even by human experts, because these 

fingerprints have properties that fall into more than one class (see Figure 1.3(a) – 

(f)).  Of the 27,000 fingerprint images contained in NIST special Database 14, about 

6.63 percent are ambiguous.  Under this condition, which fingerprint classes these 

ambiguous prints should be matched against is very uncertain (Maltoni and Cappelli, 

2009).  
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(a) File name (F0000077) (b) File names (F0000429) (c) File names (F0000233) 

   

(d) File names (F0021127) (e) File name F0021722 (f) File name (F0022002) 

 

Figure 1.3 Examples of ambiguous fingerprints found in NIST special Database 

14: (a) Image with Arch and Tented-arch classification; (b), (c) and (d) Images with 

Whore and Right Loop classification; (e) Image with Right loop and Tented-arch 

classification; (f) Image with Left loop and Tented-arch classification 

Another difficulty that makes fingerprint classification so problematic is that 

the sample of fingerprint images is of poor quality due to injuries or scars which 

many applications end up rejecting.  For this reason, to improve classification 

accuracy, the images are first enhanced through reconstruction.  A rejection 

procedure is used for those images that cannot be classified.  If this is the case, such 

images will be captured under the classification “unknown” (as shown in Figure 1.4).  
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Figure 1.4 An example of a scar fingerprint image (F0002119) found in NIST 

special Database 14 

The noise in the fingerprint image which brings about misclassification can 

be generated by both ink and live scans.  For ink scans, the noise is created by too 

much ink or by insufficient use of ink during the fingerprint imprinting process.  

During live scans, the noise is caused by either dry or wet prints depending on the 

surface of the skin (oily, clammy, sweaty, and so on).  The NIST Special Database 

14 contains images that are often tainted by signatures and handwriting of human 

experts (see Figure 1.5).  These  signatures and comments are referred to as noise and 

require manual pre-processing to remove annotations and artefacts (Maltoni and 

Cappelli, 2009).  These occurrences are considered non-automatic because of human 

involvement, and should be avoided if possible.  However, developing a full-scale 

automatic fingerprint classification system is a very challenging task. 
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(a) (b) 

 

Figure 1.5 Examples of problematic fingerprints found in NIST special Database 

14 (a) A dry image (b) Image containing hand written annotations 

Most classification schemes use five classes.  Any significant similarities in 

the structure and shape of human fingerprints creates difficulty in distinguishing and 

differentiating orientation patterns of ridge structure within the same class, especially 

in Whorl cases (see Figure. 1.6).  These difficulties and problems are associated with 

large intra-class variation, where the prints of the same class can have similar 

characteristics covering a large spread, and are therefore difficult to classify (Wang 

et al., 2007).  This intra-class problem is extremely difficult to deal with even for 

human experts.  

 

Figure 1.6 Three fingerprints of the same class that have very different 

characteristic (large intra-class variability) (Wang et al., 2007) 



8 

 

Generally speaking, a fingerprint image contains two features, which are the 

global feature and the local feature.  The global features of the fingerprint image are 

described by structure shapes (ridges and valleys) and a singular points (core and 

delta) as shown in Figure 1.7.  The local features of the fingerprint consist of minute 

ridge details.  These global features contain global information that is considered 

valid in the design of automatic fingerprint identification systems (Jain et al., 1999).  

Therefore, it makes sense to derive these features directly from the fingerprint ridges.  

Orientation field estimation is a convenient way to represent the global ridge 

structure of fingerprints.  Although orientation field estimation is the best approach 

to represent ridge structures, there are still many challenges regarding the 

classification of low quality images.  

 

Figure 1.7 Ridge and valley structures and singular points 

Another global feature often used by researchers to distinguish fingerprint 

classes is the presence and location of singular points.  The singular points of 

fingerprint image are represented by “Core” and “Delta” points that appear in 

singularity-based patterns.  Some of the difficulties faced by singularity-based 

patterns are that singular points may not be visible in the image (Kumar et al., 2011).  
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This is especially true if the image has poor quality, or if the image contains a high 

level of noise.  This makes the extraction of a singular point in the fingerprint 

unreliable.  Researchers have proposed different methods to locate singular points.  

The most common and widely used approach is the Poincaré Index (Mandal et al., 

2013).  However, there are a number of limitations, such as a high sensitivity to 

noise, and its difficulty capturing low contrast and low quality fingerprint images 

(Hsieh et al., 2005). 

