

MANAGING SOFTWARE EVOLUTION THROUGH MIDLEWARE AND

POLICY-BASED SOFTWARE ADAPTATION FRAMEWORK

NOR HAZILAWATI AWANG

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

JANUARY 2015

iii

DEDICATION

Dedicated to a great family that I have.

“I sustain myself with the love of family.”

Maya Angelou

iv

ACKNOWLEDGEMENT

 This challenging journey of completing my thesis would not become a reality

without the help from numerous kind people around me. It is a great pleasure for me

to thank these people. I would like to express my utmost gratitude to my main

supervisor, Prof. Dr. Shamsul Shahibuddin for his trust in me and his vital support. I

am forever indebted to Assoc. Prof. Dr. Wan Mohd Nasir Wan Kadir, my co-

supervisor for his guidance, patience, and abundance of support throughout this

research. Without his constant encouragement, the path would be extremely hard for

me.

 I would like to thank the management of HeiTech Padu Berhad for fully

sponsoring my research. My special thanks go to En. Ahmad Abdul Ghani, CEO of

HeiTech Academy for all his assistance, support and “just enough” pressure to keep

me going. My sincere appreciation goes to Padusoft team, especially to the ex-Chief

Operating Officer, En. Khairol Amin Mohd. Salleh for providing all supports I needed,

from providing technical advice to allowing me to test the framework using the

systems they developed.

 A special thank and gratitude to my husband, Arham Rahimy Hariri for his

understanding. My gratitude also goes to my parents, Tn. Haji. Awang and Pn. Hajah.

Siti Zaharah for teaching me that “we have to always try the best in anything we do”.

Last but not least, thank you to Sarah and Hannah for keeping your mother sane

throughout this meaningful journey.

v

ABSTRACT

Software evolution is a process that is needed in order for software to remain

useful. Thus, software evolution should be properly planned and controlled to prevent

its negative impact from affecting any organization. Software adaptation concept is

one of the promising ways to control software evolution. In this approach, software is

made adaptable to minimize the impact of change. A lot of researches on software

adaptation focus on adaptability of mobile based and network application due to its

context sensitivity and quality-of-service requirements. However, there is still lack of

work in enterprise system domain with multiple delivery channels, which focus on

adaptability of its context environment such as the changes introduced to its devices.

Hence, the purpose of this research is to develop a middleware and policy-based,

adaptation framework to manage negative effects of software evolution in an

enterprise system. The main research focus is on the changes introduced at the device

layer. The concept of policy is used to specify adaptations requirements. This

research provides a framework called Middleware and Policy-Based Framework to

Manage Software Evolution (MiPAF), which can be used to develop adaptive

software, allowing parameterized and compositional adaptation. Furthermore, the

framework can be used by client-server and web-based application. A policy language

called MiPAF Policy Language (MPL) is created to be used with the framework.

MiPAF is formally specified using Z Notation and the policy language is described

using pseudo code. A tool is provided to assist developers in creating the policy. For

evaluation of the framework, a set of runtime components were developed and

implemented for Unit Trust System (UTS) Front-end and web-based UTS, two

industrial-based case studies. The evaluation result shows that MiPAF excellently

fulfil all the evaluation criteria described in this thesis.

vi

ABSTRAK

Evolusi perisian adalah satu proses yang perlu kerana perisian berevolusi untuk

kekal berguna. Proses ini perlu dirancang dan dikawal untuk mengelakkan kesan

negatif kepada organisasi. Salah satu cara bagi mengawal kesan negatif ini ialah

melalui adaptasi perisian. Kebanyakan kajian tentang adaptasi perisian tertumpu

kepada bidang aplikasi mudah alih dan rangkaian kerana keperluan konteks kepekaan

dan kualiti perkhidmatan. Walau bagaimanapun, masih terdapat kekurangan kajian di

dalam bidang sistem perusahaan yang mempunyai pelbagai saluran penyampaian dan

memfokuskan tentang adaptasi bagi pertukaran yang berlaku pada peranti. Tujuan

tesis ini ialah membina satu rangka kerja adaptasi yang berteraskan konsep

middleware dan polisi bagi mengawal kesan negatif evolusi perisian di dalam sistem

perusahaan. Fokus utama kajian ialah tentang pertukaran yang berlaku pada peranti

yang diguna pakai oleh sistem perusahaan. Konsep polisi digunakan untuk

menyatakan keperluan adaptasi. Kajian ini menyediakan satu rangka kerja yang

dinamakan Middleware and Policy-Based Framework to Manage Software Evolution

(MiPAF). MiPAF membolehkan pembinaan perisian yang boleh diadaptasi,

membenarkan adaptasi parameterized dan compositional. Rangka kerja ini boleh

dimanafaatkan oleh perisian yang berasaskan pelanggan-pelayan dan juga perisian

yang berasaskan sesawang. Bahasa khas untuk polisi yang dipanggil MiPAF Policy

Language (MPL) dibina untuk diapplikasikan bersama dengan rangka kerja ini.

