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ABSTRACT 

 

 

 

 

The research described in this thesis is an attempt to synthesize floating 

catalyst to be used in phase-boundary catalysis for liquid-gas reaction. It is also an 

attempt to determine the effective location of catalytic active sites in phase-boundary 

catalyst for immiscible liquid-liquid reaction. Phase-boundary catalysis (PBC) is a 

heterogeneous catalytic reaction in which the catalyst particles are located at the 

interphase of either immiscible liquid-liquid or liquid-gas phases. In this research, 

gold/polystyrene-coated hollow titania was successfully synthesized. The synthesis 

steps involved hydrothermal synthesis of carbon sphere from sucrose as the template, 

coating of the carbon sphere with titania, removal of the carbon sphere to produce 

hollow titania, followed by coating of polystyrene on the surface of hollow titania 

and the attachment of gold nanoparticles. The results showed that the size of the 

carbon spheres increased when the concentration of the sucrose increased. The 

hollow titania obtained by carbon sphere template was found to have smaller 

diameter than its template and was in the anatase phase. Polystyrene was coated on 

hollow titania by in-situ polymerization of styrene with aqueous H2O2, while gold 

was deposited by sputtering deposition technique on the surface of polystyrene-

coated hollow titania. It has been demonstrated that gold/polystyrene-coated hollow 

titania can float on water due to its low density and it is a potential catalyst for 

liquid–gas boundary catalysis in the oxidation of benzyl alcohol by using molecular 

oxygen. In this study, some aspects in the determination of the effective location of 

active sites of PBC in immiscible liquid-liquid system were also studied using NaY, 

HZSM-5 and TS-1 zeolites as the catalysts in the oxidation of 1-octene and 

hydroxylation of cyclohexene using aqueous H2O2. Based on experimental results, it 

is concluded that the effective location of active sites is located on the external 

surface of zeolites.  
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ABSTRAK 

 

 

 

 

Penyelidikan yang dinyatakan di dalam tesis ini adalah suatu percubaan untuk 

mensintesis mangkin terapung untuk digunakan dalam pemangkinan sempadan fasa 

tindak balas cecair-gas. Penyelidikan ini juga adalah suatu percubaan untuk 

menentukan lokasi tapak aktif mangkin yang efektif dalam mangkin sempadan fasa 

bagi tindak balas cecair-cecair yang tak larut campur. Pemangkinan sempadan fasa 

(PBC) merupakan satu tindak balas pemangkinan heterogen yang mana zarah 

mangkin terletak di antara fasa cecair-cecair yang tak larut campur atau fasa cecair-

gas. Dalam kajian ini, titania berongga bersalut emas/polistirena telah berjaya 

disintesis. Langkah-langkah sintesis melibatkan sintesis hidroterma sfera karbon 

daripada sukrosa sebagai templat, penyalutan sfera karbon dengan titania, 

penyingkiran sfera karbon untuk menghasilkan titania berongga, diikuti dengan 

penyalutan permukaan titania berongga dengan polistirena dan pengendapan zarah 

nano emas. Hasil kajian menunjukkan bahawa saiz sfera karbon meningkat apabila 

kepekatan sukrosa meningkat. Titania berongga yang diperolehi melalui templat 

sfera karbon didapati mempunyai diameter yang lebih kecil daripada templatnya dan 

wujud dalam fasa anatas. Titania berongga kemudian disaluti dengan polistirena 

melalui pempolimeran in-situ stirena dengan H2O2 akueus. Manakala, emas 

diendapkan di permukaan titania berongga bersalut polistirena melalui teknik 

pengendapan percikan. Didapati bahawa titania berongga bersalut emas/polistirena 

boleh terapung di atas air kerana ketumpatannya yang rendah dan ia merupakan 

mangkin yang berpotensi bagi pemangkinan sempadan cecair-gas dalam 

pengoksidaan benzil alkohol dengan menggunakan molekul oksigen. Dalam kajian 

ini, beberapa aspek dalam penentuan lokasi tapak aktif mangkin yang efektif di 

dalam sistem cecair-cecair yang tak larut campur juga telah dikaji menggunakan 

zeolit NaY, HZSM-5 dan TS-1 dalam pengoksidaan 1-oktena dan penghidroksilan 

sikloheksena menggunakan H2O2 akueus. Berdasarkan keputusan eksperimen, 

kesimpulan yang boleh dibuat adalah lokasi tapak aktif yang efektif terletak di 

permukaan luar zeolit. 
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CHAPTER 1 

 

 

 

 

GENERAL INTRODUCTION 

  

 

 

 

1.1 Background of the Research 

 

 

For faster economic growth, a huge amount of energy is needed for different 

purposes in industrial facilities worldwide. Energy is a vital factor to allow 

competitiveness and employment. It has been reported that the consumption of 

energy worldwide in the industrial sectors, including energy from chemicals by 

major energy-intensive industry, was statistically 29 % in 2006 [1]. Since the global 

population and energy needs are increasing yearly, it is necessary to establish an 

economical way for chemical processes. 

