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ABSTRACT 

 

 

 

Over the years, the importance of solvent separation emerges to minimize the 

energy consumption and provide better solvent recovery. The limitation of current 

technologies has called for new solvents recovery using membrane technology. 

Hence, the primary focus of this study was to prepare and evaluate the performance 

of polyphenylsulfone (PPSU) nanofiltration (NF) membranes for organic solvents 

separation. In the first phase, PPSU membranes with different polymer 

concentrations in the range of 17 to 25 wt% were fabricated. The experimental 

results showed that the polymer concentration has great impact not only on the 

membrane morphology but also its separation characteristics. The obtained results 

revealed that the PPSU membrane made of 17 wt% polymer concentration (PPSU 

17) was the best performing membrane (molecular weight cut off (MWCO) 612 

g/mol) due to its promising methanol flux (16.8 L/m
2
.h) coupled with good rejection 

of dye (Methyl Blue dye: 92%) at 6 bar. Further investigation using different 

solvents such as ethanol and isopropanol showed that apart from viscosity, molecular 

weight and molecular size of the solvent, the affinity between the solvent and the 

membrane plays a significant role in affecting the transport rate of the solvent 

through the membrane. In the second phase, PPSU 17 was used to investigate the 

influence of membrane pretreatment conditions on the membrane properties and 

performance. It was found that the membrane performance was negatively affected 

with longer immersion period in methanol solution (14 days) prior to separation 

experiment, attributed to the rearrangement of the polymer chain which result in 

membrane swelling and/or change of membrane surface hydrophilicity. In the third 

phase, the performance of PPSU 17 membrane was further enhanced by 

incorporating the membrane with copper-1,3,5-benzenetricarboxylate (Cu-BTC) 

particles at different loadings (0.5 to 3 wt%). The results indicated that when 0.8 

wt% Cu-BTC was incorporated into PPSU membrane (designated as PPSU/0.8Cu-

BTC), the methanol flux increased by 43% while membrane MWCO decreased by 

18% in comparison with the neat PPSU membrane, when both were tested using 10 

ppm of methanol-dyes solution at 6 bar. The improvement in membrane flux and dye 

rejection could be attributed to the good dispersion of the Cu-BTC particles in the 

membrane matrix coupled with their improved interfacial contact with the 

membrane. In addition, the incorporation of Cu-BTC showed a great improvement in 

terms of resistance to compaction, indicating the importance of Cu-BTC in 

increasing membrane rigidity and strength. 
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ABSTRAK 

 

 

 

Selama bertahun-tahun, pemisahan pelarut muncul untuk mengurangkan 

penggunaan tenaga dan menyediakan perolehan pelarut yang lebih baik. Batasan 

teknologi semasa bagi perolehan pelarut memerlukan penggunaan teknologi 

membran. Oleh sebab itu, fokus utama kajian ini adalah untuk menyediakan dan 

menilai prestasi membran turasan-nano (NF) polifenilsulfona (PPSU) untuk 

pemisahan pelarut organik. Pada fasa pertama kajian ini, membran PPSU dengan 

kepekatan polimer yang berbeza-beza dalam julat antara 17 hingga 25% berat telah 

dihasilkan. Hasil kajian mendapati bahawa kepekatan polimer mempunyai kesan 

yang besar terhadap bukan sahaja morfologi membran tetapi juga sifat 

pemisahannya. Keputusan yang diperolehi mendedahkan bahawa membran PPSU 

dengan kepekatan polimer sebanyak 17% berat (PPSU 17) merupakan membran 

berprestasi paling baik (potongan berat molekul (MWCO) 612 g/mol) kerana kadar 

fluks metanol yang memberangsangkan (16.8 L/m
2
.h) serta penolakan pewarna yang 

baik (Pewarna Metil Biru: 92%) pada tekanan 6 bar. Kajian selanjutnya 

menggunakan pelarut yang berbeza-beza seperti etanol dan isopropanol telah 

menunjukkan bahawa selain dari kelikatan, berat molekul dan saiz molekul pelarut, 

tarikan antara pelarut dan membran juga berperanan penting dalam mempengaruhi 

kadar pengangkutan pelarut melalui membran. Pada fasa kedua, PPSU 17 telah 

digunakan untuk mengkaji pengaruh keadaan prarawatan membran tehadap sifat-

sifat dan prestasi membran. Keputusan kajian mendapati bahawa prestasi membran 

terjejas dengan tempoh rendaman yang lama dalam larutan metanol (14 hari) 