MiPAF dispesifikasikan secara rasmi menggunakan Z Notation dan MPL diterangkan

dengan menggunakan kod pseudo. Satu alat telah disediakan untuk membantu

pengguna membina polisi. Untuk tujuan penilaian, komponen MiPAF telah dibina

dan dilaksanakan untuk Unit Trust System (UTS) Front-end dan UTS berasas web,

dua kajian kes yang diguna pakai di dalam industri. Keputusan penilaian MiPAF

menunjukkan MiPAF telah memenuhi segala kriteria yang ditetapkan di dalam tesis

ini dengan cemerlang.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION

ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xiii

 LIST OF FIGURES xiv

 LIST OF ABBREVIATIONS xvi

 LIST OF APPENDICES xvii

1 INTRODUCTION 1

 1.1 Introduction 1

 1.2 Background of the Problem

1.2.1 Issues related to software evolution

1.2.2 The needs for adaptive software

1.2.3 Software Evolution and Software

Maintenance

1.3 Statement of the Problem

1.4 Objectives of the Study

1.5 Scope of the Study

1.6 Significance of the Study

1.7 Thesis Organization

2

4

5

6

7

8

8

10

11

viii

2 LITERATURE REVIEW 13

 2.1 Software Evolution

 2.1.1 Approaches in Minimizing

the Effect of Software Evolution

2.1.2 Why Software Adaptation

Approach

2.2 Software Adaptation

2.3 Relationship between Software

Evolution and Software Adaptation

2.4 Adaptation Management

2.4.1 Close-Loop Control System

2.4.2 IBM Autonomic Computing

2.4.3 Policy Based

2.5 Related Software Adaptation Approaches

2.5.1 Agent-oriented

2.5.2 Architecture-based

2.5.3 Component-based

2.5.4 Middleware-based

2.6 Comparing the Approaches

2.7 Summary

13

15

17

20

21

23

23

24

26

27

27

29

31

32

36

37

3 COMPARATIVE EVALUATION OF

APPROACHES IN DEVELOPING ADAPTIVE

SOFTWARE

38

3.1 Evaluation Criteria

 3.1.1 Scalability

 3.1.2 Context-awareness

 3.1.3 Performance

 3.1.4 Applicability

 3.1.5 Heterogeneity

 3.1.6 Dynamic Evolvability

3.2 Result of the Comparative Evaluation

 3.2.1 Scalability

 3.2.2 Context-awareness

38

38

39

39

40

40

40

41

41

42

ix

 3.2.3 Performance

 3.2.4 Applicability

 3.2.5 Heterogeneity

 3.2.6 Dynamic Evolvability

 3.2.7 Summary of Result

3.3 Pros and Cons of the Current Middleware-

based Approach

3.4 Summary

43

44

45

46

46

47

48

4 RESEARCH METHODOLOGY 49

 4.1 Research Design and Procedure

4.2 Operational Framework

4.3 Instrumentation

4.4 Assumptions and Limitations

4.5 Methods for Evaluation

4.6 Case Study

 4.6.1 Evaluation Steps

 4.6.2 Evaluation Setting

4.6.3 Relationship between MiPAF and

 UTS System

4.6.4 Objects of the Case Study

4.7 Summary

49

51

53

53

54

55

55

57

58

59

62

5 THE MiPAF APPROACH 63

 5.1 The Rationale behind MiPAF

5.2 Overview of MiPAF

5.2.1 Key approaches used in the

Development of MiPAF

5.2.2 Unit Trust System Example

5.2.3 MiPAF Building Blocks

5.2.4 MiPAF Collaboration Diagram and

the process of adaptation

5.2.5 MiPAF Policy Language

5.3 Summary

63

67

69

72

75

83

85

85

x

6 MiPAF DETAIL DESCRIPTION,

FORMALIZATION, PROCESSES AND

POLICY LANGUAGE

6.1 MiPAF Detail Description

 6.1.1 Service Manager

 6.1.2 Adaptation Manager

 6.1.3 Service Infrastructure

 6.1.4 Policy Repository

 6.1.5 Device Controller

 6.1.6 Context Monitor

6.2 Related processes in using MiPAF

6.3 Introduction to Software Process Engineering

Metamodel

 6.3.1 Conceptual Model of SPEM

6.4 The MiPAF Process

6.4.1 Requirement Phase

6.4.2 Analysis Phase

6.4.3 Design Phase

6.4.4 Development Phase

6.5 Policy Language

6.6 MiPAF Policy Language

6.6.1 MPL Ontology and Description

6.7 Summary

87

88

89

96

104

105

108

111

114

115

116

117

117

118

119

119

120

120

121

125

7 USING MiPAF IN INDUSTRIAL-BASED

CASE STUDIES AND EVALUATION

127

 7.1 Overview of MiPAF Runtime

7.2 Adaptation Requirements of UTS Front-end

and Web-based UTS

7.3 Analysis of existing UTS Front-end printing

components

7.4 Changes required to be done to UTS Front-

end System

7.5 Design of the adaptation policy for UTS

127

128

130

132

xi

Front-end using MiPAF Policy Language

7.5.1 Policy Editor

7.5.2 Implementation of Service Manager

7.5.3 Communication between UTS front-

end and Service Manager

7.6 Implementation of the Adaptation Manager

7.6.1 Pseudo code for Adaptation Manager

7.6.2 Sample Codes for Storing Data in the

Shared Memory

7.6.3 Expat XML Parser

7.7 Implementation of the Policy Repository

7.8 Implementation of the Device Controller

7.9 Implementation of the Context Monitor

7.10 Implementation of the Service Infrastructure

7.11 Test Scenario for Adaptability of the

Industrial-Based Case Study

7.12 Analysis of the result

 7.12.1 Scalability

 7.12.2 Context Awareness

 7.12.3 Performance

 7.12.4 Applicability

 7.12.5 Heterogeneity

 7.12.6 Dynamic Evolvability

7.13 Summary

132

136

136

137

139

139

142

143

145

145

146

151

152

154

154

155

155

156

157

157

157

8 CONCLUSION AND FUTURE WORKS 158

 8.1 Summary of the Research

8.2 Summary of Research Contributions

8.3 Future Works

158

160

162

REFERENCES

Appendices A-G

 163

173-192

xii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Criteria for comparison of selected approaches 37

3.1 Summary of result on the comparison analysis of the

selected approaches to software adaptation

46

4.1 Operational Framework 54

xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 High-Level View of Enterprise System Architecture 3

