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ABSTRACT 

 

 

 

 
Ordered mesoporous carbon based materials (OMC) are suitable for many 

applications because of their unique physicochemical properties. In this research, OMC 

materials with large surface areas up to 1226 m
2
 g

‒1
 were synthesized using the nanocasting 

method with SBA-15 silica as the hard template and sucrose as the carbon precursor. The 

mesoporous silica SBA-15 template was prepared by hydrothermal synthesis using tetraethyl 

orthosilicate (TEOS) and Pluronic P123 copolymer under acidic conditions which was later 

used to synthesize OMC. Based on small angle X-ray scattering (SAXS) data analysis, the  

(1 0 0) peak position of the OMC was exactly the same as for the template SBA-15 (1.0° 2), 

which is an indication of long-range structural ordering, implying a complete replication of 

the carbon from the SBA-15 silica template. Additionally, both the transmission electron 

microscopy (TEM) and field emission scanning electron microscopy (FESEM) images of 

SBA-15 and OMC were similar, showing well-ordered hexagonal pores and uniform pores 

sizes of less than 5 nm in diameter with rod-like particle morphology. Oxygen and nitrogen 

containing functional groups, respectively, were incorporated into the OMC surface in order 

to improve the electrochemical performance and hydrophilic properties. The oxygen 

functionalized OMC (OMC-O) was formed through oxidative treatment with 2M HNO3 

solution. X-ray photoelectron spectroscopy (XPS) measurements showed an increase in the 

amount surface oxygen (13.7%) in the form of carbonyl, carboxyl and quinone groups which 

were supported by the Fourier transform infrared (FT-IR) spectra. Modification of OMC 

with nitrogen containing functional group was performed by noncovalent functionalization 

method via adsorption of Basic Red 2 (BR2) dye, C20H19ClN4, from aqueous solution to 

afford the nitrogen functionalized OMC (OMC-N). The highest adsorption capacity q of BR2 

was obtained with solution concentration of 1000 mg L
‒1

 at 60 °C, pH of 10, OMC loading 

of 0.2 g L
‒1

 and contact time of 180 min as determined by ultraviolet-visible (UV-Vis) 

spectroscopy. The experimental data showed excellent fit with Langmuir isotherm model (R
2
 

= 0.989) giving a maximum capacity qmax of 1000 mg g
‒1

. BR2 adsorption onto the OMC 

obeyed pseudo-second order kinetic model and the process is thermodynamically favourable, 

spontaneous, physical (ΔHads = 37.9 kJ mol
‒1

) and endothermic. Electrochemical behaviours 

of OMC, OMC-O and OMC-N were evaluated by cyclic voltammetry (CV), electrochemical 

impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD) using a three-

electrode assembly in 1M KOH aqueous electrolyte. Both OMC-O and OMC-N 

demonstrated higher specific capacitance than OMC and good capacitance retention (> 50%) 

at the optimum scan rate (10 mV s
‒1

) and current density (0.5 A g
‒1

). However, BR2 

functionalized OMC-O (OMC-ON) containing oxygen and nitrogen functionalities exhibited 

the highest capacitance (356.4 F g
‒1

) among the samples, but has the lowest capacitance 

retention (45%) upon increasing scan rate. The enhancement in specific capacitance of 

modified OMC was correlated to the pseudo-capacitance induced by redox reactions of 

oxygen and nitrogen functionalities in OMC prepared by oxidative modification and 

noncovalent functionalization method. The synergistic effects of the oxygen and nitrogen 

increase the hydrophilicity, while the presence of mesopores also promoted the formation of 

electrical double-layer, and consequently increased the specific capacitance of OMC in 

aqueous medium. 
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ABSTRAK 

 

 

 

 
Bahan berasaskan karbon mesoliang bertertib (OMC) sesuai digunakan untuk 

pelbagai aplikasi disebabkan oleh sifat fizikokimia yang unik. Dalam penyelidikan ini, bahan 