 

 

These performance limitations necessitate continued research in this area.  In 

an effort to mitigate the identified challenges, the following research questions guide 

this study: 

 

1. How to accurately and optimally classify the fingerprint based on five 

classes?  

2. How to improve quality of image having poor quality?  

3. How to automatically extract foreground from the background?  

4. How to locate and remove the noise to improve the quality of the image? 

5. How to estimate the orientation fields of the images having poor quality? 

6. How to precisely detect the genuine singular points? 

7. How to classify ambiguous fingerprints such as intra- and inter-class 

variations? 

1.3 Problem Statements 

Based on the problem background and research questions, the issues to be 

resolved are: 

 

1. Fingerprint images from the NIST Special Database 14 are raw data of 

various qualities: clear, blur, smudgy, wet, dry, scarred, cut and low-

contrast (Jain et al., 1997; Maltoni and Cappelli, 2009; Sulong, et al., 

2009; Saparudin, 2012 ).  Apart from that, almost all images contain 
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human expert hand written annotations that further deteriorate the prints.  

Therefore, it is crucial to make them good by enhancing their quality 

while still preserving the actual ridge flow. 

 

2. The fingerprints either have non-ridge regions on a background, or they 

have ridge regions but with foreground containing unwanted hand written 

comments and references.  In the past these images were cropped 

manually to extract foreground from background manually, which was 

very labour-intensive. Later, a couple of studies automate the process 

(Maltoni et al. 2009; Saparudin, 2012).  However, their works are far 

from over.  Thus, In order to design a fully automated system, it is 

necessary to implement a more robust method of segmentation to extract 

the image’s foreground from the background and also frees from artefacts 

and unwanted annotations. 

 

3. Ridge patterns in a fingerprint follow a certain field structure.  This 

structure can be represented in the form of orientation field estimation 

patterns.  In previous studies, researchers have used pre-defined angles 

(for example 0, 45, 90, 135 and 180 degrees) to represent the original 

ridge shape orientation of fingerprint images ( Ratha et al., 1995; Hsieh et 

al., 2005; Zhang et al., 2007).  However, these pre-defined angles do not 

always represent the actual ridge orientation.  For that reason, it is 

necessary to improve the computability of the original ridge orientation 

and the digital smoothing of the orientation field estimation process. 

 

4. The Poincaré Index is considered a robust technique to locate singular 

points, and its performance relies heavily on the quality of orientation 

fields (Maltoni and Cappelli, 2009).  However, a number of researchers 

have customized the index for their experiments and directly employed a 

simplified Poincaré Index to determine singular points without subjecting 

the fingerprints to a filtering process, which often resulted in false 

singular points (Zhang and Yan, 2004).  Consequently, a more efficient 

method is necessary to suggest for detecting a genuine singular point.  
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5. In case of ambiguous prints, more than one class of fingerprints is present 

that and cannot be easily classified by human experts, let alone by 

computer.  In fact, about 6.63 percent of the 27,000 images in the NIST 

Special Database 14 are ambiguous.  In these cases, it is unclear which 

fingerprint classes the ambiguous prints should be matched against.  

Furthermore, these ambiguous prints are also susceptible to inter-class 

variation, particularly in Arch and Tented-arch cases.  Some Tented-arch 

prints closely resemble the traditional arch shape (i.e. the peak of the 

Tented-arch is unnoticeable due to defective or deformed vertical shapes). 

Therefore, it is necessary to come up with solution to this issue (Maltoni 

and Cappelli, 2009). 

 

6. Large intra-class variation remains a key occurrence that prevents correct 

classification of the Whorl class, as mentioned by (Maltoni and Cappelli., 

2009; Saparudin, 2012). 

 

7. Scars on fingerprints can be caused by accidents, injuries, long exposure 

to detergents or chemicals, or hard labour.  Most scarred prints contain 

patterns of some parts of the epidermis which have been damaged and 

consequently distort the original ridge structure of fingerprints.  

Therefore, many applications reject such images (Maltoni et al., 2009; 

Saparudin, 2012).  Though, the scarred prints percentage found in the 

NIST Special Database 14 is negligible, it is worth to investigate because 

in reality there exist a significant number of such prints that require 

special attentions and specialised tools to correct the damage (Sulong, et 

al., 2009).  

