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ABSTRACT 

 

 

 

 

 

Mesoporous silica nanoparticles (MSN) were synthesized by conventional 

method and microwave heating as drug delivery platform for the adsorption and 

release of ibuprofen, an anti-inflammatory drug. MSN was modified by 3-

aminopropyltriethoxysilane (APTES) and aluminum (Al) metal. Modification with 

APTES was conducted via co-condensation (MSN-APTco) and post-grafting method 

(MSN-APTpost) of MSN. The percentages of adsorption of ibuprofen were 100%, 

71% and 78%, while the releases were 50%, 100% and 38% for MSN, MSN-APTco 

and MSN-APTpost, respectively, which resulted from the difference in the surface 

functional group. 1%, 5% and 10% of aluminum (Al) were loaded onto MSN via the 

impregnation method. The adsorptions of ibuprofen were 35%, 58% and 79%, while 

the releases were 100%, 86% and 89% for 1%, 5% and 10% Al loaded MSN, 

respectively. The increase in Bronsted acidity upon loading of Al up to 10% strongly 

bound the drug, which caused the highest adsorption but the slowest release of 

ibuprofen.  MSN was also synthesized with microwave power of 100W (MSN-

MW100), 300W (MSN-MW300) and 450W (MSN-MW450). MSN-MW450 exhibited the 

highest ibuprofen adsorption (100%), followed by MSN-MW300 (75%) and MSN-

MW100 (58%), while the percentages of release were 65%, 81% and 95%, 

respectively, depicting longer channel of MSN demonstrated higher adsorptivity 

toward ibuprofen, while simultaneously delayed the release process. From all the 

studies, the vital factors for ibuprofen delivery were found to be the surface 

functional group, acidity and also the mesoporous channel length. With these factors, 

MSN can be designed to fulfill the desired drug delivery system. In conclusion, MSN 

can be tailored to have suitable features for slow drug release which provide constant 

release over a defined period to avoid repetitive administration. In parallel, MSN also 

could be employed as a fast drug release system that provides initial burst of drug 

release to achieve rapid and maximum relief. 
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ABSTRAK 

 

 

 

 

 

Zarah nano silika berliang meso (MSN) telah disintesis dengan kaedah biasa 

dan gelombang mikro sebagai penyokong untuk penjerapan dan pembebasan 

ibuprofen, suatu ubat anti-radang. MSN telah diubahsuai dengan 3-

aminopropiltrietoksisilana (APTES) dan logam aluminium (Al). Ubahsuai dengan 

APTES telah dijalankan melalui ko-kondensasi (MSN-APTco) dan kaedah pasca-

gabungan (MSN-APTpost). Penjerapan ibuprofen adalah 100%, 71% dan 78%, 

manakala pembebasan adalah 50%, 100% dan 38% masing-masing untuk MSN, 

MSN-APTco dan MSN-APTpost, masing-masing, yang disebabkan oleh perbezaan 

pada kumpulan berfungsi permukaan. MSN telah ditambah dengan 1%, 5% dan 10% 

aluminum (Al) telah melalui kaedah pengisitepuan. Peratus penjerapan ibuprofen 

adalah 35%, 58% dan 79%, manakala pembebasan adalah 100%, 86%, 89% untuk 

MSN yang masing-masing ditambah 1%, 5% dan 10% Al. Peningkatan pada 

keasidan Bronsted dengan penambahan Al sehingga 10% mengikat ubat dengan 

lebih kuat, yang menyebabkan penjerapan tinggi tetapi pembebasan yang lambat.  

MSN telah disintesis menggunakan gelombang mikro berkuasa 100W (MSN-

MW100), 300W (MSN-MW300) dan 450 W (MSN-MW450). MSN-MW450 

mempamerkan penjerapan ibuprofen tertinggi (100%), diikuti dengan MSN-

MW300 (75%) dan MSN-MW100 (58%), manakala peratus pembebasan adalah 

masing-masing 65%, 81% and 95%, menandakan saluran yang lebih panjang 

menunjukkan penjerapan yang lebih tinggi terhadap ibuprofen, dalam masa yang 

sama melambatkan proses pembebasan. Daripada semua kajian, faktor penting untuk 

penyampaian ibuprofen yang ditemui adalah kumpulan berfungsi permukaan, 

keasidan dan juga panjang saluran liang meso. Dengan faktor-faktor ini, MSN boleh 

direkacipta untuk memenuhi sistem penyampaian ubat yang dikehendaki. 