OMC dengan luas permukaan tinggi sehingga 1226 m
2
 g

‒1
 telah disintesis menggunakan 

kaedah penuangan nano dengan silika SBA-15 sebagai templat keras dan sukrosa sebagai 

sumber karbon. Templat silika mesoliang SBA-15 disediakan secara sintesis hidroterma 

menggunakan tetraetilortosilikat (TEOS) dan kopolimer Pluronic P123 dalam keadaan 

berasid yang kemudiannya digunakan untuk sintesis OMC. Berdasarkan data analisis sudut 

kecil penyerakan sinar-X (SAXS), kedudukan puncak (1 0 0) OMC adalah sama dengan 

templat SBA-15 (1° 2θ) yang menunjukkan ketertiban struktur jarak jauh, serta menandakan 

karbon direplikasi daripada templat silika SBA-15 secara lengkap. Tambahan pula, kedua-

dua imej mikroskop pancaran elektron (TEM) dan mikroskop imbasan elektron pancaran 

medan (FESEM) untuk SBA-15 dan OMC adalah serupa, dengan menunjukkan susunan 

liang heksagon bertertib dan saiz liang seragam berdiameter kurang daripada 5 nm dengan 

morfologi zarah seakan-akan rod. Kumpulan berfungsi mengandungi oksigen dan nitrogen 

masing-masing, telah digabungkan dalam permukaan OMC bagi meningkatkan sifat 

elektrokimia dan sifat hidrofilik. OMC berfungsikan oksigen (OMC-O) telah terbentuk 

melalui pengoksidaan dengan larutan HNO3 2M. Pengukuran spektroskopi fotoelektron 

sinar-X (XPS) menunjukkan pertambahan jumlah oksigen permukaan (13.7%) dalam bentuk 

kumpulan karbonil, karboksil dan kuinon yang disokong oleh spektrum inframerah 

transfromasi fourier (FT-IR). Pengubahsuaian OMC dengan kumpulan berfungsi 

mengandungi nitrogen telah dilakukan dengan kaedah pemfungsian bukan kovalen melalui 

penjerapan pewarna Basic Red 2 (BR2), C20H19ClN4, dalam larutan akueus bagi 

menghasilkan OMC berfungsikan nitrogen (OMC-N). Kapasiti penjerapan q tertinggi untuk 

BR2 telah dicapai menggunakan larutan yang mempunyai kepekatan 1000 mg L
‒1

 pada       

60 °C, pH 10, muatan OMC berjumlah 0.2 g L
‒1

 dan masa sentuhan selama 180 min, yang 

ditentukan oleh spektroskopi ultralembayung-nampak (UV-Vis). Data eksperimen mendapati 

kesesuaian dengan model isoterma Langmuir (R
2
 = 0.989) adalah sangat baik di mana 

kapasiti maksimum qmax ialah 1000 mg g
‒1

. Penjerapan BR2 pada OMC mematuhi model 

kinetik tertib pseudo-kedua dan memuaskan daripada segi termodinamik, spontan, fizikal 

(ΔHads = 37.9 kJ mol
‒1

) dan endotermik. Kelakuan elektrokimia untuk OMC, OMC-O dan 

OMC-N telah dinilai menggunakan voltammetri kitaran (CV), spektroskopi impedans 

elektrokimia (EIS) dan cas-nyahcas galvanostatik (GCD) menggunakan pemasangan tiga 

elektrod dalam elektrolit berakueus KOH 1M. Kedua-dua OMC-O dan OMC-N 

menunjukkan kapasitan spesifik lebih tinggi berbanding OMC dan penahanan kapasitan baik 

(> 50%) pada kadar imbasan optimum (10 mV s
‒1

) dan ketumpatan arus (0.5 A g
‒1

). 

Walaubagaimanpun, BR2 berfungsikan OMC-O (OMC-ON) yang mempunyai kumpulan 

berfungsi oksigen dan nitrogen mempamerkan kapasitan tertinggi (356.4 F g
‒1

) antara 

sampel, tetapi mempunyai penahanan kapasitan paling rendah (45%) dengan peningkatan 

kadar imbasan. Peningkatan kapasitan spesifik OMC terubahsuai adalah berhubungkait 

dengan pseudo-kapasitan yang teraruh oleh tindak balas redoks kefungsian oksigen dan 

nitrogen dalam OMC yang telah disediakan secara pengubahsuaian oksidaan dan kaedah 

pemfungsian bukan kovalen. Kesan sinergi oksigen dan nitrogen tersebut telah meningkatkan 

kehidrofilikan, manakala kehadiran mesoliang juga memacu pembentukan lapisan-ganda dua 

elektrik, seterusnya meningkatkan kapasitan spesifik OMC dalam medium berakueus.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Porous materials are classified into different kinds by their pore size. 

