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ABSTRACT 

Blade fault is one of the most causes of gas turbine failures. Vibration 

spectral analysis and blade pass frequency (BPF) monitoring are the most widely 

used methods for blade fault diagnosis. These methods however have limitations in 

the detection of incipient faults due to weak and/or transient signals, as well as 

inability to diagnose the blade faults types. This study investigates the applications of 

wavelet analysis in blade fault diagnosis of a multi stage rotor system, as an 

extension of previous works which involved a single stage only. Results showed that 

conventional wavelet analysis has limitations in segregating the BPFs and locating 

the faults. An improvement in Morlet wavelet was made to achieve high resolution in 

both time and frequency domains. Two new wavelets for high time-frequency 

resolutions were formulated and added to the standard MATLAB Wavelet Toolbox. 

The optimal parameters for the high frequency resolution wavelet were found at the 

centre of frequency, 𝐹𝑐 = 4 and bandwidth, 𝛽 = 0.5. For high time resolution 

wavelet, the optimal parameters were 𝐹𝑐 = 4 and 𝛽 = 10. A novel algorithm was 

formulated by combining the two newly developed wavelets. A variety of blade 

faults including blade creep rubbing, blade tip rubbing, stage rubbing, blade loss of 

part and blade twisting were tested and their vibration responses measured in a 

laboratory test facility. The proposed method showed potential in segregating closely 

spaced BPFs components and identifying the faulty stage and fault location. The 

method demonstrated the ability in differentiating various blade faults based on a 

unique pattern (“fingerprint”) of each fault produced by the newly added wavelet. 

The formulated algorithm was demonstrated to be suitable in monitoring rotor 

systems with multiple blade stages. 
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ABSTRAK 

Kerosakan bilah adalah salah satu punca yang paling kerap menyebabkan 

kerosakan turbin gas. Analisis spektrum getaran dan pemantauan kekerapan laluan 

bilah (BPF) adalah satu kaedah yang sering digunakan untuk mendiagnos kerosakan 

bilah. Kaedah ini bagaimanapun mempunyai batasan dalam pengesanan kerosakan 

kerana isyarat yang lemah dan/atau fana serta ketidakupayaan untuk mendiagnos 

jenis kerosakan bilah. Kajian ini mengkaji penggunaan analisis wavelet dalam 

diagnosis bilah yang rosak dalam sistem rotor berbilang peringkat sebagai. Lanjutan 

terhadap kajiian sebelum ini yang hanya melibatkan peringkat tunggal sahaja. 

Keputusan menunjukkan bahawa analisis wavelet biasa mempunyai kelemahan 

dalam mengasingkan BPF dan mengesan kerosakan. Penambahbaikan terhadap 

wavelet  Morlet telah diusahakan untuk mencapai resolusi yang tinggi dalam domain 

masa dan frekuensi. Dua wavelet baru untuk resolusi frekuensi dan masa yang tinggi 

telah digubal, ditambah dan digunakan bersama kepada perisian MATLAB/Wavelet 

Toolbox. Parameter optimum untuk  wavelet frekuensi tinggi resolusi  adalah pusat 

frekuensi, 𝐹𝑐 = 4 dan 𝛽 = 0.5. Parameter optimum untuk wavelet resolusi tinggi 

masa adalah jalur lebar, 𝐹𝑐 = 4 dan 𝛽 = 10. Satu algoritma novel telah dibangunkan 

dengan merggabungkan dua wavelet baru. Pelbagai kerosakan bilah, termasuk 

geselan bilah disebabkan oleh rayapan geselan hujung bilah, geselan peringkat, 

kehilangan bahagian bilah dan bilah terpiuh diuji dan respon getaran diukur 

menggunakan kemudahan ujian dalam makmal. Kaedah yang dicadangkan 

menunjukkan keupayaan dalam mengasingkan komponen ruang rapat BPF dan 

mengenal pasti peringkat dan kedudukan kerosakan. Kaedah tersebut mempamirkan 

keupayaan dalam membezakan pelbagai kesalahan bilah berdasarkan corak yang 

unik ("cap jari") setiap kerosakan yang dihasilkan oleh wavelet baru. Algoritma yang 