Kesimpulannya, MSN boleh direka untuk mempunyai ciri-ciri yang sesuai untuk 

penyampaian ubat secara perlahan di mana menyediakan pembebasan yang 

berterusan dalam masa yang telah ditetapkan untuk mengelakkan pengambilan 

berulang. Sejajar dengan itu, MSN juga boleh dijadikan sistem penyampaian ubat 

yang pantas yang menyediakan permulaan pembebasan ubat yang cepat untuk 

mencapai kelegaan yang pantas dan maksimum. 
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CHAPTER 1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

1.1 Research Background 

 

 

Fortified by the exciting discovery of new kinds of molecular sieves called 

MS-41 in the early 1990s, exploration on the synthesis of mesoporous silica 

materials has received growing attention and advanced rapidly (Kresge et al., 1992; 

Inagaki et al., 1993). Great endeavors have been conducted in the tailoring of particle 

size, pore diameter, morphology, structure, surface properties and functionalization 

of mesoporous silica to improve their applications in the fields of catalysis, 

separation, adsorption, and drug delivery, etc (Ying et al., 1999; Sayari and 

Hamoudi, 2001; Raja and Thomas, 2002; Liu et al., 2005).  As one of the most 

promising application for human health care, controlled drug-delivery systems 

represent an ever-evolving field for biomedical materials science.  

 

 

From a technical perspective, controlled drug delivery implies the ability to 

control the distribution of therapeutic agents both in space and time. In other words, 

controlled drug delivery embodies both control of the rate of release of a drug, and 

the delivery of this drug to a specific organ or location in the body (Barbe et al., 

2004). 
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In recent years, mesoporous silica nanoparticles (MSN) have been well 

developed as effective drug storage vehicles in drug delivery systems (Manzano et 

al., 2008, Mortera et al., 2010) owing to their large pore volume, high surface area 

(Vallet-Regi et al., 2001), ease of functionalization (Lei et al., 2010), low toxicity 

and biodegradability. However, one of the main and specific problems of drug 

delivery system by mesoporous materials at current is the pore sizes that could not 

encounter all types of desired drugs which consist of bulky and different features. 

For this application, the morphology control of MSNs, especially their particle size, 

dispersivity and pore size are important issues because particles or aggregates with 

sizes above 300 nm may lead to thrombosis (Barbe et al., 2004) and the pore 

diameter determines the dimensions of drug molecules which can be loaded in them. 

In this sense, synthesis of controllable mesoporous material by an efficient method is 

crucial and imperative tasks. 

 

 

Moreover, one of the main targets of current delivery systems in the 

pharmaceutical industry is to provide a sustained released over time of the active 

agent in order to maintain its concentration within therapeutic values and below the 

diligence toxicity threshold (Shi et al., 2011).  It is supposed that this delivery rate 

could be modulated by modifying the interaction between the confined molecule and 

the mesoporous silica medium. This objective could be achieved by functionalization 

of the pore wall, with such as 3-aminopropyltriethoxysilane (APTES). Modification 

of mesoporous silica by APTES has been conducted by Wang et al, (2009a) and they 

reported that the release of drug molecules was found to be dependent on the type of 

functional groups in the materials (Wang et al., 2009a). Generally, surface 

functionalization of mesoporous silica materials via covalent bonding of organic 

groups can be achieved by two methods: post grafting synthesis and co-condensation 

(Sharma and Asefa, 2007).  The resulting functionalized mesoporous materials may 

help to deliver drugs efficiently and thus, minimize the drugs possible adverse 

effects. The main advantage of introducing any functionality within the pore walls of 

MSN is that the non-siliceous group will not partially block the mesopores. This 

allows better diffusion of the molecules of interest through the pores when using the 

material (Slowing et al., 2010). The presence of pores of uniform size lined with 
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silanol groups considers these materials potential interest as host of a variety of guest 

chemical species, such as amino groups (Moller and Bein, 1998). 

