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ABSTRACT 

Concrete filled hollow steel section columns exhibit various advantages over 

other materials for similar applications. These include improvement in the structural 

behaviour with high load bearing capacity for smaller cross-section, better 

appearance, rapid construction, and high fire resistance without external protection. 

The study of the thermal-structural behaviour of concrete filled hollow section 

columns has seen a gradual transition to numerical simulations over an expensive 

and time consuming physical tests. At present, most of the numerical tools developed 

in Malaysia for predicting the behaviour of structure in fire is carried out using finite 

difference method which can be tedious, complicated and very sensitive to numerical 

errors. Thus, a three-dimensional finite element model, ABAQUS, is proposed to 

study thermal-structural behaviour of axially loaded concrete filled hollow steel 

section slender columns for circular and square cross-sections at elevated 

temperatures. The outer diameter of the circular columns ranged from 141.3 mm to 

478 mm and the steel thickness varied from 4.78 mm to 12.79 mm. The outside 

width of the square columns ranged from 152.4 mm to 350 mm, while the thickness 

of the steel wall varied from 5.3 mm to 7.7 mm. The proposed numerical models are 

also ranged  based on types of concrete (plain and bar-reinforced concrete), steel 

yield strength (284 MPa to 350 MPa), concrete compressive strength (18.7 MPa to 

58.3 MPa), and thickness of external protection (7 mm to 17 mm). The parameters 

input used in the model are results of an extensive sensitivity analysis. The accuracy 

of the proposed numerical model was verified against 21 experimental results and 12 

existing models carried out by other researchers as well as with the predictions of the 

Eurocode 4 simplified calculation model. The verified model was used for a series of 

parametric studies on the effect of various factors affecting the fire resistance of the 

columns. The proposed numerical model has proved to produce a better estimation of 

the fire resistance of the concrete filled hollow steel section columns than the 

Eurocode 4 simplified model when compared with the fire tests. Based on the 

analysis and comparison of typical parameters, the effect of sectional shapes, 

concrete types and thickness of external protection on temperature distribution and 

structural fire behaviour of the columns are analysed. The result shows that concrete 

filled hollow section column with circular cross-section has higher fire resistance 

than square sections.  
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ABSTRAK 

 Tiang keluli berongga berisi konkrit mempunyai pelbagai kelebihan 

berbanding dengan material yang lain untuk aplikasi yang sama. Ini termasuk 

peningkatan dalam tingkah laku struktur dengan beban galas berkapasiti tinggi untuk 

keratan rentas yang lebih kecil, penampilan yang lebih baik, kaedah pembinaan yang 

pesat, dan ketahanan api yang tinggi tanpa perlindungan luaran. Kajian mengenai 

tiang keluli berongga berisi konkrit telah menunjukkan peralihan daripada ujian 

fizikal yang mahal dan memakan masa kepada simulasi berangka. Pada masa ini, 

kebanyakkan alat berangka yang dibangunkan di Malaysia untuk meramal kelakuan 

struktur dalam api dijalankan dengan menggunakan kaedah perbezaan terhingga 

yang mana kaedah tersebut adalah lambat, rumit dan sangat sensitif kepada kesilapan 

berangka. Oleh itu, model unsur terhingga tiga dimensi yang dibangunkan dengan 

ABAQUS dicadangkan untuk mengkaji tingkah laku struktur dan haba tiang keluli 

langsing berongga berisi konkrit pada suhu tinggi untuk keratan rentas bulat dan 

persegi. Diameter luar untuk tiang keluli berongga bulat adalah di antara 141.3 mm 

hingga 478 mm dan ketebalan dinding keluli adalah di antara 4.78 mm hingga 12.79 

mm. Manakala lebar tiang keluli berongga persegi adalah di antara 152.4 mm hingga 

350 mm, dan ketebalan dinding keluli berubah daripada 5.3 mm hingga 7.7 mm. 