2.1 High Level Process in a Comprehensive, General Purpose

Approach to Adaptive Software System

22

2.2 Basic Close Loop Control System 23

2.3 Functional Details of an Autonomic Manager 25

2.4 Format of SOAP Messages 35

2.5 Web Service Model 35

4.1 Research Flowchart 51

4.2 Evaluation Steps 56

4.3 Evaluation Settings 57

4.4 MiPAF Context Diagram for Case Study Implementation 59

5.1 MiPAF Context Diagram 67

5.2 High-Level Architecture of UTS 72

5.3 MiPAF Class Diagram 76

5.4 Changes Notification 81

5.5 MiPAF Collaboration Diagram 83

6.1 Communication Channels between Service Manager and

Business Application

90

6.2 High-Level Component of Service Manager 91

6.3 Flow of Listener Component for Socket-based

Communication

92

6.4 Flow of Information to and from Adaptation Manager 96

6.5 Components of Adaptation Manager 97

6.6 Basic Flow of Information to Adaptation Manager 98

6.7 The Flow for Adaptation Engine 99

xiv

6.8 High Level Component of Service Infrastructure 104

6.9 The Flow of Register Policy 106

6.10 High Level Components of Device Controller 109

6.11 Relationship between Context Monitor and Other MiPAF

Components

112

6.12 SPEM Conceptual Model 116

6.13 Requirement Phase 118

6.14 Analysis Phase 118

6.15 Design Phase 119

6.16 Development Phase 119

6.17 MiPAF Policy Language Ontology 122

6.18 Sample of Default Policy 124

6.19 Sample of Reactive Policy 125

7.1 MiPAF Policy Language Editor 136

7.2 Sample Data Sent to the Service Manager 138

7.3 Code Snippet for Listener Implementation in C Language 139

7.4 Code Snippet for Storing Data into Named Shared

Memory

142

7.5 Expat XML Parser Flow 143

7.6 Code Snippet for using Expat XML Parser to Parse XML

Buffer

144

7.7 Components of Health Checker 147

xv

LIST OF ABBREVIATIONS

ADL – Architecture Definition Language

AOM – Aspect-Oriented Modeling

AOP – Aspect-Oriented Programming

COM – Component Object Model

CORBA – Common Object Request Broker Architecture

CRM – Customer Relationship Management

DCOM – Dynamic Component Object Model

EJB – Enterprise Java Bean

ERP – Enterprises Resource Planning

EBNF – Extended Backus-Naur Notation

HTTP – Hyper-Text Transfer Protocol

IBM – International Business Machine

IPC – Inter-Process Communication

JADE – Java Agent Development Framework

MOP – Meta-Object Protocol

MAPE – Monitor, Analyze, Plan, Execute

MiPAF – Middleware and Policy-based Adaptation Framework

MPL – MiPAF Policy Language

OCL – Object Constraint Language

OMG – Object Management Group

xvi

OOP – Object Oriented Programming

RFID – Radio Frequency Identification

SOA – Service Oriented Architecture

SOAP – Simple Object Access Protocol

SPEM – Software Process Engineering Metamodel

SNA – System Network Architecture

xvii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Initial Questionnaires to Validate Research Background 173

B Rubric for the Evaluation Criteria 176

C Data Type Specification for MiPAF 178

D EBNF Specification for MiPAF Policy Language 182

E Details on UTS Case Study 187

F Questionnaires on MPL Editor Usability 190

G Published Papers 191

CHAPTER 1

INTRODUCTION

This chapter consists of the introduction to this research. A brief introduction

on software evolution is presented. Subsequently, background of the problem is

described. Next, problem statements, objective; scope and significance of the research

are discussed.

1.1 Introduction

The issue of software evolution has its root back in the 1970s based on the work

done by Lehman and Belady [1]. In essence, software evolution refers to required

changes in software due to changes in operating environment and/or user requirements.

With the advancement of technology and dynamic business environment, changes

mentioned above become more complex and difficult to manage.

Software evolution phenomenon has the potential to present huge problems to

software projects as it affects all phases of software process. For long term survival,

software evolution is inevitable [2]. Due to this, effective approach to software

evolution has fired much interest in research community as organizations have a

growing dependency on software [3].

Ideally, software should be developed with a capability to adapt itself to the

changing requirements and environment. Software with this kind of capability is called

2

adaptive software. Changes in user requirements, the need for faster delivery of

software, addition of features or bugs removal, are some of the factors driving the

needs for software adaptation [4]. These needs are further emphasized currently due to

the heterogeneity and complexity of computing environment; such as pervasive

environment, varieties in software delivery channels and different type of networks and

operating platforms.

Managing software evolution via software adaptation has been the subject of

many researches such as in [4-9]. Software evolution and software adaptation are

connected processes. Inter-connectedness between evolution management and

adaptation management is described extensively in [10].

1.2 Background of the Problem

The role of software in an enterprise system is very important in providing

operational supports in day-to-day operations. Enterprise system is referred to as

intricate systems that communicate with and affect each other [11]. Example of

enterprise systems are banking and financial system and postal system where various

systems communicate with each other to deliver services to customers. A high level

view of typical enterprise system architecture is depicted by the following Figure 1.1.

3

Figure 1.2 High Level View of Enterprise System Architecture

In a typical environment of an enterprise system, 3 main levels exist, Device

layer, Delivery Channels layer, and Back-end Systems layer. This architecture is

observed to exist in large organizations in Malaysia such as financial institutions and

public services. The observation is backed-up by a guided interview conducted with IT

personnel of specific organizations and IT personnel from System Integrator (SI)

Company. Please refer to Appendix A for the questionnaire used for the guided

interview and analysis of the result. The description of each layer is as follows:-

 Device Layer

Enterprise applications, especially counter-based systems use variety of devices

such as printer, biometric reader, scanner and barcode reader. These devices are

logically group in Device Layer and are used by application systems at Delivery

Channels.

 Delivery Channels Layer

The Delivery Channels level is where interaction with end users occurs. In the

above diagram, different types of delivery channels exist, namely desktop-based

4

applications that adopt client/server architecture, web-based application (thin

client), mobile application and application deployed on kiosks.

 Back-end Systems Layer

The Back-end System level consists of various enterprise systems that need to

interact with the delivery channels. The systems may include core systems of

the organization such as Banking System, Enterprise Resource Planning (ERP)

system, and Customer Relationship Management (CRM) system.

1.2.1 Issues related to software evolution

Enterprise systems will evolve [12-14] due to changes in user requirements or

operating environment. Unplanned evolution of an enterprise system will incur high

cost and risk [15]. In some organizations, the Delivery Channel Layer of an enterprise

system evolves over time, but some of the devices evolve at a slower rate. For

instance, although the application system at the Delivery Channel Layer is changed, the

related devices are not. However, the new application system is expected to work with

these legacy devices. Problems arise when the new system fail to support legacy

devices due to lack of supported interfaces provided by the Application Programming

Interface (API) of the devices.

Another possible problem that is foreseeable is when the Device Layer evolves.

The evolution will happen when a new device is added to the Device Layer. Addition

of a new device can happen in two scenarios. The first scenario is the replacement of

existing devices with new devices from different vendors. Devices from different

vendors come with different set of API. Therefore, applications at the Delivery

Channel layer must adapt accordingly in order to use the devices.

The second scenario is the addition of new devices to support new user

requirements. As the variety of devices increase, the device interfaces and protocols

grows. Thus, the task of integrating these devices into the enterprise system becomes

5

difficult and costly [16]. When any of these scenarios happen, application systems that

use the device must adapt to this changes with minimal impact to its operation at lowest

cost and minimum risk.