sebelum proses pemisahan disebabkan oleh penyusunan semula rantai polimer yang 

mengakibatkan pembengkakan membran dan/atau perubahan kehidrofilikan 

permukaan membran. Pada fasa ketiga, prestasi membran PPSU 17 seterusnya 

ditingkatkan dengan menggabungkan membran dengan partikel kuprum-1,3,5,-

benzenatrikarboksilat (Cu-BTC) dengan muatan yang berbeza-beza (0.5 hingga 3% 

berat). Keputusan kajian menunjukkan apabila 0.8% berat Cu-BTC digabungkan ke 

dalam membran PPSU (dilabelkan sebagai PPSU/0.8Cu-BTC), kadar fluks metanol 

meningkat sebanyak 43% manakala MWCO membran menurun sebanyak 18% 

berbanding dengan membran PPSU tanpa partikel Cu-BTC, apabila keduanya diuji 

menggunakan larutan 10 ppm metanol-pewarna pada 6 bar. Peningkatan kadar fluks 

dan penyingkiran pewarna adalah disebabkan oleh serakan yang baik partikel Cu-

BTC dalam matrik membran ditambah pula dengan persentuhan antara muka yang 

lebih baik dengan membran. Tambahan pula, penggabungan dengan Cu-BTC 

menunjukkan peningkatan dari segi ketahanan mampatan, disebabkan oleh 

kepentingan Cu-BTC dalam meningkatkan kekuatan dan ketegaran membran.  
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CHAPTER 1  
 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Membrane separation processes 

 

 

Separation processes are of the utmost importance in pharmaceutical 

industry, consuming 40 to 90% of both capital and operating cost (Buonomenna and 

Bae, 2014). In addition, most pharmaceutical syntheses are solvent-based processes 

and its final products require separation and purification from the solvents. Besides 

synthesis, the solvents are also used as a cleaning agent. The solvent-product 

separation and solvent recovery (from cleaning process) are normally carried out 

using distillation, evaporation and extraction. However, these separation techniques 

are energy intensive (Vandezande et al., 2008; Marchetti et al., 2014). Since 1960s, 

membrane separation processes have been gradually applied in the industry. They are 

feasible alternatives and could be integrated with conventional separation processes 

such as distillation, evaporation, adsorption, extraction, and chromatography. Such 

integrations are reported to improve the process in terms of economy, environment, 

and safety. Unfortunately, its implementation has been limited to aqueous 

applications (Baker, 2004; Hilal et al., 2004). 

 

 

The membrane is a semi-permeable and selective barrier. It selectively allows 

certain species to permeate through, whilst hinders the others making it possible to 

perform separation. A schematic representation of membrane separation is given in 

Figure 1.1. Transport through the membrane takes place because of differences in 

physical and/or chemical properties between the membrane and the permeating 

components. The driving force for the transport of species is provided by a pressure, 
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concentration, temperature and electrical potential difference between the feed and 

permeate at each side of the membrane. (Mulder, 1996). Other than the driving force, 

the membrane itself is the principle factor determining the selectivity and flux. In 

fact, the nature of the membrane, i.e. structure and material, determines the type of 

application, ranging from the separation of macroscopic particles to the separation of 

molecules of an identical size and shape (Baker, 2004). 

 

 

Several types of membrane separation processes have been developed for 

specific industrial applications such as reverse osmosis (RO), nanofiltration (NF), 

ultrafiltration (UF) and microfiltration (MF). As shown in Figure 2.1Figure 2.2, 

distinction between these processes is primarily made on the basis of (1) the pressure 

required for the separation; (2) the size of the rejected solute or, in turn the size of the 

pore; (3) the molecular weight cut off (MWCO); and (4) the transport mechanism 

governing the separation (Vandezande et al., 2008; Marchetti et al., 2014). Among 

various membrane processes, NF membranes have been proved useful in many 

application such water softening, removal of pesticide and micro-pollutants from 

ground water, treatment of textile wastewater, virus and bacteria removal, 

decontamination and recycling of industrial wastewater and removal of heavy metal 

ions from ground water (Zhang et al., 2006; Lau and Ismail, 2009; Lau et al., 2013; 

Miralles-Cuevas et al., 2014; Chen et al., 2015). The success of NF in aqueous 

systems has triggered expansion to organic solvent. In the late 1990s, a new spin-off 

of NF so called solvent resistant nanofiltration (SRNF) emerged.  