dibentuk mempamirkan kesesuaian dalam memantau sistem rotor dengan bilah 

berbilang peringkat.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Rotating machinery such as turbines and compressors are critical equipment 

in power generation and petrochemical plants. Machinery typically consists of a 

number of parts including inlet, combustion chambers, shafts, blades, vanes, 

combustors among others. These components are designed to dictate the gas paths of 

the working fluid to generate thrust and/or power. The bladed assembles typically are 

multiple stage. In these machines, there could be more than multiple blades located 

in both the turbine and compressor sections for the transfer energy between the rotor 

and the working fluid. Satisfactory operation of these machines is largely dependent 

on the condition of these blades. A high level of reliability is required where failure 

detection and diagnosis are of great importance to achieve the required reliability. 

Components of gas turbine in the hot regions and parts such as blades, vanes 

and combustors are exposed to high temperatures, with inherent high stress and quite 

often in a potentially high vibration environment during operations.  The gas turbine 

blades which under normal operation are exposed to exceed 1400°C at inlet and a 40 

bar pressure, for which energy extraction from high temperature and high pressure 

gas are obtained. Exposure to very high temperatures and pressure inherently lead to 

potential metallurgical related damages, often limiting their designed operational life. 

The damages to blades include creep, micro-structural instability and embrittlement, 
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oxidation, thermal fatigue, hot corrosion, vibration, foreign object damages; which 

consequently increases the probability of premature blade failure. The failure of a 

single blade can potentially compromise the total integrity of the machine [1]. 

There are also a number of process and factors which influences the blade 

health and its overall life in addition to the effects of damages. The blades are 

subjected to centrifugal forces due to high rotational speed, bending stresses by the 

moving gas stream in the presence of a highly oxidizing atmosphere at high 

temperature and thermal stresses due to the temperature gradient. Blades are 

typically made from nickel base super-alloys that have a superior high temperature 

strength together with a high degree of corrosion and oxidation resistance [2]. Blade 

health monitoring, failure diagnosis and maintenance are hence very important to 

ensure operation with high efficiency, safety and reliability for cost effective of 

operation and maintenance. 

Blade failures represent the highest percentage of failure in gas turbines. As 

cited by Meher-Homji [3], Allianz Insurance Company one of the biggest insurance 

companies in the world reported that blade failure accounted for 42% of the total 

failures in gas turbines. Statistics of steam turbine faults in China power generation 

over several decades also showed that blade faults are the most frequent and highest 

percentage of failure, especially during the 1980s. In the 1990s and the 21st century, 

blade fault causes however decreased compared to 1980s [4]. This was probably due 

to the innovative development in blade design, blade manufacturing technology and 

improvements in blade fault diagnosis accuracy as compared to the previous decade. 

Farrahi et al. [5] and other researchers [6, 7] reported that, blade failures in 

gas turbines and compressors, originate mainly from some form of initial  damage or 

defect of the blades caused by Foreign Object Damage (FOD), ingested debris or 

manufacturing defects. These minor defects or damages propagate over time 

eventually leading to total blade failure. Blade faults and blade failures in 

turbomachinery are generally classified into the following categories: blade rubbing, 

cracking and foreign object damage (FOD) or loss of part, blade deformation 
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(twisting, creeping, corrosion and erosion), blade fouling and rotating stall, blade 

fatigue failure, and blade root attachment problems (root crack and loose blade). 

Incipient failure in the blade can potentially lead to catastrophic failures. Figure 1 

below shows some of the blade failures. 