Changes in user requirements such as the need to reduce cost by sharing

devices, can also lead to system evolution [13]. Less problems will be faced if the

device sharing is supported by the operating system. However, for some proprietary

devices, the sharing mechanism is not supported by the operating system. Examples of

such devices are IBM4722 and IBM9068 passbook printers. Application systems that

were designed to use device exclusively must be changed in order to adapt to this type

of requirement. The problem becomes more profound if the same device needs to be

shared by different applications. Worst, if the need to share the device only arises after

these systems have been implemented. Changes introduced to any system at a later

lifecycle are costly [17].

Application systems evolve due to technology advancement and changes in

business requirements [12, 14]. As a result of the evolution, different type of client

architecture existed such as thick-client, thin-client and smart-client. These client

architectures require different ways of device integration. Problems will be further

exacerbated when applications adopting different type of client-architecture need to

share the same devices.

As the ecosystem of an enterprise system evolves over the time, the back-end

systems become heterogeneous in-terms of operating platforms. These back-end

systems may interact with other systems using different communication protocols such

as SNA protocols, TCP/IP or SOAP. However, the evolution problems at the back-end

system level are not within the scope of this research.

1.2.2 The needs for adaptive software

From the background of the problem, it is shown that there is a need for

software that is adaptive in an enterprise domain. The adaptive software should

6

support both upward scalability and downward scalability. This is due to different

requirements of the application systems at delivery channels level.

The adaptive software is required due to heterogeneity of devices used by

enterprise systems. The software need to adapt with the changes of devices, able to

detect when a device fails and perform necessary reconfiguration. Furthermore, the

adaptability of software in enterprise system must not be restricted in terms of its client

architecture.

In an environment where the enterprise systems provide services to the public,

performance of the system is critical. Device failure can affect performance of service

delivery and in the end, may affect customer satisfaction. The enterprise system should

be able to detect failed devices and adapt necessarily such as enabling users to use

other devices in the network without halting the operations. The adaptive enterprise

system must have an acceptable performance, based on user requirement. Apart from

that, an adaptive enterprise system should not be too cumbersome to develop.

1.2.3 Software Evolution and Software Maintenance

The term software evolution and software maintenance are used

interchangeably in a number of publications. Both terms revolve around changes

subjected to software. However, according to Priyadarshiv and Kshivasagar [18], there

are differences between software evolution and software maintenance. They argued

that software maintenance comprises bug fixing activities to rectify defects in order to

ensure the software meet its development purpose. The bug fixing activities happen

after implementation phase and the functionalities of the software remain unchanged.

Software evolution refers to continuous changes subjected to software, which

resulted in changes of one software state to a more complex and better state. Software

evolution includes creation of new design which is originated from existing design,

development of new functionalities or improvement of software performance.

7

In this research, we treat software maintenance as a subset of software

evolution.

1.3 Statement of the Problem

The aim of this research is to provide an adaptation framework to manage

software evolution based on compositional and parameterized adaptation approach in

the domain of enterprise system. The framework will increase the adaptability of an

enterprise system in the changing operating environment and user requirements. The

problem statement brings about the main research problem that is:-

“How to manage software evolution by creating an adaptation framework

using appropriate technique in compositional and parameterized adaptation

approach?”

To answer the main research problem, a set of related questions must be

addressed. The questions are as follows:-

1. What are compositional approach and parameterized approach and why

these two approaches are selected?

a. What are the state-of-the art for both approach?

b. What are usage suitability of both approach – when, where to

use?

c. What are advantages and disadvantages of both approaches?

2. What are the main adaptability criteria for the framework to ensure it is

beneficial for enterprise environment?

8

a. What are the main problems need to be addressed in an

enterprise systems related to changes in operating environment

and user requirements?

3. What are opportunities for improvement in both approaches that can be

translated into the framework to manage software evolution?

4. How to make the framework easy to be used by software developers?

5. How to validate the framework to ensure its success in meeting the

defined adaptability criteria?

1.4 Objectives of the Study

This research has the following objectives:-

 To investigate major techniques with respect to adaptation approaches in

order to manage software evolution

 To develop a new adaptation framework in managing software evolution

using compositional and parameterized adaptation approach.

 To demonstrate the applicability of the proposed approach using an

industrial-based case study and the development of its supported tool.

1.5 Scope of the Study

In order to produce a new approach in managing software evolution via

adaptation approach, this research is focused on the following scope:-

9

 Software evolution

The focus of this research is to manage software evolution. The term

evolution in software context refers to changes that happen to software

during its lifetime [19]. This research will adopt the above definition of

software evolution. To prevent a system from becoming unreliable,

software evolution must be managed in software development process

[15]. More explanation on software evolution can be found in Section

2.1.

 Software adaptation

Software adaptation is a popular research area of late. There are many

existing approaches to software adaptation. Researchers are looking at

software adaptation from many angles such as from software

architecture point of view [20, 21], component-based software

development [22] and agent-oriented software engineering [23, 24].

 Two promising approaches to software adaptation are middleware and

policy based approach. Middleware is said to be an important building

block that impede software development [25]. Adaptive middleware

on-the-other hand, allows modification to application systems when

there are changes in user or operating environment [26]. Middleware

can be designed to allow for separation between adaptive behavior and

non-adaptive behavior in an enterprise system. This research has the

interest to adopt middleware approach in developing the proposed

framework. Sub-section 2.5.4 present a discussion on the topic of

middleware

Policy based approach involved the use of policy to specify the

adaptation logic. Using this approach, a clear separation can be made

between the business logic and adaptation specification. This separation

10

is important since it promotes low coupling between the two, hence

changes in can be implemented in a controlled manner.

 Case Study

Lehman in his work in Laws of Software Evolution coined the term E-

type software [27]. E-type software can be defined as software that

addresses real world problem. Therefore, the enterprise system

described in the problem background is an instance of E-type software

and thus, the system is subjected to software evolution.

Based on the researcher experience in developing and integrating

enterprise systems, the proposed approach will be demonstrated using

an industrial-based, E-type, case studies that is a Unit Trust System that

has been implemented throughout Malaysia. The reason for selecting

this system is that its Device Layer is always subjected to changes and

there exist two type of front-end architecture or the system i.e. client-

server based and web based.

1.6 Significance of the Study

Software evolution is an important issue that needs to be addressed to ensure

longer life-time of implemented software thus “avoiding an early death” [12]. There is

no way to prevent change in software since it has to react to the changing environment

to ensure the software meets its purpose. Changes subjected to software during its

post-deployment phase are not only costly but also risky. Thus, managing software

evolution is one of major aspects in software development process since huge amount

of project cost and effort are consumed in maintenance of existing system instead of

creating a brand new system. One way to manage software evolution is via software

adaptation approach.