 

 

Recently, a novel concept of phase-boundary catalysis (PBC) was proposed 

in order to utilize the immiscible liquid-liquid reaction system with solid catalysts 

[2]. Without stirring and heating, the amphiphilic zeolite particle was demonstrated 

to have excellent catalytic properties in the epoxidation reaction with the catalyst 

located between aqueous and organic phases. The location of the active sites at the 

phase boundary (Figure 1.1) makes stirring no longer required because in PBC, mass 

transfer is not the rate determining step. However, in conventional catalytic reaction, 

mixing is an essential prerequisite to ensure the occurrence of mass transfer between 

the phases of organic substrate and aqueous oxidant. There are seven steps involved 

in conventional catalytic system (Figure 1.1), which are: step 1 is the transfer of 

aqueous phase to the external surface of the solid catalyst. Step 2 is the transfer of 



2 

aqueous phase to the inside of the pore volume of the solid catalyst followed by step 

3 which is the transfer of the substrate from the organic phase to the interphase.  
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Figure 1.1: Schematic diagrams of catalytic action between the conventional and 

phase-boundary catalytic systems [3]. 

 

 

The next step is the transfer of the substrate from the interphase to the aqueous phase 

and step 5 is the mixing and diffusion of the substrate in the aqueous phase. Step 6 is 



3 

the transfer of the substrate from the aqueous phase to the external surface of the 

solid catalyst and step 7 is the transfer of the substrate to the inside of the pores of 

the solid catalyst. The last step is the catalytic reaction of adsorption, chemical 

reaction and desorption. 

 

 

Liquid-liquid PBC are well-established and has been successfully tested in 

several reactions [2, 4-8]. However, the location of the effective active site remains 

unidentified. The purpose of this research is to identify the effective location of 

active site in liquid-liquid PBC by using several types of model catalysts, in which 

the location of the active sites is located at the internal and external, internal or 

external surface of zeolite. In order to prove the effect of mass transfer of substrates 

to the active sites, reaction of 1-octene with gradual addition of aqueous H2O2 was 

carried out.  

 

 

Besides the determination of the effective location of active site in phase-

boundary catalyst, the research was extended to a liquid-gas catalytic system. From 

an industrial point of view, continuous processes which are carried out in gas phase 

are preferred. In large production, they offer advantages to the field of economy 

process, plant security, process control and heat recovery [9]. For reactions in gas 

and liquid phases, such as hydroprocessing operations and oxidation of organic 

substances in liquid phase [10-13], the mass transfer is brought into contact to carry 

out chemical reactions [14]. Gas and liquid phases have various mixing patterns, 

such as plug flow, well-stirred and plug-flowed with axial dispersion. These mixing 

patterns have been considered as the conventional way to carry out chemical 

reactions. The conventional system for liquid-gas reaction uses stirring to increase 

the solubility of gas in the liquid phase. In the conventional system, the process is 

generally executed under stirred condition in a batch reservoir reactor. Consequently, 

the catalysts must be in the form of delicate powder to ensure easy dispersion in the 

substrate medium [15]. 

 

 

The fast-growing insight into the functional materials has led researches to be 

more focused on the synthesis of materials with specific properties. The preparation 

of hollow materials with low density is one of the targets of many researchers [16-



4 

18]. For photocatalysis application, floatable low density materials, such as 

polystyrene [19], vermiculite [20] and polypropylene [21],
 
have been used as catalyst 

support for titania. Besides that, it has been reported that hollow titania can also float 

on water [17]. This is because the tight aggregation of titania particles give buoyancy 

by preventing water from penetrating into the titania network.  

 

 

In this thesis, a ball-like microparticle material of gold/polystyrene-coated 

hollow titania (gold/PS-HT) has been synthesized for catalytic reaction in liquid-gas 

PBC system. The gold/PS-HT, which floats on water, is able to carry out the reaction 

without stirring and heating. The precursors used to prepare gold/PS-HT were 

sucrose, titanium(IV) isopropoxide (TIP) and styrene. In order to synthesize a low 

density polystyrene-coated hollow titania (PS-HT), a relatively big space inside the 

hollow structure is required. Carbon microsphere was preferred as the template 

because its size can be easily tuned. Larger size of template will decrease the density 

of the hollow material, hence allowing its floatability in water. Figure 1.2 shows the 

schematic diagram of the structure of the floating catalyst, which consists of a void in 

its structure. It is expected that the density of gold/PS-HT is lower than the density of 

organic solution. Void in the catalyst will result in the floatability of the catalyst on 

the surface of liquid, thus allowing the reaction between gas and liquid substrates to 

take place without stirring. This concept can potentially save a lot of energy since 

stirring is not required. 