 

 

 
Figure 2.1 Schematic representation of filtration using membrane (Mulder, 

1996). 
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Figure 2.2 Classification of membrane processes according to operating pressure, 

retained solute/pore size (nm), MWCO (g/mol), transport mechanism, and examples 

of applications (Marchetti et al., 2014). 

 

 

 

 

1.2 Solvent resistant nanofiltration (SRNF) 

 

 

NF of non-aqueous system or SRNF is a relatively young membrane 

separation technology that holds enormous potential as it allows separation of small 

compounds with Mw ranging from 200 to 1400 g/mol from organic solvents. SRNF-

based technology has been proven to be significant in expanding the spectrum of 

membrane applications from aqueous systems primarily for water purification and 

other water-related treatments to filtration and concentration of organic solutions. In 

addition to solvent recovery in pharmaceutical industry, SRNF-based technologies 

can be applied for recovery of solvents from dewaxed lube oil filtrates, 

organometallic complexes recovery from various organic solvents, separation of 

phase transfer catalyst from toluene, deacidification of vegetable oils and 

concentration of pharmaceuticals (Raman et al., 1996; Subramanian et al., 1998; 

White and Nitsch, 2000; Luthra et al., 2002; Scarpello et al., 2002; Sheth et al., 
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2003; Geens et al., 2007; Tylkowski et al., 2011). The incentives to apply SRNF are 

numerous. Its lower energy consumption than the conventional techniques and ease 

of scaling-up and retrofitting make it particularly attractive for pharmaceutical 

process (Vandezande et al., 2008). The pharmaceutical process has low process 

temperature to prevent thermal degradation of sensitive substance, thus very suitable 

for SRNF. By having the SRNF, the solvent recovery process could offer significant 

benefits with regards to reduce purchase, storage and discharge costs.  However, 

most current NF membranes are designed specifically for aqueous which are 

completely unfit for organic solvents recovery. The typical NF would suffer from 

excessive swelling or even complete dissolution of the membrane material resulting 

loss of selectivity (Van der Bruggen et al., 2002b; Vanherck et al., 2008). Therefore, 

the development of advanced SRNF has been initiated. 

 

 

 

 

1.3 Problem statements 

 

 

Currently, majority of SRNF membranes are made of polymeric materials. 

Polymers provide wide choices, relatively easy processing and good reproducibility. 

It is also much easier to tailor polymeric membrane to the application as compared 

with ceramic membranes. However, literature reveals that polymeric membranes 

suffer from severe performance loss in organic solvents due to their chemical 

instability. Being exposed to organic solvents causes infinite flux due to membrane 

swelling or dissolution, zero flux due to membrane collapse, poor selectivity or 

rejection and membrane deterioration (Raman et al., 1996; Subramanian et al., 1998; 

Bridge et al., 2002). Besides, most studies on the SRNF membrane have been 

performed using commercially available membranes which are typically made for 

aqueous applications. Hence, in this research work, a new class of polysulfone (PSF) 

family─polyphenylsulfone (PPSU) was selected for SRNF study. PPSU is known to 

have superior properties compared to the more frequently used PSF and 

polyethersulfone (PES). It presents greater resistance to hydrolysis and plasticization. 

Its moderate thermal and mechanical stability, chemical resistance and ease of 

manufacturing make PPSU a suitable material as SRNF membranes (Scheirs, 2000; 

Darvishmanesh et al., 2011a). Therefore, there is a need to evaluate in detail the 
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PPSU properties and separation performance in solvent particularly methanol before 

it can be implemented at industrial scale. Methanol was selected as the solvent due to 

its extensive use in pharmaceutical syntheses. It has good solubility against many 

organic solutes at high concentrations. Four different types of dyes with molecular 

weight (Mw) in the range of 269 to 1470 g/mol were selected to represent of 

pharmaceutical products. 

 

 

Up to now, most of the SRNF research works have focused on (1) improving 

membrane stability in various types of solvent, (2) tailoring membrane pore 

size/MWCO and/or (3) unravelling solvent and solute transport mechanisms. Very 

little attention is paid to membrane pretreatment, although several researchers have 

reported that it could enhance or decrease the membrane flux due to the solvent-

membrane interactions (Jeżowska et al., 2006; Darvishmanesh et al., 2010a). The 

purpose of pretreating membrane with organic solvent is to stabilize the membrane 

prior to any experiment. It is because sudden exposure of membrane to solvent of 

filtration may result in inconsistent flux and sudden swell of membrane. For this 

reason, it is necessary to investigate the influence of pretreatment conditions since it 

would affect membrane properties as well as performance.  