 

 

In this study, ibuprofen was chosen as a model molecule, as it is currently 

used in a range of pharmaceutical formulations an analgesic and anti-inflammatory 

drug. Ibuprofen that was designated as a core medicine in the “WHO Model List of 

Essential Medicines” is generally derived from propanoic acid (Dutta et al., 2012). 

Ibuprofen is known to have an antiplatelet effect, though it is relatively mild and 

short-lived compared to aspirin or other better-known antiplatelet drugs (Esch et al., 

1995). Ibuprofen can be impregnated into mesoporous silica materials by reacting 

with the active groups on the mesoporous framework, for instance, by hydrogen 

bond with surface silanol groups (Szegedi et al., 2011). Cross-reference to recent 

studies on ibuprofen delivery by carriers based on both mesoporous silica and metal-

organic framework systems, should facilitate extension of this current knowledge in 

this fields by giving broarder view. Therefore, herein we attempt to synthesis and 

characterize mesoporous materials with different properties, as well as studying its 

activity towards ibuprofen immobilization and release profile.  

 

 

Additionally, mesoporous silicas incorporated inorganic groups such as 

transition metals and metal oxides are also known as potential materials for the 

adsorption of drugs. For instance, Cu
2+

 loaded onto SBA-15 was reported to be an 

effective adsorbent for naproxen via the metal-drug complexion (Rivera-Jimenez et 

al., 2010), while MnO-loaded SBA-15 performed well as a vehicle for a doxorubicin 

anti-cancer drug due to the accessibility of its paramagnetic center for 

encapsulation/sustained release/intracellular delivery of drugs (Chen et al., 2012b). 

On the other hand, zeolite was also reported as a good candidate drug carrier because 

the Al allows potential interactions with the drug. In a series of SiO2/Al2O3 ratio 

studies, extra-framework Al in zeolite Y was found to form a complex with the drug 

5-fluorouracil (Datt et al., 2013). The Al content was also reported to generate acid 

sites that play an important role in ibuprofen adsorption (Das et al., 2009). However, 

the adsorptivity of such zeolites toward a wide range of drugs is still low due to their 

small pore sizes. In this sense, the use of larger pore size mesoporous silica with 
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incorporated Al may offer greater advantages for drug adsorption. Besides, detailed 

reports on the understanding of acidity in terms of Lewis or Brönsted acid sites with 

relative to the drug delivery are still rare. Acordingly, in this study we also attempt to 

introduce Al onto the MSN, to observe its potential towards the adsorption and 

release of ibuprofen. 

 

 

The traditional synthesis method of mesoporous materials is the hydrothermal 

route, which uses a certain amount of surfactants, as well as acid or alkali to compose 

a mixed aqueous preparation. Next, inorganic sources are added and heated to 

crystallize, followed by filtration, drying, and calcination or extraction to remove the 

template. Although finely ordered mesoporous materials are obtained, the process is 

time and energy consuming (Jiang et al., 2008; Yu et al., 2012). Heating solids in the 

conventional system leads to an uneven temperature distribution due to poor heat 

transfer into the bulk of the material. The outer temperature may be substantially 

higher than the inner one, because the material itself acts as an insulator. In these 

modern days where scientific findings and technology go hand in hand, any 

improvement to a synthesis technique that saves time in the synthesis of new 

materials or improves the properties of materials would be extremely beneficial 

(Saxena and Chandra, 2011). It is known that hydrothermal synthesis of inorganic 

materials using microwave heating promotes nucleation and can reduce the synthesis 

time and particle size significantly in comparison with the conventional convection 

heating method (Newalkar et al., 2001; Hwang et al., 2004; Yoon et al., 2008). 