11

There are other efforts towards software adaptation ranging from research

specific for mobile devices [28, 29], multimedia systems [30], and network adaptability

[29] to generic domain [31, 32]. However, there is lack of specific research that

focuses on adaptability of an enterprise system. As technology evolves, more delivery

channels and more new devices are introduced in an enterprise system. Enterprise

systems must adapt to this changes to deliver required services. As the enterprise

grows, more systems are added to the whole ecosystem. Existing application systems

need to communicate with the new added systems at the lowest cost and lowest risk.

This study will contribute in providing an adaptation framework to overcome

the above challenges faced by enterprise systems by enabling the systems to be more

adaptive to the changing environments. The framework, Middleware and Policy-based

Framework to Manage Software Evolution (MiPAF) is developed to enable software

evolution to be planned and managed so that, the life of enterprise software can be

increased and the maintenance cost can be reduced.

1.7 Thesis Organization

This thesis has the aim to develop an adaptation framework to manage software

evolution. The chapters are organized as follows:-

Chapter 1: This chapter describes the background of the problem. Issues

related to software evolution and the needs for software adaptation are also discussed.

Problem statement, objective of the study and significance of the study are described.

Chapter 2: This chapter provides literature review on software evolution and

software adaptation. It starts with the definition of software evolution and continues

with discussion on existing approaches in minimizing the impact of software evolution

where software adaptation is one of the approaches. Next, justification on the selection

of software adaptation is presented. Software adaptation is further described and

adaptation management is also discussed. Four software adaptation approaches are

discussed in detail and criteria used to evaluate them are introduced.

12

Chapter 3: This chapter further describes the evaluation criteria introduced in

Chapter 2. Comparative evaluation of the four approaches are presented based on the

chosen criteria. Critical discussion is included in this chapter in order to evaluate

which approach is best suited to be used in the development of MiPAF. Result of the

evaluation is presented at the end of this chapter.

Chapter 4: This chapter describes research procedure, operational framework

and instrumentation used to deliver the thesis objectives. Research assumptions and

limitations and methods for evaluation are also described. This chapter also details up

the case study to be used and approach for MiPAF evaluation using the said case study.

Chapter 5: This chapter starts with the rationale behind MiPAF and it

proceeds with the overview of MiPAF. Key approaches used in MiPAF development

is described. Next, MiPAF building block and collaration digram are discussed. The

chapter also describes MiPAF Policy Language.

Chapter 6: This chapter describes in detail about MiPAF. Each component is

presented formally using Z Notation. Next, the sub-sections in this chapter describe

processes used to govern the application of MiPAF in order to manage software

evolution. This chapter also includes description of MiPAF Policy Language (MPL)

and ontology of MPL is also presented.

Chapter 7: This chapter discusses on the implementation of MiPAF using

industrial-based case study. It focuses on adaptation requirements of the case studies,

the design of adaptation policy and implementation of MiPAF runtime in order to test

the adaptation behaviour of the case study. Towards the end of the chapter, case study

result is analysed based on the evaluation criteria mentioned in Chapter 2.

Chapter 8: This chapter concludes the research. It provides research summary

and contribution of the research. This chapter ends with suggestion for future works.

REFERENCES

1. Jayazeri, M. Species evolve, individuals age. Eighth International Workshop

on Principles of Software Evolution. :IEEE. 2005.3-9.

2. Mens, T. and S. Demeyer, eds. Software Evolution. Berlin: Springer-Verlag

Berlin Heidelberg, 2008.

3. Lehman, M.M. and J.F. Ramil. An Approach to a Theory of Software

Evolution. in Proceedings of the 4th International Workshop on Principles of

Software Evolution. 2001. New York:.ACM. 2001, 70-74.

4. Nary, S. and C. Lawrence. Software architecture adaptability: an NFR

approach. in Proceedings of the 4th International Workshop on Principles of

Software Evolution. 2001. New York: ACM.2001. 52-61.

5. Cazzola, P.D.W., A.M.A. Ghoneim, and P.D.G. Saake, eds. Software Evolution

through Dynamic Adaptation of Its OO Design. in Lecture Notes in Computer

Science. Vol. 2975/2004.Berlin: Springer Berlin/Heidelberg. 2004.67-80.

6. Ghoneim, A.M.A., Reflective and Adaptive Middleware for Software Evolution

of Information Systems. in Fakultät für Informatik 2007. Germany: Otto-von-

Guericke-Universität Magdeburg. 2007. 154.

7. Oreizy, P., N. Medvidovic, and R.N. Taylor. Architecture-Based Runtime

Software Evolution. in Proceedings of the 1998 (20th) International

Conference on Software Engineering. 1998. Kyoto: IEEE Computer

Society.1998.177-186.

8. Perez, J., et al. Dynamic Evolution in Aspect-Oriented Architectural Models. in

Lecture Notes in Computer Science. 2005. Berlin: Springer Berlin/Heidelberg.

2005.59-76.

9. Zhang, H., K. Ben, and Z. Zhang. A Reflective Architecture-Aware Framework

to Support Software Evolution. in Proceedings of the 9th International

164

Conference for Young Computer Scientists.November 18-21. :IEEE.2008.1145-

1149.

10. Oreizy, P., Medvidovic, N., Taylor, R.N., Gorlick, M.M., Heimbigner, D.,

Johnson, G., Quilici, A., Rosenblum, D.S., Wolf, A.L. An Architecture Based

Approach to Self-Adaptive Software. IEEE Intelligent System.1999.14(3):54 -

62.

11. Iacob, M.-E. and H. Jonkers. Quantitaive Analysis of Enterprise Architectures.

in Interoperability of Enterprise Software and Applications. :Springer London.

239-252;2006.

12. Godfrey, M.W. and D.M. German. The past, present, and future of software

evolution. in Frontiers of Software Maintenance. 2008. FoSM 2008. Sept 28 -

Oct 4, 2008. :IEEE. 2008. 129-138.

13. Hu, H. Software Evolution Based on Software Architecture. in The Fourth

International on Computer and Information Technology, 2004. CIT '04. :IEEE.

2004. 1092-1097.

14. Roland, T.M., Software evolution: let's sharpen the terminology before

sharpening (out-of-scope) tools. in Proceedings of the 4th International

Workshop on Principles of Software Evolution. 2001. :ACM. 2001. 114-121.

