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ABSTRACT 

Software evolution is a process that is needed in order for software to remain 

useful.  Thus, software evolution should be properly planned and controlled to prevent 

its negative impact from affecting any organization.  Software adaptation concept is 

one of the promising ways to control software evolution.  In this approach, software is 

made adaptable to minimize the impact of change.  A lot of researches on software 

adaptation focus on adaptability of mobile based and network application due to its 

context sensitivity and quality-of-service requirements.  However, there is still lack of 

work in enterprise system domain with multiple delivery channels, which focus on 

adaptability of its context environment such as the changes introduced to its devices. 

Hence, the purpose of this research is to develop a middleware and policy-based, 

adaptation framework to manage negative effects of software evolution in an 

enterprise system.  The main research focus is on the changes introduced at the device 

layer.  The concept of policy is used to specify adaptations requirements.  This 

research provides a framework called Middleware and Policy-Based Framework to 

Manage Software Evolution (MiPAF), which can be used to develop adaptive 

software, allowing parameterized and compositional adaptation.  Furthermore, the 

framework can be used by client-server and web-based application.  A policy language 

called MiPAF Policy Language (MPL) is created to be used with the framework.  

MiPAF is formally specified using Z Notation and the policy language is described 

using pseudo code.  A tool is provided to assist developers in creating the policy.  For 

evaluation of the framework, a set of runtime components were developed and 

implemented for Unit Trust System (UTS) Front-end and web-based UTS, two 

industrial-based case studies.  The evaluation result shows that MiPAF excellently 

fulfil all the evaluation criteria described in this thesis. 
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ABSTRAK 

Evolusi perisian adalah satu proses yang perlu kerana perisian berevolusi untuk 

kekal berguna.  Proses ini perlu dirancang dan dikawal untuk mengelakkan kesan 

negatif kepada organisasi.  Salah satu cara bagi mengawal kesan negatif ini ialah 

melalui adaptasi perisian.   Kebanyakan kajian tentang adaptasi perisian tertumpu 

kepada bidang aplikasi mudah alih dan rangkaian kerana keperluan konteks kepekaan 

dan kualiti perkhidmatan.  Walau bagaimanapun, masih terdapat kekurangan kajian di 

dalam bidang sistem perusahaan yang mempunyai pelbagai saluran penyampaian dan 

memfokuskan tentang adaptasi bagi pertukaran yang berlaku pada peranti.  Tujuan 

tesis ini ialah membina satu rangka kerja adaptasi yang berteraskan konsep 

middleware dan polisi bagi mengawal kesan negatif evolusi perisian di dalam sistem 

perusahaan.  Fokus utama kajian ialah tentang pertukaran yang berlaku pada peranti 

yang diguna pakai oleh sistem perusahaan.  Konsep polisi digunakan untuk 

menyatakan keperluan adaptasi.  Kajian ini menyediakan satu rangka kerja yang 

dinamakan Middleware and Policy-Based Framework to Manage Software Evolution 

(MiPAF).  MiPAF membolehkan pembinaan perisian yang boleh diadaptasi, 

membenarkan adaptasi parameterized dan compositional.  Rangka kerja ini boleh 

dimanafaatkan oleh perisian yang berasaskan pelanggan-pelayan dan juga perisian 

yang berasaskan sesawang.  Bahasa khas untuk polisi yang dipanggil MiPAF Policy 

Language (MPL) dibina untuk diapplikasikan bersama dengan rangka kerja ini.  

MiPAF dispesifikasikan secara rasmi menggunakan Z Notation dan MPL diterangkan 

dengan menggunakan kod pseudo.  Satu alat telah disediakan untuk membantu 

pengguna membina polisi.  Untuk tujuan penilaian, komponen MiPAF telah dibina 

dan dilaksanakan untuk Unit Trust System (UTS) Front-end  dan UTS berasas web, 

dua kajian kes yang diguna pakai di dalam industri.  Keputusan penilaian MiPAF 

menunjukkan MiPAF telah memenuhi segala kriteria yang ditetapkan di dalam tesis 

ini dengan cemerlang. 
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CHAPTER 1 

INTRODUCTION 

This chapter consists of the introduction to this research.  A brief introduction 

on software evolution is presented.  Subsequently, background of the problem is 

described. Next, problem statements, objective; scope and significance of the research 

are discussed. 

1.1 Introduction 

The issue of software evolution has its root back in the 1970s based on the work 

done by Lehman and Belady [1].  In essence, software evolution refers to required 

changes in software due to changes in operating environment and/or user requirements.  

With the advancement of technology and dynamic business environment, changes 

mentioned above become more complex and difficult to manage.   

Software evolution phenomenon has the potential to present huge problems to 

software projects as it affects all phases of software process.  For long term survival, 

software evolution is inevitable [2].  Due to this, effective approach to software 

evolution has fired much interest in research community as organizations have a 

growing dependency on software [3].   