Besides, with faster polymerization under microwave irradiation, it was also found 

that the swelling rate of the material was much higher compared to a material 

prepared by conventional heating. In fact, scanning electron microscopy revealed 

that the material produced under microwave irradiation consisted of evenly 

distributed pores (Xu et al., 2005). 

 

 

Therefore, within this context, microwave irradiation under different heating 

power was applied to the synthesis of MSN, with the expectation of a reduction in 

synthesis time and formation of MSN with enhanced drug adsorption properties. The 

relationship between material crystal growth and crystallinity, surface area, pore size, 
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particle size, and morphology are also discussed. We suggest an approach to the 

formation of MSN from a mixture of cetyl trimetylammonium bromide (CTAB), 

water, ethylene glycol, ammonia, and tetraethyl orthosilicate (TEOS). Ammonia was 

chosen as the catalyst and ethylene glycol as the co-solvent because of their polarity, 

which is higher than that of NaOH and methanol or ethanol which are commonly 

used to synthesize MSN. The understanding of those parameters provided control of 

the structural and morphological characteristics of these materials was beneficial for 

the design of a drug delivery system. 

 

 

 

 

1.2 Problem Statement 

  

 

Recent studies show that the mesoporous silica nanoparticles appears as one 

of the best candidate for drug delivery system due to its tuneable pore size, large pore 

volumes, high specific surface area, good thermal stability, biocompatible and non-

toxic nature (Tourne-Peteilh et al., 2003). However, the loading of drug onto the 

support often faced several problems due to lack of activity due to small pore size 

that could not encounter all the desired drugs, as well as the deficiency of active 

sites. In order to overcome these problems, the modification towards the MSN to 

improve its physicochemical properties and efficiency of drug loading and release 

are highly required.  Other main and more specific problems of drug delivery 

systems at present is the loss of activity of several drugs before reaching the target 

tissue as a result of premature degradation of the active agent. The other concern also 

focused towards the efficiency of the designed system, which is important. Despite 

its efficiency, conventional heating during MSN synthesis may also be time and 

energy consuming.  

 

 

Recently, Szegedi et al (2012) reported that modification by organic groups 

such as amine had a positive effect on the adsorption capacity of ibuprofen. 

However, application of much higher amount of organic group than the 
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stoichiometrically needed results in the development of disadvantageous properties, 

such as functionalization of outer surface of the silica particles and unfavourable 

agglomeration. Thus, the study of modified MSN for drug delivery is still a challenge 

and imperative task. 

 

 

 

 

1.3 Hypothesis 

 

 

Due to the highly ordered structures, high surface area, large pore sizes, and 

the silica surface that could be modified and functionalized, the MSN is expected to 

provide an excellent utilities for drug adsorption and release. In this sense, the 

synthesis of controllable and tailorable mesoporous material by an efficient method 

is a crucial and imperative task. Due to the differences of drugs nature, not all kind of 

drugs suits the surface chemical of MSN, which then the functionalization and 

modification takes role. Functionalization is conducted accordingly based on the 

desired drug’s characteristics to enhance and assist in the adsorptivity. In fact, 

mesoporous silica shows high density of silanol groups, which can be used to obtain 

functionalized surfaces by grafting organic or inorganic groups. Organic 

functionalization agent, such as 3-aminopropyltriethoxysilane (APTES) could 

provide binding sites to the desired drugs by the –NH2 groups on the surface. Apart 

from the organic groups, functionalization of MSN by inorganic groups, such as 

metals or metal oxides also offers great advantages to the MSN, such as introducing 

acid sites to interact with the interest drug. Moreover, due to the time consuming of 

the conventional heating during MSN synthesis, microwave-assisted synthesis offers 

higher advantages on reducing the synthesis time as is expected to preserve the MSN 

properties and good activity towards the ibuprofen adsorption and release. 
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1.4 Objective of the Study 

 

 

The objectives of this study are as follows: 

 

1. To study the performance of ibuprofen delivery on mesoporous silica 

nanoparticles (MSN) 

2. To study the effect of 3-aminopropyltriethoxysilane modified MSN on the 

performance of ibuprofen delivery. 