  

 

Recently, it is reported that low membrane flux and poor solute rejection has 

become a major obstacle in polymeric membrane separation process. As reported by 

Gibbins et al. (2002) and Siddique et al. (2014b), the polymeric membranes often 

suffer from flux decline over time, caused by pressure induced compaction which 

leads to rearrangement of the polymer chains in solvent and/or fouling problem. One 

approach to reduce this problem is by producing hybrid organic/inorganic 

membranes known as mixed matrix membrane (MMM). Previous research works 

have shown that the introduction of inorganic fillers into membrane matrix could 

improve solvent flux and/or enhance mechanical stability, but poor adhesion between 

polymer and inorganic filler is likely to occur, leading to interface void formation. 

These voids, that are much larger than solute size, may negatively affect membrane 

rejection rate. Therefore, metal organic framework (MOF) has been proposed in this 

work for MMMs fabrication with the aim of minimizing formation of void, reducing 

flux decline due to compaction, and increasing chemical and mechanical strength of 
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membranes. Of the various MOFs available, copper-1,3,5-benzenetricarboxylate 

(herein referred to as Cu-BTC) was selected as it has highly affinity to organic 

linkers of MOFs and polymer chains. This would minimize the formation of voids. 

Furthermore, Cu-BTC contains nanoscale pore size of around 0.9 nm in diameter, 

making it suitable to transport most solvents used in SRNF whilst capable of 

rejecting solute of bigger size (Küsgens et al., 2009; Li et al., 2009). Hence, it is 

expected that the addition of Cu-BTC into the PPSU membrane matrix could 

enhance solvent permeability and solute rejection as well as chemical and 

mechanical stability. 

 

 

 

 

1.4 Objectives of the study 

 

 

The main focus of this study is to develop SRNF membrane with the 

sufficient chemical and mechanical stability for solvent separation. The main 

concerns in the fabrication of the membranes and their properties are the influence of 

several important parameters, i.e. polymer concentration, inorganic filler loading and 

operating condition. Hence, the main objectives of the study are:  

 

 

(i) To study the influence of polymer concentration and solvent properties on 

the performance of PPSU membranes. 

 

(ii) To investigate the effect of membrane pretreatment conditions on the 

PPSU membrane properties and separation performance. 

 

(iii) To investigate the influence of Cu-BTC loading on the PPSU-based 

membrane properties and separation performance. 

 

(iv) To investigate the influence of solvents exposure and operating conditions 

on the performance of PPSU and PPSU/Cu-BTC membrane. 
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1.5 Scopes of the study 

 

 

In order to meet the objectives of this study, following scopes of work have 

been performed: 

 

 

(i) Preparing the PPSU membrane solution at three different polymer 

concentrations ranging from 17 to 25 wt% via phase inversion method. 

 

(ii) Investigating the effect of solvent properties using methanol, ethanol and 

isopropanol on the separation performance of selected PPSU membrane. 

 

(iii) Identifying the ideal polymer concentration for membrane pretreatment 

process and preparation of MMM for methanol filtration. 

 

(iv) Investigating the effect of membrane pretreatment conditions on the 

membrane properties and separation performance with respect to pure 

methanol flux and dye rejection using selected PPSU membrane. 

 

(v) Synthesizing Cu-BTC powder via precipitation method using copper 

nitrate and 1,3,5-benzenetricarboxylate acid. 

 

(vi) Characterizing the Cu-BTC using X-ray diffraction (XRD) analysis, 

transmission electron microscopy (TEM), N2 adsorption/desorption 

analysis, thermogravimetric analysis (TGA) and Fourier transform 

infrared (FTIR) spectroscope in order to confirm the formation of Cu-

BTC. 

 

(vii) Preparing the PPSU/Cu-BTC membranes by varying the Cu-BTC 

concentration (0.5, 0.8, 1 and 3 wt%) in the dope containing 17 wt% 

PPSU. 

 

(viii) Characterizing membrane morphology structure and Cu-BTC dispersion 

in the PPSU membrane using scanning electron microscope (SEM), 

energy dispersive X-ray (EDX) spectroscope, atomic force microscope 

(AFM) and Fourier transform infrared (FTIR) spectroscope. 
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(ix) Determining physicochemical properties of the PPSU/Cu-BTC 

membranes in terms of contact angle, tensile strength, elongation at break 

and thermal decomposition behaviours. 