According to International Union of Pure and Applied Chemistry (IUPAC), 

microporous material have pore diameter of less than 2 nm and macroporous 

material have pore diameter of greater than 50 nm; the mesoporous category thus lies 

in the middle. Table 1.1 summarizes the categories of porous materials (Gregg and 

Sing, 1982).  

 

 

Table 1.1:  Classification of porous materials according to pore size. 

 

 

Classification Pore size 

Microporous ˂ 2 nm 

Mesoporous 2–50 nm 

Macroporous ˃ 50 nm 

 

 

Typical mesoporous materials include some kinds of silica (e.g., HMS, SBA-

15, and M41S family), alumina (e.g., clay and zeolites), and carbon (e.g., CMK-1, 

CMK-2, and CMK-3) that have similarly-sized fine mesopores. A mesoporous 

material can be disordered or ordered in a mesostructure. Research in this field has 

steadily grown concerning both of their structural properties and technological 

applications.  
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Ordered mesoporous carbon (OMC) is a carbon material with well defined 

porosity, size ranges from 2 to 50 nm. OMC exhibits ordered pore structure, high 

surface area, large pore volume, chemical inertness, high mechanical stability and 

conductivity (Ryoo et al., 2001; Hartmann et al., 2005). OMC can be prepared by 

various techniques such as catalytic activation, physical and chemical activation, soft 

templating, and hard templating method. Among all, hard templating method allows 

control of structure, morphology, and pore dimension of the OMC (Lu and Schüth, 

2006; Saini et al., 2010). OMC has been used in wide area of applications such as 

adsorption, catalysis, energy storage, and electrochemistry due to distinct advantages 

over traditional porous materials such as zeolites, active carbon, and metal oxides.  

 

 

Generally, hard templating method is a straightforward process in which a 

template with relevant nanoscale structure, is impregnated with carbon precursor, 

and the initial template is subsequently removed (Lu and Schüth, 2006; Saini et al., 

2010). This method is also known as nanocasting. The resulting carbon exhibits as 

mentioned criteria with variable three-dimensional structures such as cubic and 

hexagonal, depending on the structure of the template. In other words, the OMC 

prepared through this method is usually an inverse replica of the hard template. This 

method mainly used ordered mesoporous silica (OMS) as the hard template and 

sucrose, furfuryl alcohol, or phenol resin as the carbon precursor (Gierszal et al., 

2008).   

 

 

Ordered mesoporous silica (OMS) is a material made up of Si‒O‒Si 

(siloxane) framework with uniform pore size and structure. OMS has also been used 

in diverse applications such as molecular sieving, adsorbent, sensor, stationary 

medium for biomolecules, and catalyst support (Fiorilli et al., 2004; Busuioc et al., 

2006; de Oliveira et al., 2011; Huang et al., 2011). Santa Barbara Amorphous, SBA-

15 is one of the famous OMS materials due to its large and well hexagonally 

arranged mesopore structure. SBA-15 also has thick silica walls therefore exhibits 

high hydrothermal and thermal stability (Newalkar et al., 2000). SBA-15 is 

structured by a nonionic triblock copolymer (EO)20(PO)70(EO)20 called Pluronic 

P123 and tetraethyl orthosilicate (TEOS) in acidic condition. The pore size and 

particle morphology of SBA-15 can be altered in a wide range by controlling the 
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synthesis conditions (e.g., temperature, stirring rate, and Pluronic P123/TEOS ratio) 

and surfactants architecture (Zhao et al., 1998b). In 2000, Jun and his friends have 

first reported an ordered mesoporous carbon material (CMK-3) using SBA-15 as 

hard template and sucrose as carbon source (Jun et al., 2000). The resultant carbon 

exhibited similar structure characteristics to the SBA-15.  