Model berangka yang dicadangkan juga berkisar kepada jenis konkrit (konkrit biasa 

dan konkrit yang diperkuatkan dengan bar), kekuatan alah keluli (284 MPa hingga 

350 MPa), kekuatan mampatan konkrit (18.7 MPa hingga 58.3 MPa), dan ketebalan 

perlindungan luaran (7 mm hingga 17 mm). Nilai yang digunakan di dalam model 

ini adalah hasil daripada analisis sensitiviti yang luas. Ketepatan model berangka 

yang dicadangkan disahkan dengan 21 keputusan eksperimen dan 12 model 

berangka yang dijalankan oleh penyelidik lain dan juga ramalam model pengiraan 

Eurocode 4 yang dipermudahkan. Model yang disahkan digunakan untuk 

menjalankan satu siri kajian parametrik mengenai kesan faktor-faktor yang 

mempengaruhi ketahan api tiang. Model berangka yang dicadangkan telah terbukti 

menghasilkan anggaran yang lebih baik daripada model pengiran Eurocode 4 yang 

dipermudahkan apabila dibandingkan dengan keputusan ujian kebakaran. 

Berdasarkan analisa dan perbandingan parameter tipikal, kesan bentuk keratan, jenis 

konkrit dan ketebalan perlindungan luaran terhadap penganggihan suhu dan tingkah 

laku kebakaran struktuk kebakaran tiang dibincangkan. Hasil kajian menunjukkan 

tiang keluli berongga berisi konkrit yang berbentuk bulat mempunyai ketahanan api 

yang lebih tinggi daripada yang berbentuk persegi.  
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CHAPTER 1  

INTRODUCTION 

1.1  General  

Over the past few decades, fire research in steel and steel-concrete composite 

structures has evolved tremendously from experimental measurements to 

computational methods (Cote, 2003). The research is driven by the need for a better 

understanding in the fire behaviour of building structures so that structural and 

economical design for fire safety can be improved. One way of measuring the fire 

performance of a structure is by its ability to withstand the exposure of a standard 

fire for a period of time without losing its structural stability and integrity. This is 

referred to as “fire resistance” by most building codes and material standards 

(Franssen & Kodur, 2009). Therefore, it is extremely important to design a building 

considering the fire resistances of the various building elements used in the 

assembly. 

 

In construction industry, structural redundancy is the essence of high-rise 

building structures as it allows for the loss of one primary structural member without 

collapsing the entire structure. According to John Kenlon, the FDNY Chief of 

Department in the early 1900s, the fire induced collapse of a steel framed structure is 

mainly caused by the failure in columns (Hill, 2012). Moreover, the evidence from 

the World Trade Centre collapse indicated that the weakened columns as the impact 

result of aircraft fires attributed to the progressive collapse of the towers (FEMA, 

2002, 2005). The brief background brought most attention to the researcher hence 
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launched the study in the performance of concrete-filled hollow steel section 

(CFHSS) columns in fire condition. 

1.1.1 Advantages and Disadvantages of CFHSS Columns 

Fire has destructive effect on structures as its strength and stiffness 

deteriorate at high temperature, consequently affecting the stability of a building. 

These effects dependent on the thermal and mechanical properties of the materials 

comprising the structural elements. Among all the elements, columns appears to be 

the most critical components as its failure could lead to partial or complete collapse 

of a building.  

 

The basic forms of CFHSS columns can be introduced in three forms – 

circular, square and rectangular, as illustrated in Figure 1.1. They have been widely 

accepted by structural engineers and designers for high rise construction due to the 

benefits of combining steel and concrete. The marriage of these two building 

materials, viz concrete and steel, is practically intended complement the deficiency 

of both structural steel columns and conventional reinforced concrete. For instance, 

the composite column is designed in such a way that concrete is utilized to resist 

compression while steel in tension. Overall, the advantages of CFHSS columns can 

be viewed in four perspectives – structural, architectural, construction, and 

economical, which can be explained as follows: (Bergmann, Matsui, & Meinsma, 

1995; Twilt, Hass, Klingsch, Edwards, & Dutta, 1996; Wardenier, 2001; Zhao, Han, 

& Lu, 2010). 
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Figure 1.1 Types of CFHSS columns (Ranzi, Leoni, & Zandonini, 2013) 

 

From a structural aspect, the concrete core promotes a higher rigidity and 

load bearing capacity to the tubular section where high load is able to sustain by the 

slender columns without increasing the size of the cross-section. Moreover, the 

concrete infill also restrains any possible inward local buckling of the steel section 

thus increases the flexural stiffness and ultimate strength of the column in a frame. 