 

 
  

Catalyst 
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Polystyrene 

Hollow 

titania 

Liquid 

phase 

Gas phase 

 

Figure 1.2: Schematic diagram of phase-boundary catalyst for liquid-gas system. 
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In this research, gold was used as the catalytic active site. Gold catalysts have 

been found to be active in the oxidation of benzyl alcohol in water at ambient 

temperature and pressure [22]. Gold supported PS-HT can be easily prepared by 

sputter deposition techniques. Previous study on the interaction between the active 

sites and the support is not only dependent on the nature of the system, but also on 

the preparation method [23]. This fact has a significant effect in the resulting metal 

dispersion on the catalysts. 

 

 

Heterogeneous catalysts have been widely investigated and employed since 

they are easily recovered and regenerated compared to homogeneous catalysts [4, 

24]. Supported catalysts are of particular interest since it enables better dispersion 

and stabilization of small metal particles [15]. This is due to its ability to provide 

greater access to the catalytic active sites than its bulky form. Recovery, refining and 

recycling of precious metal catalysts make supported catalysts important in the 

economic sense [15]. The technology is also ecologically-safe since it does not 

produce large amounts of solid waste that needs to be disposed off in land fills.  

 

 

 

 

1.2 Statement of the Problems 

 

 

In this study, there are two main problems to be addressed. First, the location 

of effective catalytic active sites in phase-boundary catalyst in liquid-liquid system 

and second, developing a new catalyst for liquid-gas PBC system. Figure 1.3 shows 

the research strategy in the development of liquid-liquid and liquid-gas PBC.  

 

 

In liquid-liquid system, the strategy is to synthesize amphiphilic structured 

catalyst, where the hydrophobic part interacts with the organic phase (substrate) and 

the hydrophilic part interacts with the aqueous phase (oxidant). The catalyst is made 

by NaY zeolite impregnated with titania (TiO2) as the active site and modified with 

alkylsilyl group to make half of its structure hydrophobic. It was demonstrated that 

the amphiphilic catalyst has been successfully synthesized and work efficiently in 

PBC system for oxidation and hydration reactions [4, 6]. However, basic fact on the 
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location of the effective active sites remains unclear. The active sites may be 

attached to the external surface of the catalyst or in their pores, which needs to be 

clarified in the present work. 

 

 

PHASE-BOUNDARY CATALYSIS (PBC) 

 

 previous researches                                  current research 
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Figure 1.3: Research strategy in the development of liquid-liquid and liquid-gas 

phase-boundary catalysts. 
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It is of interest to extend the concept of PBC to liquid-gas system by using 

floating catalyst. Four consecutive steps are involved in developing a floating 

catalyst; (1) preparation of CS template hydrothermally by using sucrose as the 

precursor, (2) synthesis of HT by using sol-gel method and the removal of the carbon 

template by calcination, (3) polystyrene coating of HT particles and (4) gold 

sputtering of PS-HT. So far, most CSs were synthesized with various carbon 

precursors, such as polystyrene [25], corn starch [26], acetylene [27], glucose and 

furfuryl alcohol [28]. Sucrose is an important carbon source that is available at a low 

cost. It can easily react with other materials due to its high amount of free hydroxyl 

group. Besides that, the excess sucrose after reaction can be effortlessly removed due 

to its good solubility in water, and the byproducts are environmentally benign [23]. 

Many studies have been done by controlling the duration, temperature and 

concentration of the precursor in order to control the size of the carbon [23, 26, 29, 

30]. There are limited researches regarding the effect of surfactant toward the size of 

the carbon particles. Therefore, deeper understanding of the mechanism of sucrose 

transformation to CSs with various particles size needs to be investigated. The 

physicochemical properties of the CSs should also be analyzed.  

 

 

Syntheses of HT by the one-pot approach such as Layer-by-Layer technique, 

Kinkerdall effect and Ostwald ripening were proven to be successful [31, 32]. 

However, drawbacks such as lack of control over the size and shape, poorly 

understood mechanisms and the difficulties in developing a general strategy for the 

synthesis substantially limits their application [33]. Templating method is 

reproducible and facile to fabricate the hollow structure. It also easily adjusts the 

hollow sphere’s diameter and the shell thickness. It is interesting to explore energy-

saving and cost-effective routes to fabricate HT. The effects of size and wall 

thickness of HT also need to be studied. 