 

 

Introduction of heteroatoms other than carbon within a carbon matrix can be 

performed by chemical and physical modification methods. These modification 

methods alter the electronic structures of the carbon materials, enhancing its surface 

polarity, electrical conductivity, and electron-donor properties (Zhang et al., 2013). 

A few modification methods have successfully enhanced the electrochemical 

properties of carbon material, as reported by Chen et al. (2013), Almeida et al. 

(2014), and Shi et al. (2015). The presence of electrochemical active functional 

groups such as oxygen and nitrogen provides additional pseudo-capacitance to the 

energy storage mechanism by means of redox process. These functional groups are 

able to improve the hydrophilicity of OMC based material in aqueous medium.  

 

 

Dye is a coloured substance that has affinity to the substrate to which it is 

being applied. There are two types of dyes; basic and acidic dyes. A basic dye is 

cationic dye that dissolves in aqueous media and form positively charged 

chromophore. One of the commonly used basic dyes is Basic Red 2 (BR2), also 

known as Safranin. BR2 is a water soluble nitrogen containing compound and forms 

positively charged nitrogen cations when dissolves in water. Introduction of nitrogen 

containing functional groups generally creates basic properties, which can enhance 

the interactions between the carbon surface and acidic molecules. In addition, 

nitrogen functionalized carbon based material also has high affinity to water 

molecules thus improved its hydrophilic properties in aqueous media (Hou et al., 

2005). The influence of surface functional groups can be further confirmed by 

electrochemical performance tests in aqueous electrolyte. 

 

 

Easy noncovalent BR2 functionalization on the surface of OMC through 

adsorption makes such modification interesting. Adsorption is the binding of 

molecules or particles to a surface. The optimum adsorption conditions can be 
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accomplish by varying parameters such as solution pH, temperature, initial 

concentration, sample loading, and contact time. Equilibrium, kinetic, and 

thermodynamic studies are employed to describe the adsorption process. Heat of 

adsorption (ΔHads) value will determine the types of interaction between BR2 

molecules and OMC host. BR2 was selected for the noncovalent functionalization in 

order to produce nitrogen containing OMC based material.  

 

 

 

 

1.2 Statement of Problem 

 

 

Hard templated OMC practices structure replication strategy. The replication 

procedure involves infiltration of the pores of the hard template with an appropriate 

carbon precursor, followed by inert atmosphere carbonization and template 

dissolution. Therefore, the hard template has to exhibit suitable and fine mesoporous 

system in order for the replication process to be successful; otherwise disordered 

microporous carbon is formed. It is important to produce a good quality hard 

template which will determine the structure of consequential OMC.  

 

 

Previous reports have demonstrated that the application of this material is 

determined mainly by its structural properties as well as surface chemistry. Oxygen 

containing functional groups such as carboxylic acid, carbonyl, and hydroxyl are able 

to improve the carbon surface hydrophilic properties or wettability in aqueous media. 

These oxygenated functional groups can be introduced by chemical oxidative 

treatment with nitric acid (HNO3), hydrogen peroxide (H2O2), sodium hypochlorite 

(NaOCl), or iron(III) nitrate (Fe(NO3)3), which consequently improved the 

electrochemical properties of the carbon materials.  

 

 

Moreover, physical modification such as functionalization is necessary in 

order to alter the physicochemical properties of OMC. Functionalization is implied 

since this process can modify the electrical conductivity and surface chemistry of 

OMC. To further confirm this situation, electrochemical performance tests were 

conducted to determine charge storage capability and electrical response. The 
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functionalization process can be carried out by noncovalent method using nitrogen 

containing compound, BR2. The noncovalent functionalization of OMC was 

explained according to equilibrium, kinetic, and thermodynamic studies which were 

carried out at variable adsorption conditions.  

 

 

 Ordered mesoporous silica (OMS) materials are insulator. They are incapable 

of conducting any electrical flow resulting from electron transfer in between 

electrode and electrolyte during electrochemical performance tests. Herein, we 

consider the ability OMC so that variation of voltage throughout the performance 

tests can be detected. In addition, the oxidized OMC and BR2 functionalized OMC 

can be utilized as conductive electrode material by fabricating it onto a current 

collector which is directly connected to a power source in an electrochemical circuit.  