15. Subramanyam, R. Position Statement: How Well Technology Supports

Software Evolution. in COMPSAC '08 Proceedings of the 32nd Annual IEEE

International Computer Software and Application Conference. 2008.

Washington: IEEE Computer Society. 2008. 3

16. de Deugd, S., et al. SODA: Service Oriented Device Architecture. Pervasive

Computng, :IEEE, 2006. 5(3): 94-96.

17. Stephens, M. and D. Rosenberg. Extreme Programming Refactored: The Case

Against XP. :Apress. 3;2003.

18. Priyadarshi Tripathy, K.N. Software Evolution and Maintenance. Hoboken,

New Jersey: John Wiley & Sons. 416; 2014.

19. Reiss, S.P. Evolving Evolution [software evolution]. in Eighth International

Workshop on Principles of Software Evolution. September 5-6, 2005. :IEEE.

2005. 136-139.

20. Fayad, M.E., H.S. Hamza, and H.A. Sanchez. Towards scalable and adaptable

software architectures. in IEEE International Conference on Information Reuse

and Integration, Conf, 2005. IRI -2005. :IEEE. 102-107;2005.

165

21. Xiong, X. and Z. Weishi. A Framework of Software Component Adaptation. in

Algorithms and Architectures for Parallel Processing. 2007, Berlin: Springer

Berlin/Heidelberg. 2007. 153-164.

22. Holger, K., N. Dirk, and R. Andreas, A component model for dynamic adaptive

systems. in International workshop on Engineering of software services for

pervasive environments: in conjunction with the 6th ESEC/FSE joint meeting.

2007, Dubrovnik, Croatia :ACM. 2007. 21-28.

23. Qureshi, N.A. and A. Perini. An Agent-Based Middleware for Adaptive

Systems. in The Eighth International Conference on Quality Software. 2008.

24. Seungwok, H., S. Sung Keun, and Y. Hee Yong. Dynamic Software Adaptation

with Dependence Analysis for Multi-Agent Platform. in International

Conference on Computational Science and its Applications. 2007. :IEEE

Computer Society. 2007. 185-191.

25. Newcomer, E. and G. Lomow. Understanding SOA with Web Services. :

Pearson Education, 2005.

26. Sadjadi, S.M. A Survey of Adaptive Middleware. Technical Report, Computer

Science and Engineering. : Michigan State University. 2003.

27. Lehman, M.M. Laws of Software Evolution Revisited. in Proceedings of the

5th European Workshop on Software Process Technology. : Springer-Verlag.

1996. 108-124.

28. Maciel da Costa, C., M. da Silva Strzykalski, and G. Bernard. An Aspect

Oriented Middleware Architecture for Adaptive Mobile Computing

Applications. in 31st Annual International. Computer Software and

Applications Conference. COMPSAC 2007. July 24-27, 2007. : IEEE. 2007. 81-

86.

29. Mukhija, A. and M. Glinz. A framework for dynamically adaptive applications

in a self-organized mobile network environment. in Proceedings of 24th

International Conference on Distributed Computing Systems Workshops. March

23-14, 2004. : IEEE. 2004. 368-374.

30. Vu Hoang, H. and H. Hoang Dang. An Application-aware Adaptive

Middleware Architecture for Distributed Multimedia Systems. in First

International Conference on Communications and Electronics. ICCE '06. Oct

10-11, 2006. :IEEE. 2006. 141-146.

166

31. Curry, E. Adaptive and Reflective Middleware (Middleware for

Communications). 2004: 29-52.

32. Gjorven, E., et al. Self-Adaptive Systems: A Middleware Managed Approach.

in Lecture Notes in Computer Science. 2006. 3996: 15-27.

33. Dictionary, M.-W.s.O. Merriam-Webster's Online Dictionary 2009 [cited 2009

29 January]; Available from: http://www.merriam-

webster.com/dictionary/evolution.

34. Yang, H. and M. Ward. Successful Evolution of Software Systems: Artech

House. 2002.

35. Canfora, G. Software Evolution in the Era of Software Services. in Proceedings

of 7th International Workshop on Principles of.Software Evolution. : IEEE.

2004.

36. Bennet. K.H. , Rajlich, V.T. Software Evolution: A Roadmap. in Proceedings

of the Conference on IEEE International Conference on the Future of Software

Engineering. 2000. Limerick, Ireland: ACM. 2000. 73-87.

37. Qianxiang, W., et al. A component-based approach to online software

evolution: Research Articles. J. Softw. Maint. Evol., 2006. 18(3): 181-205.

38. Michele Ceccarelli, L.C., Gerardo Canfora, Massimiliano Di Penta. An Eclectic

Approach for Change Impact Analysis. in 2010 ACM/IEEE 32nd International

Conference on Software Engineering. 2010. Cape Town : IEEE. 2010. 163-

166.

39. Vora, U. Change Impact Analysis and Software Evolution Specification for

Continually Evolving Systems. in 2010 Fifth International Conference on

Software Engineering Advances. 2010. Nice, France : IEEE. 2010. 238-243.

40. Mens, T., et al. Challenges in Software Evolution. in Eighth International

Workshop on Principles of Software Evolution. September 5-6, 2005. : IEEE.

2005. 13-22.

41. Madhavji, N.H., J.F. Ramil, and D.E. Perry. Editors. Software Evolution and

Feedback: Theory and Practice. 2006 : John wiley and Sons. 2006.

42. Ciraci, S., P. van den Broek, and M. Aksit. A Taxonomy for a Constructive

Approach to Software Evolution. Journal of Software. 2007. 2(2): 84-97.

43. Robbes, R., M. Lanza, and M. Lungu. An Approach to Software Evolution

Based on Semantic Change. in Fundamental Approaches to Software

Engineering. 2007. Berlin : Springer Berlin / Heidelberg. 2007. 27-41.

http://www.merriam-webster.com/dictionary/evolution
http://www.merriam-webster.com/dictionary/evolution

167

44. Riling, J., et al. Story-driven Approach to Software Evolution. Software.

August, 2008. : IET. 2008. 2(4): 304 - 320.

45. Pandey, D., U. Suman, and A.K. Ramani. An Effective Requirement

Engineering Process Model for Software Development and Requirements

Management. in International Conference on Advances in Recent Technologies

in Communication and Computing (ARTCom). Oct 16 -17, 2010. :IEEE. 2010.

287-291.