 

(x) Identifying the optimum Cu-BTC loadings for the PPSU/Cu-BTC 

membrane based on separation performance using methanol and 

dye/methanol solutions. 

 

(xi) Investigating the effect of solvent (methanol, ethanol, isopropanol, 

acetonitrile, ethyl acetate, n-hexane and n-heptane) exposures, various 

operating conditions, such as dye concentrations and operating pressures 

on the performance of selected PPSU/Cu-BTC and PPSU membranes. 

 

(xii) Investigating the potential of the PPSU/Cu-BTC membrane for 

pharmaceutical application by separating erythromycin from methanol 

solution. 

 

 

 

 

1.6 Rational and significance of the study 

 

 

The lack of SRNF membranes with high performance, chemical and 

mechanical stability has been the major problem for SRNF development. Currently, 

the membrane materials used for commercial SRNF are primarily cross-linked 

polyimides (PI) and polydimethylsiloxane (PDMS). The typically high price of PI 

and the serious swelling of PDMS have limited the practical applications of these 

membranes in non-aqueous medium. Therefore, in this study, the development of 

new types of MMMs which consist of PPSU and Cu-BTC particles has been 

explored. The impact of this study will be significant since the incorporation of Cu-

BTC in PPSU-based membrane could enhance the chemical and mechanical 

properties of PPSU membrane. Besides, the MMMs could provide high rejection of 

dyes and solvent flux. PPSU is a remarkable candidate for synthesis of SRNF 

membranes due to its high resistance to degradation, good chemical stability, lower 

cost than PI and ease of manufacturing (Darvishmanesh et al., 2011a; Díez-Pascual 

and Díez-Vicente, 2014). The addition of Cu-BTC as the inorganic filler has further 
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made this membrane mechanically stable owing to its good affinity with PPSU 

matrix. Besides, its high porosity could enhance the performance of PPSU membrane 

by allowing transport of most solvents whilst rejecting solute of a certain size. With a 

rapid synthesis at room temperature, nanoparticle Cu-BTC can be easily obtained 

instead of conventional methods which require long reaction times with high 

temperature (Seo et al., 2009; Decoste et al., 2012). Therefore, combining both of 

PPSU and Cu-BTC advantages could offer opportunities to expand application area 

of MMMs, particularly in pharmaceutical industry.  

 

 

 

 

1.7 Organization of the thesis 

 

 

The thesis consists of 8 chapters. Chapter 1 outlines brief information on 

membrane separation processes and the introduction of SRNF. Then, the details of 

the problem statements, objectives and scopes of this study have also been stated in 

detail. Chapter 2 provides the background information of SRNF development and a 

brief review regarding SRNF polymeric membranes. The limitation of polymeric 

membranes in SRNF applications and strategies to overcome the limitation using 

MMM is also described in detail. Additionally, the interaction between solvent-

solute-membrane during membrane performance is also discussed.  Chapter 3 covers 

the experimental part of the research whereby the membrane synthesis, 

characterization and performance were discussed. 

 

 

Chapter 4 describes in detail the preparation of PPSU membrane made of 

different polymer weight concentration (17, 21 and 25 wt%) via phase inversion 

method. The chapter highlights the influence of polymer concentration on membrane 

formation, properties and performance. The effect of solvent properties on membrane 

performance was further investigated using selected PPSU membrane. Chapter 5 

focuses on the influence of membrane pretreatment period on membrane properties 

and performance. This study was carried out using 17 wt% PPSU with good balance 

of flux and selectivity. Chapter 6 presents the development of PPSU/Cu-BTC 

membranes made of Cu-BTC loadings and their separation performance in methanol-

dye solutions. This chapter also describes in detail the properties of synthesized Cu-
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BTC. The best performing PPSU/Cu-BTC membrane was then tested under various 

operating condition and the results were compared with control PPSU membrane 

(Chapter 7). The effect of solvent exposures, dye concentration in feed solution and 

operating pressure thoroughly investigated in this chapter. The operational stability 

test and its industrial potential are also studied using the best performing PPSU/Cu-

BTC membrane. General conclusion of this research is drawn in Chapter 8. Some 

recommendations for future research are also included in the chapter. 
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