Ideally, software should be developed with a capability to adapt itself to the 

changing requirements and environment.  Software with this kind of capability is called 
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adaptive software.  Changes in user requirements, the need for faster delivery of 

software, addition of features or bugs removal, are some of the factors driving the 

needs for software adaptation [4]. These needs are further emphasized currently due to 

the heterogeneity and complexity of computing environment; such as pervasive 

environment, varieties in software delivery channels and different type of networks and 

operating platforms.   

Managing software evolution via software adaptation has been the subject of 

many researches such as in [4-9].  Software evolution and software adaptation are 

connected processes. Inter-connectedness between evolution management and 

adaptation management is described extensively in [10]. 

1.2 Background of the Problem 

The role of software in an enterprise system is very important in providing 

operational supports in day-to-day operations.  Enterprise system is referred to as 

intricate systems that communicate with and affect each other [11].  Example of 

enterprise systems are banking and financial system and postal system where various 

systems communicate with each other to deliver services to customers.  A high level 

view of typical enterprise system architecture is depicted by the following Figure 1.1. 
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Figure 1.2  High Level View of Enterprise System Architecture 

In a typical environment of an enterprise system, 3 main levels exist, Device 

layer, Delivery Channels layer, and Back-end Systems layer.  This architecture is 

observed to exist in large organizations in Malaysia such as financial institutions and 

public services.  The observation is backed-up by a guided interview conducted with IT 

personnel of specific organizations and IT personnel from System Integrator (SI) 

Company.  Please refer to Appendix A for the questionnaire used for the guided 

interview and analysis of the result.  The description of each layer is as follows:- 

 Device Layer 

Enterprise applications, especially counter-based systems use variety of devices 

such as printer, biometric reader, scanner and barcode reader.  These devices are 

logically group in Device Layer and are used by application systems at Delivery 

Channels. 

 Delivery Channels Layer 

The Delivery Channels level is where interaction with end users occurs.  In the 

above diagram, different types of delivery channels exist, namely desktop-based 
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applications that adopt client/server architecture, web-based application (thin 

client), mobile application and application deployed on kiosks. 

 Back-end Systems Layer 

The Back-end System level consists of various enterprise systems that need to 

interact with the delivery channels.  The systems may include core systems of 

the organization such as Banking System, Enterprise Resource Planning (ERP) 

system, and Customer Relationship Management (CRM) system. 

1.2.1 Issues related to software evolution 

Enterprise systems will evolve [12-14] due to changes in user requirements or 

operating environment.  Unplanned evolution of an enterprise system will incur high 

cost and risk [15].  In some organizations, the Delivery Channel Layer of an enterprise 

system evolves over time, but some of the devices evolve at a slower rate.  For 

instance, although the application system at the Delivery Channel Layer is changed, the 

related devices are not.  However, the new application system is expected to work with 

these legacy devices.  Problems arise when the new system fail to support legacy 

devices due to lack of supported interfaces provided by the Application Programming 

Interface (API) of the devices. 

Another possible problem that is foreseeable is when the Device Layer evolves.  

The evolution will happen when a new device is added to the Device Layer. Addition 

of a new device can happen in two scenarios.  The first scenario is the replacement of 

existing devices with new devices from different vendors.  Devices from different 

vendors come with different set of API.  Therefore, applications at the Delivery 

Channel layer must adapt accordingly in order to use the devices.   

The second scenario is the addition of new devices to support new user 

requirements.  As the variety of devices increase, the device interfaces and protocols 

grows. Thus, the task of integrating these devices into the enterprise system becomes 
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difficult and costly [16].  When any of these scenarios happen, application systems that 

use the device must adapt to this changes with minimal impact to its operation at lowest 

cost and minimum risk. 

Changes in user requirements such as the need to reduce cost by sharing 

devices, can also lead to system evolution [13].  Less problems will be faced if the 

device sharing is supported by the operating system.  However, for some proprietary 

devices, the sharing mechanism is not supported by the operating system.  Examples of 

such devices are IBM4722 and IBM9068 passbook printers.  Application systems that 

were designed to use device exclusively must be changed in order to adapt to this type 

of requirement.  The problem becomes more profound if the same device needs to be 

shared by different applications.  Worst, if the need to share the device only arises after 

these systems have been implemented.  Changes introduced to any system at a later 

lifecycle are costly [17].   

Application systems evolve due to technology advancement and changes in 

business requirements [12, 14].  As a result of the evolution, different type of client 

architecture existed such as thick-client, thin-client and smart-client.  These client 

architectures require different ways of device integration.  Problems will be further 

exacerbated when applications adopting different type of client-architecture need to 

share the same devices. 