1.4 Research Goal 

To develop a fully automated fingerprint classification system or AFCS in 

short that performs with a higher degree of accuracy than is currently available.  The 
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AFCS will be able to classify most fingerprint images with varied quality.  It does so 

by using pre-processing procedures which execute image enhancement, foreground 

segmentation, orientation field estimation and singular point detection.  

1.5 Objectives of the Study 

In order to achieve the above mentioned goal, the following objectives will be 

fulfilled: 

 

1. Improve the quality of defective images in the fingerprint dataset by using 

improved reconstructive enhancement techniques. 

 

2. Develop new techniques that identify and detect unwanted objects (hand 

writing comment and signature) in the fingerprint dataset, and extract the 

image foreground from the background. 

 

3. Introduce a new orientation field estimation method that utilizes the true 

angle of the orientation fields in accordance with the natural gradient of a 

print’s ridge structure.  

 

4. Propose a new singular point detection technique that able to minimize 

the number of inaccurate Core and Delta points. 

 

5. Design and implement a new reliable fingerprint classification approach 

to classify all 27,000 fingerprint images of NIST Special Database 14, 

including scarred prints, into five exclusive classes: Whorl, Left loop, 

Right loop, Arch and Tented-arch.  
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1.6 Research Scope 

This study is a synthesis of a complete process of automatic fingerprint 

classification which includes the introduction of an effective fingerprint 

enhancement, a novel approach to fingerprint segmentation, optimal orientation field 

estimation, accurate singular point detection, and ultimately, a reliable fingerprint 

classification method. 

This system will be tested using a standard dataset testing platform, 

employing grey-scale fingerprint images obtained from the NIST special fingerprint 

database 14.  The database contains 54,000 8-bit grey-scale images of rolled 

fingerprint impressions that were scanned from 27,000 individuals.  This study uses 

the latest work of Saparudin (2012) as a baseline which has already shown results 

superior to those of Maltoni’s (2009) work.  Identical fingerprint samples (f0000001 

to f0027000 prints) that were used by Saparudin (2012) will also be used for all tests 

in this study.  In order to confirm the improved performance of this system, scarred 

prints will also be included. 

It is observe that normal practices of the previous works; efficiency is only 

measured by class assignment’s accuracy without bothering the processing time, this 

study, therefore, will follow the norm. 

1.7 Significance of the Study 

It is hoped that the proposed fully automated fingerprint classification system 

AFCS will overcome the challenges of existing fingerprint classification as a 

consistently reliable biometric system.  The AFCS may do so by reducing ambiguity 

error, minimize problems associated with poor quality images, and large intra-class 

variation.  Existing fingerprint classification studies have shown some encouraging 

results with success rates greater than 94 percent.  However, these results, as well as 
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employed methods are disputable because the datasets used were from NIST 4 which 

contains fingerprint patterns that have already been cleaned and any existing noise 

removed from the background.  In industrial and forensic applications the 

fingerprints that are collected are naturally flawed.  That that reason, more rigorous 

testing using a higher level dataset such as the NIST Special fingerprint database 14 

is necessary to confirm that a more elaborate procedure can be used effectively for 

industrial and forensic purposes.  Manual processes are time consuming and tedious 

and less suitable for a real life applications.  

In light of the above mentioned issues, results of this research will contribute 

to what is currently known about fingerprint classification systems.  Nonetheless, the 

significance of this study is not only limited to knowledge enrichment. 

1.8 Thesis Outline 

This thesis includes five chapters: The introductory chapter, a review of some 

of the relevant literatures to date, research methodology, experimental results, and 

the conclusion.  Some of the topics reviewed are enhancement, segmentation, 

orientation field estimation, singular point detection, and classification of 

fingerprints. 

The methodology chapter describes in detail the proposed automatic 

fingerprint classification method including fingerprint image enhancement, image 

segmentation, orientation field estimation, singular point detection, symmetric axis 

calculation and the template-based classification approach. 

The results and discussion chapter describes the  experimental setting, gives 

details about the conducted performance evaluations, and the implementation results 

of image segmentation, enhancement, orientation field estimation, singular point 

detection, and new classification of fingerprints.  
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The conclusion chapter discusses the remaining unresolved issues, objectives 

and proposed approaches, and ends with highlighting the achievements and 

suggestions for future work. 
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