On the other hand, the steel shell provides confinement to the concrete core to 

prevent excessive spalling under loading condition (Jacobs & Goverdhan, 2008; Y.C. 

Wang, 2002). It also increases strength and ductility of the column as well as its 

energy-absorption capacity which makes it feasible for seismic design. 

 

In architectural design standpoint, because extra load capacity is obtained for 

CFHSS columns for the same dimension column steel and column reinforced 

concrete section, larger usable floor space within a building is achieved due to the 

reduction in the required size of the cross-section. This will enhance the use of 

CFHSS especially in the lower storeys of tall buildings and parking garages where 

the columns experiences higher forces than those in storeys above. In addition, the 

exposed hollow sections are preferred by most architects because of aesthetic value 

and robustness of these columns in structural design. 
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In terms of construction, formwork for CFHSS column is not required 

because steel hollow sections provides an integral support for concrete as it hardened 

subsequently. This method of construction allows for much efficient in construction 

process as the erection of structural steel components into a steel frame can be done 

before or simultaneously with the casting of concrete. Also, with the inclusion of 

concrete in the void area of steel section, smaller columns and rapid construction are 

achieved, hence leads to the reduction in manpower and time of the project.   

 

Even though the cost production of hollow sections is higher than those for 

conventional open sections, they offer economic benefits in other areas including 

those mentioned in the previous paragraphs. In addition, its lower surface area 

reduces painting and corrosion protection costs, thus reduces the total expenditure on 

construction (Wardenier, 2001). 

 

Although CFHSS columns possess a numerous advantages as mentioned 

above, however, short of knowledge about the construction methods and fire 

dynamic design limits its application (Capilla, 2012). Although few design 

procedures and calculation methods have been proposed, these methods show 

inaccurate results at an elevated temperature (Capilla, 2012). Therefore, more studies 

are needed to understand the construction method and to develop design procedures 

for CFHSS columns.  

1.1.2  Practical Applications of CFHSS Columns in Buildings 

As mentioned above, CFHSS columns have high load bearing capacity and 

improved fire performance as compared to tubular steel sections. These advantages 

have led to its wide use in practical applications. Among many applications, most 

prominent are the high-rise buildings and bridges. Most of these bridges and 

buildings are located in China, Japan, USA, England and Canada as described in 

various publications (Capilla, 2012; Wardenier, 2001; Zhao et al., 2010). SEG Plaza 

in Shenzen and Wuhan international securities buildings are the examples of CFHSS 

column based high-rise buildings in China (Zhao et al., 2010). SEG plaza, as shown 
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in Figure 1.2, is 64-storey office building which employs circular shaped CFHSS 

columns. Further, more than 100 bridges have been built in CHINA using CFHSS 

columns (Zhao et al., 2010). Ikeda and Ohmiya (Ikeda & Ohmiya, 2009) reported 

various design applications of CFHSS columns without external fire protection in 

buildings of Japan during 1993 to 2004. Some of the examples are Mitsui Soko 

Hokozaki Building (Tokyo) and ENICOM computer centre (Tokyo). Kodur and 

Mackinnon (2000) presented a review of various applications of CFHSS columns in 

USA and Canada. Museum of flight at King Country Airport (Washington, USA) 

and St. Thomas elementary school (Ontario, Canada) used CFT columns to achieve 

high fire resistance. Some examples of used of CFHSS column buildings of London 

(United Kingdom) include fleet palace house and Peckham library (Hicks & 

Newman, 2002) as illustrated in Figure 1.3. Further, other examples of CFHSS 

columns in building design include Technocent building (Finland), Amsterdam mees 

lease building (Netherlands), and Riverside office building (Australia) (Twilt et al., 