As the ecosystem of an enterprise system evolves over the time, the back-end 

systems become heterogeneous in-terms of operating platforms.  These back-end 

systems may interact with other systems using different communication protocols such 

as SNA protocols, TCP/IP or SOAP.  However, the evolution problems at the back-end 

system level are not within the scope of this research. 

1.2.2 The needs for adaptive software 

From the background of the problem, it is shown that there is a need for 

software that is adaptive in an enterprise domain.  The adaptive software should 
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support both upward scalability and downward scalability.  This is due to different 

requirements of the application systems at delivery channels level.  

The adaptive software is required due to heterogeneity of devices used by 

enterprise systems.  The software need to adapt with the changes of devices, able to 

detect when a device fails and perform necessary reconfiguration.  Furthermore, the 

adaptability of software in enterprise system must not be restricted in terms of its client 

architecture.   

In an environment where the enterprise systems provide services to the public, 

performance of the system is critical. Device failure can affect performance of service 

delivery and in the end, may affect customer satisfaction.  The enterprise system should 

be able to detect failed devices and adapt necessarily such as enabling users to use 

other devices in the network without halting the operations. The adaptive enterprise 

system must have an acceptable performance, based on user requirement.  Apart from 

that, an adaptive enterprise system should not be too cumbersome to develop. 

1.2.3 Software Evolution and Software Maintenance 

The term software evolution and software maintenance are used 

interchangeably in a number of publications.   Both terms revolve around changes 

subjected to software.  However, according to Priyadarshiv and Kshivasagar [18], there 

are differences between software evolution and software maintenance.  They argued 

that software maintenance comprises bug fixing activities to rectify defects in order to 

ensure the software meet its development purpose.  The bug fixing activities happen 

after implementation phase and the functionalities of the software remain unchanged. 

Software evolution refers to continuous changes subjected to software, which 

resulted in changes of one software state to a more complex and better state.  Software 

evolution includes creation of new design which is originated from existing design, 

development of new functionalities or improvement of software performance. 
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In this research, we treat software maintenance as a subset of software 

evolution.   

1.3 Statement of the Problem 

The aim of this research is to provide an adaptation framework to manage 

software evolution based on compositional and parameterized adaptation approach in 

the domain of enterprise system.  The framework will increase the adaptability of an 

enterprise system in the changing operating environment and user requirements.  The 

problem statement brings about the main research problem that is:- 

“How to manage software evolution by creating an adaptation framework 

using appropriate technique in compositional and parameterized adaptation 

approach?” 

To answer the main research problem, a set of related questions must be 

addressed.  The questions are as follows:- 

1. What are compositional approach and parameterized approach and why 

these two approaches are selected? 

a. What are the state-of-the art for both approach? 

b. What are usage suitability of both approach – when, where to 

use? 

c. What are advantages and disadvantages of both approaches? 

2. What are the main adaptability criteria for the framework to ensure it is 

beneficial for enterprise environment? 
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a. What are the main problems need to be addressed in an 

enterprise systems related to changes in operating environment 

and user requirements? 

3. What are opportunities for improvement in both approaches that can be 

translated into the framework to manage software evolution? 

4. How to make the framework easy to be used by software developers?  

5. How to validate the framework to ensure its success in meeting the 

defined adaptability criteria? 

1.4 Objectives of the Study 

This research has the following objectives:- 

 To investigate major techniques with respect to adaptation approaches in 

order to manage software evolution 

 To develop a new adaptation framework in managing software evolution 

using compositional and parameterized adaptation approach. 

 To demonstrate the applicability of the proposed approach using an 

industrial-based case study and the development of its supported tool. 

1.5 Scope of the Study 

In order to produce a new approach in managing software evolution via 

adaptation approach, this research is focused on the following scope:- 
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 Software evolution 

The focus of this research is to manage software evolution.  The term 

evolution in software context refers to changes that happen to software 

during its lifetime [19]. This research will adopt the above definition of 

software evolution.  To prevent a system from becoming unreliable, 

software evolution must be managed in software development process 

[15].  More explanation on software evolution can be found in Section 

2.1. 

 Software adaptation 

Software adaptation is a popular research area of late.  There are many 

existing approaches to software adaptation.  Researchers are looking at 

software adaptation from many angles such as from software 

architecture point of view [20, 21], component-based software 

development [22] and agent-oriented software engineering [23, 24].   

 Two promising approaches to software adaptation are middleware and 

policy based approach.  Middleware is said to be an important building 

block that impede software development [25].  Adaptive middleware 

on-the-other hand, allows modification to application systems when 

there are changes in user or operating environment [26].  Middleware 

can be designed to allow for separation between adaptive behavior and 

non-adaptive behavior in an enterprise system.  This research has the 

interest to adopt middleware approach in developing the proposed 

framework.  Sub-section 2.5.4 present a discussion on the topic of 

middleware 

Policy based approach involved the use of policy to specify the 

adaptation logic.  Using this approach, a clear separation can be made 

between the business logic and adaptation specification.  This separation 
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is important since it promotes low coupling between the two, hence 

changes in can be implemented in a controlled manner. 