 

 

 

 

1.3 Research Objectives 

 

 

 The objectives of this research are:  

 

 

1. To synthesize ordered mesoporous silica hard template, SBA-15 and 

compare the efficiency of Pluronic P123 surfactant removal by 

calcination and Soxhlet extraction methods.  

2. To synthesize ordered mesoporous carbon (OMC) with structural 

characteristics similar to SBA-15 hard template by replication strategy. 

3. To modify physicochemical properties of the OMC by introduction of 

oxygen containing functional groups.  

4. To modify physicochemical properties of the OMC by introduction of 

nitrogen containing functional groups through noncovalent 

functionalization method and study the equilibrium, kinetic, and 

thermodynamic behaviours of BR2 adsorption in aqueous solution.  

5. To explore the electrochemical properties of the original OMC, oxidized 

OMC (OMC-O), BR2 functionalized OMC (OMC-N), and BR2 

functionalized OMC-O (OMC-ON) materials in 1 M KOH electrolyte.  
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In this study, OMC was prepared by hard template method employing SBA-

15 as the template, followed by surface oxidative modification with nitric acid 

(HNO3) solution. All OMC and oxidized OMC samples were characterized with 

respect to their morphological and structural properties and their electrochemical 

performance was investigated. Then, the original OMC was functionalized with BR2 

by noncovalent method to introduce nitrogen containing functional species. 

Investigation on the functionalization process was clarified based on equilibrium, 

kinetic, and thermodynamic studies. The main objectives of this study are to identify 

the fashion and differences in electrochemical performance of OMC, OMC-O, 

OMC-N, and OMC-ON materials and justify the achievement in accordance to the 

structural properties as well as surface chemistry.  

 

 

 

 

1.4 Significance of Study 

 

 

Ordered mesoporous carbon OMC has been selected in this study since it 

exhibits well-aligned mesopores, high surface area, chemical inertness, thermal 

stability, and electrical conductivity. Some modifications need to be carried out in 

order to improve the physicochemical properties of OMC materials. In this study, 

oxidation and noncovalent nitrogen functionalization methods are investigated. 

Besides, the large mesopores of OMC permit easier access of the electrochemical 

active nitrogen containing BR2 molecules to the active sites making the OMC 

excellent as host. Hence, the prepared OMC materials are employed for 

electrochemical performance investigation in 1 M KOH aqueous electrolyte. In 

addition, there is only few literatures on BR2 dye functionalized OMC as a material 

for electrochemical properties investigation. Due to this, the authors want to explore 

the contribution of oxidation and noncovalent functionalization methods to the 

electrochemical capacitive behaviours of OMC since this material has high potential 

to be commercialized.  
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1.5 Scope of Study 

 

 

The overall study including preparation, characterization, and testing for the 

prepared samples was divided into six sub sections and simplified in Figure 1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Scope division of the study. 

Preparation of SBA-15 template 

 Hydrothermal method: TEOS as silica source and Pluronic P123 as surfactant. 

 Pluronic P123 surfactant removal method: Calcination and Soxhlet extraction.  

 Characterization: FT-IR, SAXS, nitrogen adsorption‒desorption analysis, 

FESEM, TEM, and TG/DTA.  

 

Surface modification 

 Chemical oxidation with HNO3 solution by reflux.  

 Characterization: FT-IR, XPS, XRD, and nitrogen adsorption‒desorption 

analysis. 

Preparation of OMC 

 Hard templating method: Sucrose as carbon source. 

 Removal of SBA-15 template by using various concentrations of HF solution. 

 Carbonization temperature: 600‒900 °C 

 Characterization: FT-IR, SAXS, nitrogen adsorption‒desorption analysis, XPS, 

FESEM, TEM, Raman spectroscopy, CHN elemental analysis, and TG/DTA.   

 

BR2 noncovalent functionalization 

 Equilibrium, kinetic, and thermodynamic studies. 

 Characterization: UV-Vis spectroscopy, CHN elemental analysis 

 Optimization: Solution pH, contact time, temperature, initial concentration, and 

sample loading. 

Electrochemical performance tests 

 Performed in 1 M KOH electrolyte at various scan rates and current densities.  

 Characterization: EIS, CV, and GCD. 
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