 

 

Among the preliminary test, gold (Au) on carbon showed it to be a good 

alternative with respect to the classical system. It has been found that monometallic 

catalysts can operate several times without deactivation and very selective when 

polyhydroxylated molecule was used as the substrate [34]. It is very facile to anchor 

the gold active site on the support by sputter deposition technique. However, the 
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effects on the catalytic activity need to be confirmed. The effects of the amount of 

gold used also need to be thoroughly investigated. 

 

 

The synthesis of high catalytic active gold/PS-HT materials in liquid-gas 

system remains a challenge. To the best of our knowledge, this is the first example of 

phase-boundary catalyst in liquid-gas system. This research is important in 

contributing to the understanding of floating gold/PS-HT catalysts in liquid-gas 

reaction. It is necessary to fabricate polystyrene-coated hollow titania with low 

density for floatation to increase the selectivity and catalytic activity for the active 

site. 

 

 

Effective location of active sites of the catalyst in liquid-liquid PBC system 

 

Materials Research question 

Zeolite Catalysts 

 

 Where is the location of the 

effective active site in 

liquid-liquid phase 

boundary catalyst? 

   
Figure 1.4: Schematic representation of the research question and statement of the 

problem for liquid-liquid PBC system. 

 

 

Figures 1.4 and 1.5 show the schematic representation of the research 

questions for liquid-liquid and liquid-gas phase boundary catalysis, respectively. 
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Design and catalytic activity of floating catalyst in liquid-gas PBC system 

 

Materials Research questions 

Carbon spheres 

(CS) 
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sphere? 
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physicochemical properties 
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Figure 1.5: Schematic representation of the research question and statement of the 

problem for liquid-gas PBC system. 

 

 

 

 

1.3 Objectives of the Research 

 

 

The objectives of the research are: 

 To determine the location of the effective active sites in liquid-liquid PBC 

system. 

 To synthesize and characterize CS, HT and gold/PS-HT. 

 To investigate the physicochemical properties of CSs, HT and gold/PS-HT. 

 To investigate the catalytic properties of the gold/PS-HT in the oxidation of 

benzyl alcohol with molecular oxygen. 
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1.4 Scope of the Research 

 

 

The focus of this research is to determine the effective location of active sites 

of Ti-NaY in liquid-liquid PBC. In order to prove the effective locations of active 

sites in PBC, several catalyst models were used i.e. active site located at external and 

internal, internal or external of zeolite catalysts. 

 

 

This research was further expanded to study the liquid-gas PBC system. 

Three types of materials that were synthesized were carbon sphere (CS), hollow 

titania (HT) and gold/polystyrene-coated hollow titania (gold/PS-HT). In this study, 

the size of the CSs was controlled by varying the concentration of sucrose with or 

without addition of surfactant (TMAC or HTAB) using hydrothermal method. HT 

spheres were obtained by sol-gel process using different sizes of CSs as the template. 

The reason is to ascertain the effect on wall thickness, hollow sphere’s size, 

crystalline phase and crystallite size of titania. Since HT cannot float in water, an 

alternative way is to coat it using polystyrene. The gold was deposited on the PS-HT 

by sputter deposition to obtain gold/PS-HT. The gold loading was controlled by 

regulating the time taken for gold to be sputtered on the sample. 

 

 

 The gold/PS-HT catalyst was applied for the oxidation of benzyl alcohol in 

liquid-gas PBC system under static and stirring condition. Comparison of dispersion 

between the catalyst and other materials were conducted in water. Contact angle test 

was also conducted to prove that the floatability is caused by low density instead of 

hydrophobicity. 

 

 

 

 

1.5 Significance of the Study 

 

 

The results from this study would provide important information for the 

effective location of the active sites in phase-boundary catalyst in immiscible liquid-

liquid system. Besides that, this research provides a new perspective in the use of 
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floating catalyst in heterogeneous liquid-gas boundary system. It also gives a new 

approach to control the size of CS, HT and gold/PS-HT. In this study, a new 

technique to coat polystyrene layer on the surface of HT microsphere has been 

demonstrated. Gold/PS-HT, with better control of interior spaces and exhibited 

floating ability, showed good catalytic activity in liquid-gas reaction without stirring. 

Since the process can be carried out without stirring, this system has the potential to 

be used in the industrial sector. 

 

 

Figure 1.6 shows the schematic illustration of the strategy used in the 

synthesis of floating gold/PS-HT. The value of the materials was increased from CS 

to the final product as the starting material to synthesize CS is cheap. This is an 

effective route as each material has its own superiority. 
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Figure 1.6: Schematic illustration of the added value of CS, HT and floating 

gold/PS-HT synthesized from sucrose as the precursor. 
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