 Case Study 

Lehman in his work in Laws of Software Evolution coined the term E-

type software [27].  E-type software can be defined as software that 

addresses real world problem.  Therefore, the enterprise system 

described in the problem background is an instance of E-type software 

and thus, the system is subjected to software evolution. 

Based on the researcher experience in developing and integrating 

enterprise systems, the proposed approach will be demonstrated using 

an industrial-based, E-type, case studies that is a Unit Trust System that 

has been implemented throughout Malaysia.  The reason for selecting 

this system is that its Device Layer is always subjected to changes and 

there exist two type of front-end architecture or the system i.e. client-

server based and web based. 

1.6 Significance of the Study 

Software evolution is an important issue that needs to be addressed to ensure 

longer life-time of implemented software thus “avoiding an early death” [12].  There is 

no way to prevent change in software since it has to react to the changing environment 

to ensure the software meets its purpose.  Changes subjected to software during its 

post-deployment phase are not only costly but also risky.  Thus, managing software 

evolution is one of major aspects in software development process since huge amount 

of project cost and effort are consumed in maintenance of existing system instead of 

creating a brand new system.  One way to manage software evolution is via software 

adaptation approach.  
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There are other efforts towards software adaptation ranging from research 

specific for mobile devices [28, 29], multimedia systems [30], and network adaptability 

[29] to generic domain [31, 32].  However, there is lack of specific research that 

focuses on adaptability of an enterprise system.  As technology evolves, more delivery 

channels and more new devices are introduced in an enterprise system.  Enterprise 

systems must adapt to this changes to deliver required services.  As the enterprise 

grows, more systems are added to the whole ecosystem.  Existing application systems 

need to communicate with the new added systems at the lowest cost and lowest risk.   

This study will contribute in providing an adaptation framework to overcome 

the above challenges faced by enterprise systems by enabling the systems to be more 

adaptive to the changing environments.  The framework, Middleware and Policy-based 

Framework to Manage Software Evolution (MiPAF) is developed to enable software 

evolution to be planned and managed so that, the life of enterprise software can be 

increased and the maintenance cost can be reduced.  

1.7 Thesis Organization 

This thesis has the aim to develop an adaptation framework to manage software 

evolution. The chapters are organized as follows:- 

Chapter 1:  This chapter describes the background of the problem.  Issues 

related to software evolution and the needs for software adaptation are also discussed.  

Problem statement, objective of the study and significance of the study are described. 

Chapter 2:  This chapter provides literature review on software evolution and 

software adaptation.  It starts with the definition of software evolution and continues 

with discussion on existing approaches in minimizing the impact of software evolution 

where software adaptation is one of the approaches.  Next, justification on the selection 

of software adaptation is presented. Software adaptation is further described and 

adaptation management is also discussed.  Four software adaptation approaches are 

discussed in detail and criteria used to evaluate them are introduced. 
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Chapter 3:  This chapter further describes the evaluation criteria introduced in 

Chapter 2.  Comparative evaluation of the four approaches are presented based on the 

chosen criteria.  Critical discussion is included in this chapter in order to evaluate 

which approach is best suited to be used in the development of MiPAF.  Result of the 

evaluation is presented at the end of this chapter. 

Chapter 4:  This chapter describes research procedure, operational framework 

and instrumentation used to deliver the thesis objectives.  Research assumptions and 

limitations and methods for evaluation are also described.  This chapter also details up 

the case study to be used and approach for MiPAF evaluation using the said case study. 

Chapter 5:  This chapter starts with the rationale behind MiPAF and it 

proceeds with the overview of MiPAF.  Key approaches used in MiPAF development 

is described.  Next, MiPAF building block and collaration digram are discussed.  The 

chapter also describes MiPAF Policy Language. 

Chapter 6:  This chapter describes in detail about MiPAF.  Each component is 

presented formally using Z Notation.  Next, the sub-sections in this chapter describe 

processes used to govern the application of MiPAF in order to manage software 

evolution.   This chapter also includes description of MiPAF Policy Language (MPL) 

and ontology of MPL is also presented. 

Chapter 7:  This chapter discusses on the implementation of MiPAF using 

industrial-based case study.  It focuses on adaptation requirements of the case studies, 

the design of adaptation policy and implementation of MiPAF runtime in order to test 

the adaptation behaviour of the case study.  Towards the end of the chapter, case study 

result is analysed based on the evaluation criteria mentioned in Chapter 2. 

Chapter 8:  This chapter concludes the research.  It provides research summary 

and contribution of the research.  This chapter ends with suggestion for future works.  
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