46. Ferreira, M.G. and J.C.S. do Prado Leite. Requirements Engineering with a

Perspective of Software Evolution. 2011.

47. Souza, V.S., et al. Requirements-driven software evolution. Computer Science -

Research and Development, 2013. 28(4): 311-329.

48. Garlan, D., et al. Rainbow: Architecture-Based Self-Adaptation with Reusable

Infrastructure. IEEE Computer Society, 2004: 46 - 54.

49. Lundesgaard, S.A., et al. Constriction and Execution of Adaptable Applications

Using an aspect-Oriented and Model Driven Approach. in Lecture Notes in

Computer Science. 2007. : Springer Berlin/Heidelberg. 2007. 76-89.

50. Kell, S. A Survey of Practical Software Adaptation Techniques. J. UCS, 2008.

14(13): 2110-2157.

51. Harker, S.D.P., K.D. Eason, and J.E. Dobson. The change and evolution of

requirements as a challenge to the practice of software engineering. in

Proceedings of IEEE International Symposium on Requirements Engineering.

1993. : IEEE. 1993.

52. McKinley, P.K., et al. Composing adaptive software. Computer, 2004. 37(7):

56-64.

53. John, C.G. and N.T. Richard, Policy-based self-adaptive architectures: a

feasibility study in the robotics domain. in Proceedings of the 2008

international workshop on Software engineering for adaptive and self-

managing system. 2008, Leipzig, Germany : ACM. 2008.

54. Tomasz, S., S. Robert, and Z. Krzysztof. Policy-based Context-aware

Adaptable Software Components for Mobility Computing. in 10th IEEE

International Enterprise Distributed Object Computing Conferenc. 2006 :

IEEE. 2006.

55. Eliassen, F., et al. Evolving self-adaptive services using planning-based

reflective middleware. in Proceedings of the 3rd workshop on Adaptive and

168

reflective middleware ACM International Conference Proceeding Series. 2006.

: ACM. 2006. 1-6.

56. Shang-Wen Cheng ; Garlan, D.S., B. Evaluating the effectiveness of the

Rainbow self-adaptive system. in ICSE Workshop on Software Engineering for

Adaptive and Self-Managing Systems. 2009. : IEEE. 2009. 132-141.

57. Michael, B. Introduction to Close Loop Control. Embedded System Design. July

31st,2002. [cited 2010 12th march 2010]; Available from:

http://www.embedded.com/story/OEG20020726S0044.

58. Team, I.A.C. An architectural Blueprint for Autonomic Computing. Autonomic

Computing White Paper. June 2006 [cited 2010 10th March 2010]; 4th

Edition:[Available from: http://www-

01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pd

f.

59. Jennings, N.R., Agent-Oriented Software Engineering. in Lecture Notes in

Computer Science. 2004: Springer Berlin/Heidelberg.2004. 4-10.

60. Henderson-Sellers, B. and P. Giorgini. Agent-Oriented Methodolgies. : IGI

Publishing. 2005.

61. Paek, K. and T. Kim. AOM: An Agent Oriented Middleware Based on Java. in

Lecture Notes in Computer Science. 1999. : Springer Berlin/Heidelberg. 1999.

62. Tarkoma, S. and M. Laukkanen. Adaptive Agent-Based Service Composition

for Wireless Terminals. in Lecture Notes in Computer Science. 2003. : Springer

Berlin/Heidelberg. 2003.

63. Markus, C.H., Julie, A. McCann. A survey of autonomic computing - degrees,

models and applications. ACM Comput. Survey. 2008. 40(3): 1-28.

64. Jeff, M. and K. Jeff. Dynamic structure in software architectures. in

Proceedings of the 4th ACM SIGSOFT symposium on Foundations of software

engineering. 1996. San Francisco, California, United States: ACM. 1996.

65. Michel, W., L. Antonia, and L. Jose, Fiadeiro. A graph based architectural

(Re)configuration language. in Proceedings of the 8th European software

engineering conference held jointly with 9th ACM SIGSOFT international

symposium on Foundations of software engineering. 2001. Vienna, Austria:

ACM. 2001.

http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www-01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf

169

66. Morin, B., et al. An Aspect-Oriented and Model-Driven Approach for

Managing Dynamic Variability, in Lecture Notes in Computer Science. 2008.

:Springer-Verlag Berlin Heidelberg. 2008. 782-796.

67. Kienzle, J., et al., Models in Software Engineering. 2008. : Springer

Berlin/Heidelberg. 2008. 1-6.

68. Bekker, C. and P. Putter. Reflective architectures: requirements for the future

distributed environments. in Proceedings of the Fourth Workshop on Future

Trends of Distributed Computing Systems. 1993. : IEEE. 1993.

69. Kurt, G., et al.Modeling of component-based adaptive distributed applications,

in Proceedings of the 2006 ACM symposium on Applied computing. 2006,

Dijon, France: ACM. 2006.

70. Batista, T., A. Joolia, and G. Coulson. Managing Dynamic Reconfiguration in

Component-Based Systems. in Software Architecture. 2005. : Springer

Berlin/Heidelberg. 2005. 1-17.

71. Frei, A., A. Popovici, and G. Alonso. Event based systems as adaptive

middleware platforms. in Workshop of the 17th Europeean Conference for

Object-Oriented Programming.July 21-23, 2003. : IEEE. 2003.

72. Afandi, R., J. Zhang, and C.A. Gunter. AMPol-Q: Adaptive Middleware Policy

to Support QoS. in Lecture Notes in Computer Science - Service-Oriented

Computing – ICSOC 2006, 2006. 165-178.

73. Colman, A., et al. Adaptive application-specific middleware. in Proceedings of

the 3rd workshop on Adaptive and reflective middleware. Proceedings of the

1st workshop on Middleware for Service Oriented Computing (MW4SOC 2006)

ACM International Conference Proceeding Series. : ACM. 2006. 6-11.

74. Deitel, H.M., et al. Web Services A Technical Introduction : Prentice Hall.

2003.

75. Meyer-Wegener, K. Thirty Years of Server Technology - from Transaction

Processing to Web Services. in Lecture Notes in Computer Science. 2005,

:Springer Berlin / Heidelberg. 2005. 51-65.

76. San-Yih, H., et al. On Composing a Reliable Composite Web Service: A Study

of Dynamic Web Service Selection. in IEEE International Conference on Web

Services, 2007, ICWS 2007. : IEEE. 2007.