    

Deformation of rotor blades , Source: [8] Failure of 1st row of blades, Source [9] 

    

Catastrophic blades damage, source [10] Broken blades at different stages [11] 

Figure 1.1 Typical Blade Failure 

Blade condition monitoring involves the measurement and the assessment of 

various parameters related to the blade (such as vibration, temperature, pressure, oil 

debris, performance acoustic measurements, etc.). Monitoring of these parameters 

could potentially determine whether the blade is in good or bad health condition. 
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1.2 Problem Statement  

Turbine blade faults diagnosis had been a subject of research in recent 

decades. There had been a number of methods developed for this purpose which 

includes acoustic emission measurement, blade tip measurement, pressure, strain 

gauge, debris monitoring, optical measurements, temperature measurements, 

performance monitoring, among others. Although most of these methods were shown 

to be effective in varying degree for blade faults diagnosis, a major difficulty relates 

to its use under practical field conditions.  A further issue related to faults detected 

only after the faults are in advanced stage of catastrophic failure, or when parts are 

already damaged. 

For application under practical field condition, vibration based methods 

inevitably represents the most readily and widely used methods for blade fault 

diagnosis. This is due to the fact that vibration signals are directly related to the 

response of the machine structural dynamics due to changes in working conditions 

within the machine. Vibration signals are conventionally analysed with Fourier 

analysis to obtain the vibration spectrum, with blade passing frequency (BPF) being 

the most commonly used primary parameter for detection of blade faults. Relative 

changes in blade passing frequency and its harmonic amplitude could provide useful 

information upon which blade faults could be detected [12-15]. 

Blade faults are however difficult to be detected during normal machine 

operations, and vibration analysis can only detect blade faults if severe damage 

occurs at the blade [16-19], where minor blade faults not so readily detected. 

Common vibration diagnosis techniques are based on frequency domain analysis 

with changes to be detected in the vibration spectra (i.e. escalating BPF amplitude). 

The vibration amplitude is deemed an indicator of severe blade damage occurrence 

and used for assessment of any imminent failure. Field experiences however had 

been shown that blade faults do not result in significant increase in the overall 

vibration amplitude as the overall vibration amplitude are dictated by the 

synchronous unbalance response of the machine. 
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Recently, Lim [20] in recent years had shown that the sensitivity and 

reliability of vibration analysis for blade faults diagnosis can be improved with 

wavelet analysis based on tests in a test rig with single blade row. Wavelet analysis 

and it’s time-frequency display could provide a clearer picture of blade faults 

signature, hence providing better visualization of the blade conditions in comparison 

to vibration spectra. Wavelet analysis was shown to be more sensitive in blade fault 

diagnosis with the capability of distinguishing various blade fault conditions such as 

creep rub, eccentricity rub, which are not so readily detected using vibration spectra 

analysis. 

Blade fault diagnosis is still a challenging problem especially in multi stage 

machines. Research on multiple stages of blade faults using wavelet analysis is 

lacking. In real machines blades are often multi-stage with different blade pass 

frequencies which pose challenges in the use of wavelet analysis for fault detection. 

1.3 Problem Formulation 

The conventional blade fault diagnosis methods (Fast Fourier Transform 

(FFT) analysis) which are based on frequency domain analysis assumed that the BPF 

signal is stationary during the analysis period. This assumption that however is not 

true which render such methods not effective for blade fault diagnosis. This is 

because the operating conditions in the real machine are often non-stationary and 

there are a number of transient periods. This may sometimes lead to incorrect 

analysis consequently resulting in missed detections. Conventional FFT methods do 

not provide any time information thereby making it unsuitable for fault detection in 

the time domain. Wavelet analysis has been recently used as the alternative method 

for blade fault diagnosis to overcome the limitations of FFT technique. 

For multi-stages rotor systems, the vibration signal is inheriting more 

complicated as it contains a number of closely located frequency components in the 
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vibration spectrum. It is often difficult to analyse a signal with a composite 

frequency component and to differentiate the closely located frequency modes 

because of the interference term. It is important in time-frequency analysis to achieve 

the best time-frequency energy localization for the given signal. Localization is often 

employed to locate the arrival time and estimate the dispersed frequency of the 

signal. 