3. To study the effect of Al metal modified MSN on the performance of ibuprofen 

delivery. 

4. To study the effect of microwave-synthesized MSN on the performance of 

ibuprofen delivery. 

 

 

 

 

1.5 Scope of the Study 

 

 

The scope of this study consists of four parts, which are: 

 

Study the performance of ibuprofen delivery on mesoporous silica nanoparticles 

(MSN) 

 

1. The MSN was prepared as the standard material, using tetraethyl orthosilicate 

(TEOS) as the silica source, ethylene glycol as the co-solvent, ammonium 

hydroxide as the catalyst and the temperature of reaction was kept at 80°C.  

Adsorption of ibuprofen was carried out under room temperature, while the 

release process was conducted in the simulated body fluid (SBF) at 37°C. The 

SBF is a suitable medium for this study as it resembles the environment in the 

human body. 
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2. Study the effect of 3-aminopropyltriethoxysilane modified MSN on the 

performance of ibuprofen delivery. 

 

3-aminopropyltriethoxysilane was introduced onto MSN surface by co-

condensation and post-synthesis method. Adsorption of ibuprofen was carried 

out under room temperature, while the release process was conducted in the SBF 

at 37°C. 

 

3. Study the effect of Al metal modified MSN on the performance of ibuprofen 

delivery. 

1%, 5% and 10% of Al metal was loaded onto the MSN. Adsorption of 

ibuprofen was carried out under room temperature, while the release process was 

conducted in the SBF at 37°C. 

 

4. Study the effect of microwave-synthesized MSN on the performance of 

ibuprofen delivery. 

MSN was synthesized by using microwave power of 100W, 300W and 450W. 

Adsorption of ibuprofen was carried out under room temperature, while the 

release process was conducted in the SBF at 37°C. 

 

 

 

 

1.6 Significant of the Study 

 

 

This research was conducted to synthesize and modify the MSN. The 

physicochemical characterization with relation to the adsorption and release of 

ibuprofen was also studied.  The keystone in the development of MSN in drug 

delivery systems along this study is the alteration of surface through organic 

compound and inorganic compound, as well as different approach to the synthesis 

method, because this process provides numerous possibilities of enhancements to the 

MSN properties to control drug adsorption and release. 
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1.7 Research Flow-Chart 

 

 

The research flow-chart is summarized in Figure 1.1. The MSN is synthesized 

by hydrothermal method, and then modified by APTES and Al. Different approach of 

synthesis method, which is microwave, is also conducted. All synthesized MSN is 

then subjected to characterization, and tested for ibuprofen adsorption and release. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Research flow chart. 
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1.8 Thesis outline 

 

 

This thesis was divided into five chapters. Chapter 1 described the general 

introduction of the study, problem statement and hypothesis, research objectives, 

scope and significant of research. This chapter brief describes the demand of the 

research for synthesis of mesoporous silica materials for the application towards drug 

delivery system. The general introduction is about the importance of MSN 

modification, as it offers room for improvement and enhancement of the adsorption 

and release of drugs. The conventional preparation methods of catalyst were also 

emphasized and the potential of microwave as a different synthesis medium was also 

highlighted.  Problem statement of the current research was addressed to provide 

clear objectives of the present study and the scope of study covers the research work 

that will be conducted to meet these objectives. 

 

 

Chapter 2 covers the background of drug delivery, the utilization of 

nanomaterials, and modification which had been explored previously in drug 

delivery application. Chapter 3 describes the particulars of the materials and 

chemical reagents used in the present work, the procedure for catalyst preparation 

and modification along with all the characterization studies. The next part presents 

the adsorption and release of ibuprofen study. 

 

 

In Chapter 4, results and discussion was divided by characterization study 

and drug delivery performance of MSN, MSN modified by 3-

aminopropyltriethoxysilane, MSN modified by Al metals, and MSN synthesized by 

microwave. All results and proposed mechanism were presented and discussed 

comprehensively. Finally, Chapter 5 covered the conclusions about the study. The 

recommendations for future studies were also given in this chapter. 
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