1996). 
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Figure 1.2 SEG Plaza (Shenzen, China) 

 

 

Figure 1.3 Fleet Place House (London, UK) 
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1.2 Problem Statements 

Structural fire design has seen a gradual transformation from prescriptive-

based to performance-based approach in many places around the world including the 

US, UK, Spain, Australia and China (Espinos, Romero, & Hospitaler, 2010; Hong & 

Varma, 2009; Lu, Zhao, & Han, 2009; Zha, 2003). The prescriptive-based approach 

relies heavily on the results interpretation of the attained from standard fire tests. 

Thus, this approach is restricted to architectural and aesthetic requirements. 

Meanwhile, the performance-based approach requires knowledge in the principle of 

fire science, heat transfer, and structural mechanics to develop a numerical tool to 

identify the performance of a structure on fire occurrence. In that way, a through 

understanding in the behaviour of CFHSS columns under extreme loading and fire 

conditions can be attained, hence fire safety can be improved without jeopardising 

the design flexibility and cost for fire protection.  

 

At present, most of the numerical tools developed in Malaysia are 

mathematical-based which is carried out using finite difference method (FDM) (Abd 

El-Ghani, 1998; Alham, 2000; Mian, 1998; Shehata, 2001). It is extremely tedious 

and complicated, not to mention that the results are prone to inaccuracies because of 

various assumptions were made to simplify the problems, for instance the 

mechanical and thermal interactions between steel and concrete (Ghojel, 2004). 

Therefore, numerical modelling is seen as an alternative approach to stimulate a 

realistic behaviour of CFHSS columns at elevated temperature (Espinos et al., 2010). 

In addition, extensive parametric studies can be carried out to explore further 

behaviour of CFHSS columns in order to support the fire design for columns without 

the execution of physical tests. 
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1.3 Aim and Objectives 

The principal aim of this research is to develop new and efficient 3D 

numerical models for predicting the thermal and structural behaviour of CFHSS 

columns at elevated temperatures. In order to achieve this aim, the objectives are 

outlined as follows: 

 

1. To develop a 3D thermal-structural model for CFHSS circular and square 

columns subjected to the standard fire test. 

 

2. To verify the 3D thermal-structural model by comparison with existing 

experimental and numerical results. 

 

3. To compare the accuracy of the numerical predictions with those obtained 

from Eurocode 4 simplified calculation model against experimental 

results. 

 

4. To undertake parametric studies to examine the effect of changing 

important parameters on the behaviour of CFHSS columns under standard 

fire condition 

1.4  Research Methodology 

To achieve the aforementioned objectives, the following brief research 

methodologies are identified herein. 

 

1. Nonlinear finite element analysis (FEA) model by ABAQUS was carried 

out to calculate the temperature distribution within the cross-section and 

the temperature gradient along the member length. 

 

2. Nonlinear FEA model by ABAQUS was adopted to determine the fire 

resistance and displacement of CFHSS column at elevated temperature. 
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3. Validation of the FEA model with the available test results has been done. 

The list of test results for the validation of FEA model are shown in Table 

1.1 and 1.2, for circular and square columns, respectively. The outer 

diameter of the circular columns ranged from 141.3 mm to 478 mm and 

the steel thickness varied from 4.78 mm to 12.79 mm. The outside width 

of the square columns ranged from 152.4 mm to 350 mm, while the 

thickness of the steel wall varied from 5.3 mm to 7.7 mm. The proposed 

numerical models are also ranged to types of concrete (plain and bar-

reinforced concrete), steel yield strength (284 MPa to 350 MPa), concrete 

compressive strength (18.7 MPa to 58.3 MPa), and thickness of external 

protection (7 mm to 17 mm). 