This study attempts to formulate a method for the detection and diagnosis of 

blade faults in a multi-stage rotor system. Previous works undertaken by Lim [20] 

involved a single blade row only. Even with novel methods for blade vibration 

monitoring using wavelet analysis, artificial intelligence and neural network, BPF is 

still the fundamental parameter used in these methods. It is believed that blade 

passing frequency signals contain more useful information; and if correctly 

monitored could indicate the current condition of the rotating blades. Wavelet 

analysis provides additional features (such as signals analysis with multiple scales, 

and non-stationary processes, breakdown points, discontinuities, and self-

similarities) to enhance the signal processing. This suggested potential merits to 

investigate the suitability and applicability for monitoring blade passing frequency 

signals in a multi-stage rotor system with an aim of applying it to blade faults 

diagnosis. 

The study was intended to examine the visibility of using wavelet analysis for 

multi-stages blade fault diagnosis, including matters related to BPF signal extraction, 

separating the close BPF components, blade faults (detection, discrimination and 

localization), results interpretation and possibilities of establishing fault signatures. 

1.4 Research Questions 

This work attempted to address the following research questions: 
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1. Does the captured casing vibration signal contain useful information 

about the BPF components of different stages of a motor rotor system? 

2. Is the wavelet analysis technique capable of analysing, separating the 

closely located BPFs components with an intent to identify the faulty 

stage and the location of the faulty blade? 

3. If the wavelet analysis technique is incapable of segregating the BPFs 

components of the multi stage rotor system, how can it then be adopted 

for segregating the BPFs components in multi stage rotor system blade 

faults diagnosis?  

4. Does wavelet analysis techniques have the capability of detecting and 

diagnosing single fault in multiple stages or multiple faults in multiple 

stages? 

5. How can the above issues can be addressed, and hence used to establish 

the blade faults signatures? 

1.5  Objectives of Study 

The objectives of the research were to investigate the use of wavelet analysis 

for detection and diagnosis of blade faults in multi stage blade assemblies. This 

included the formulation of wavelet function for blade faults detection and 

identifying type of fault. The work scope included but was not limited to the 

following: 

 

a) Examination of feasibility of wavelet analysis in multi stage rotor system 

for blade faults diagnosis using signal simulation and experimental study. 

b) Formulation of a suitable diagnostic method for blade faults in a multi-

stage rotor system and validation. 
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c) Undertaking of laboratory testing of induced faults in a multi array using 

an experimental test rig based on formulated wavelet analysis technique 

on the extracted BPF signals. 

d) Establishing fault signatures from the controlled faults with identification 

of fault characteristics. 

1.6 Significance of the study 

An effective and sensitive diagnostic technique for various types of blade 

faults is most critical in service operational machines especially for reliability 

assurance. To avoid costly catastrophic failures, early detection of incipient and 

including minor and transient blade faults is necessary because these early faults can 

lead to total blade failures, which often result in a catastrophic failure of the entire 

turbine. Previous work by Lim [20] was based on a single stage blade rows only with 

a single fault in single stage or multiple faults in a single stage. That setup meant that 

other possible cause of failures such as a single fault in multiple stages and multiple 

faults in multiple stages were not considered. This study was intended to extend the 

applications to real operation in the field for machines with multi-stage blade 

assembly which are typically in gas turbines and compressors. 

1.7  Thesis Structure 

Chapter 1 introduces the background of the study, objectives to be met and its 

significance. Chapter 2 presents critical reviews on the concepts of blade fault 

diagnosis, and analyses the different strategies used in condition monitoring of the 

blade in turbo machinery. Chapter 3 presents the methodology of this research work, 

a road map on how the research activities of this study. In Chapter 4, a discussion of 

the experimental test rig design is provided with validation and details of the 
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experimental setup discussed. The feasibility of FFT and wavelet analysis in 

analysing a multi-stage rotor system signal using simulated signals and experimental 

data is discussed in Chapter 5. Vibration characteristics of a multi-stages rotor 

system were examined in context of limitations and difficulties in conventional 

wavelets in analysing a multi-stage rotor signal. Chapter 6 presents the wavelet 

reassignment technique, highlighting the function of the newly proposed wavelet 

technique to the multi-stage blade fault diagnosis. In Chapter 7, the experimental 

studies undertaken are presented. Results and discussion of the experimental study 

are presented in Chapter 8. Conclusion and the recommendations for future research 

work are summarized in Chapter 9. 
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