77. Noh-sam, P. and L. Gil-haeng. Agent-based Web service middleware. in Global

Telecommunications Conference, 2003. GLOBECOM'03. :IEEE. 2003.

170

78. UDDI. UDDI 101. 2006 [cited 2009 29 January]; Available from:

http://uddi.xml.org/uddi-101.

79. WSDL. Web Service Description Language (WSDL). 2006 [cited 2009 29

January]; Available from: http://www.w3.org/TR/wsdl.

80. Khosrow-Pour, M.. Encyclopedia of E-Commerce, E-Government, and Mobile,

: IGI Publishing. 2006.

81. SOAP. Simple Object Access Protocol (SOAP). 2006 [cited 2009 29 January];

Available from: http://www.w3.org/TR/soap12-part1/.

82. Arora, G. and S. Kishore. XML Web Services Professional Projects, :Premier

Press. 2002.

83. Foggon, D., et al. Programming Microsoft .NET XML Web Services, :Microsoft

Press. 2004.

84. Software Sustainability Institute. 2014 [cited 2014 19/11/2014]; Available

from: http://www.software.ac.uk/.

85. Gordon, I.. Essential Software Architecture. 2012, Heidelberg, Germany :

Springer. 2012. 304.

86. Hong, J.-y., E.-h. Suh, and S.-J. Kim. Context-aware systems: A literature

review and classification. Expert Systems with Applications. 2009. 36(4): 8509-

8522.

87. Floch, J., et al. Using Architecture Model for Runtime Adaptability. IEEE

Computer Society. 2006. 23(262-70).

88. Parra, C. and L. Duchien. Model-Driven Adaptation of Ubiquitous

Applications. Electronics Communicaion of EASST. 2008. :EASST. 2008.

11(2008).

89. Michael, C., et al. An Efficient Component Model for the Construction of

Adaptive Middleware, in Proceedings of the IFIP/ACM International

Conference on Distributed Systems Platforms Heidelberg. 2001. : Springer-

Verlag. 2001.

90. Clements, P., et al. The Duties, Skills, and Knowledge of Software Architects.

in The Working IEEE/IFIP on Conference Software Architecture, 2007. WICSA

'07.2007. : IEEE. 2007.

91. Vickers, B. Architecting a software architect. 2004. in Proceedings Aerospace

Conference. 2004. : IEEE. 2004.

http://uddi.xml.org/uddi-101
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap12-part1/
http://www.software.ac.uk/

171

92. Staehli, R., F. Eliassen, and S. Amundsen. Designing adaptive middleware for

reuse. in ACM International Conference Proceeding Series; Proceedings of the

3rd workshop on Adaptive and reflective middleware. 2004. : ACM. 2004. 80:

189-194.

93. Christine, J. and P. Dewayne. Composable context-aware architectural

connectors, in Proceedings of the 1st international workshop on Software

architectures and mobility. 2008, Leipzig, Germany : ACM. 2008.

94. Mubarak, H. Developing Flexible Software Using Agent-Oriented Software

Engineering. Software. : IEEE, 2008. 25(5): 12-15.

95. Cazzola, W., A. Ghoneim, and G. Saake. RAMSES: a reflective middleware for

software evolution. in Proceedings of ECOOP Workshop on Reflection, AOP

and Meta-Data for Software Evolution, Oslo, Norway. 2004. 5-63.

96. Lázaro, M., and Marcos, E. Research in Software Engineering: Paradigms and

Methods. in Proceedings of the 17th International Conference on Advanced

Information System (CAiSE'05). 2005. 517-522.

97. Leedy, P.D.a.O., J.E. Practical Research: Planning and Design 8th ed. New

Jersey: Prentice Hall. 2005.

98. Streb, C.K., Exploratory Case Study. Encyclopedia of Case Study Research.

SAGE Publications, Inc, Thousand Oaks, CA: SAGE Publications, Inc.2009.

373-375.

99. Garger, J. Using the Case Study Method in PhD Research. 2013 20th August

2013 [cited 2014 8th July 2014].

100. Flint, S. A Conceptual Model of Software Engineering Research Approaches, in

Software Engineering Conference, 2009. ASWEC '09. Australian. April 14-17,

2009. 229-236.

101. Potts, C. Software-engineering research revisited. Software. : IEEE. 1993.

10(5): 19-28.

102. Spivey, J.M. The Z Notation : A Reference Manual. United Kingdom: Prentice

Hall International (UK) Limited. 1992.

103. Schuppenies, R. and S. Steinhauer. Software Process Engineering Metamodel. :

OMG Group. 2002.

104. Damianou, N.C. A Policy Framework for Management of Distributed System.

Ph. D Thesis. Department of Computing, Imperial College of Science,

Technology and Medicine. University of London; 2002.

172

105. Keeney, J. Completely Unanticipated Dynamic Adaptation of Software, Ph. D

Thesis. Trinity College. University of Dublin: Dublin; 2004

106. XML Validation. [cited 2nd February 2013]; Available from:

http://www.w3schools.com/xml/xml_dtd.asp.

107. Shirrell, J. XML: A Deeper Understanding. [cited 2nd February 2013].

Available from: http://www.xmlbook.info

108. Type-Length-Value. [cited 2013 4th February]; Available from:

http://en.wikipedia.org/wiki/Type-length-value#cite_note-1.

109. TLV Page Info. [cited 2013 4th of February]; Available from:

https://cwiki.apache.org/DIRxASN1/tlv-page-info.html.

110. Operating System Design/Processes/SharedMemory. 2011 18th December 2011

[cited 2013 6th February]; Available from:

http://en.wikibooks.org/wiki/Operating_System_Design/Processes/SharedMem

ory.

111. Shared Memory. 2005 August 2005 [cited 2013 6th February]; Available from:

http://searchcio-midmarket.techtarget.com/definition/shared-memory.

112. Gouvas, P., T. Bouras, and G. Mentzas. An OSGi-Based Semantic Service-

Oriented Device Architecture. Lecture Notes in Computer Science. : Springer

Berlin Heidelberg. 2007.

http://www.w3schools.com/xml/xml_dtd.asp
http://en.wikipedia.org/wiki/Type-length-value#cite_note-1
http://en.wikibooks.org/wiki/Operating_System_Design/Processes/SharedMemory
http://en.wikibooks.org/wiki/Operating_System_Design/Processes/SharedMemory
http://searchcio-midmarket.techtarget.com/definition/shared-memory