 

4. Sensitivity study to eliminate the uncertainties associated with the output 

of the numerical model. The input parameter studies include the Poisson’s 

ratio of concrete, thermal conductance at the steel-concrete interface, 

friction coefficient at steel-concrete interface, imperfection buckling  of 

columns, concrete plasticity model and material mechanical models at 

elevated temperature.  

 

5. Comparison of the numerical model for CFHSS columns with Eurocode 4 

simplified calculation model. 

 

6. Parametric studies to explore the effect of cross-sectional size, concrete 

types and the thickness of external fire protection on the fire resistance of 

steel tube with circular and square cross-section column filled with 

concrete. 

 

7. Conclusion and recommendations based on the analysis and numerical 

results are drawn with suggestions for further work. 
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1.5 Scope and Limitation 

The scope of this research is limited to CFHSS column of circular and square 

shape, filled with normal strength concrete and subjected to concentric loads. The 

research is also limited to plain and bar-reinforced concrete fillings, steel yield 

strength (284 MPa to 350 MPa) and the concrete compressive strength (18.7 MPa to 

58.3 MPa). 

 

This work will focus primarily on slender columns with length of 3810 mm 

for predicting the behaviour of columns at elevated temperature. For circular 

sections, the outer diameter is ranged from 141.3 mm to 478 mm and the steel 

thickness varied from 4.78 mm to 12.79 mm. For square sections, the outer width is 

ranged from 152.4 mm to 350 mm and the thickness of the steel wall is varied from 

5.3 mm to 7.7 mm.  

 

For the extension of this work, external fire protection with varying thickness 

between 7 mm to 17 mm is also included in the validation process of the model. 

Moreover, this work will focus mainly on axial loaded columns subjected to standard 

fire of either ASTM E-119 (ASTM, 1990) or ISO-834(ISO, 1980).  

1.6 Significance of Research 

The research findings from this project provide significant contribution to the 

understanding of the behaviour of CFHSS columns subjected to fire and axial loads. 

The proposed 3D numerical models for predicting the thermal and mechanical 

response of the column provide structural design with an advanced analysis and 

design tools that can be used in fire design. In addition, the incorporation of the 

temperature dependent formulations factors gives more realistic representation of the 

behaviour of axially loaded CFHSS columns at elevated temperature. 
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1.7 Thesis Layout 

The contents of this thesis are divided into 6 chapters. Chapter 1 is the 

introduction part which highlighted the background of the research work, the 

objectives and significance of the research work. Chapter 2 presents an extensive 

literature reviews on experimental investigations, analytical approaches, numerical 

methods, and calculation models on the behaviour of CFHSS columns at elevated 

temperature.   

 

Chapter 3 discusses in detail the research methodology adopted in the study. 

The first task focuses on developing the proposed numerical model on ABAQUS for 

investigating the behaviour of CFHSS column at elevated temperature. The second 

task focuses on developing the Eurocode 4 simplified calculation model for 

predicting the fire behaviour of the CFHSS column.  

 

Chapter 4 validates the proposed numerical model with a series of fire tests 

by various researchers. This chapter also compares the results obtained from the 

proposed numerical model against those obtained from the EC4 simplified 

calculation model and numerical models by previous researchers.  

 

Chapter 5 conducts parametric studies to explore the effect of cross-sectional 

size, concrete types and thickness of external fire protection on the fire resistance of 

CFHSS column by using the numerical model that was validated in the previous 

chapter. The study for investigating the effect of cross-sectional size consists of three 

cases which include: (i) equal section strength at ambient temperature, (ii) equal steel 

cross-sectional area, and (iii) equal concrete-cross-sectional area. Meanwhile, there 

are three concrete types investigated which include (i) bare, (jj) plain concrete, and 

(iii) reinforced concrete. Lastly, the study on effect of thickness of the protection 

ranged from 0 mm, 10 mm and 25 mm.  

 

Chapter 6 presents the summary of the entire work, conclusions as well as 

recommendations for future work. 
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