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ABSTRACT 

 

 

 

 

Nickel-based superalloys have the ability to form protective surface oxide 

scales at high temperature that provides them with resistance against further high 

temperature oxidation.  In this research two types of nickel-based alloys namely, Fe-

33Ni-19Cr and Fe-40Ni-24Cr were solution treated to vary the austenite grain size in 

order to observe its effect on the oxidation properties.  The alloys were heat treated at 

temperatures of 950ºC, 1000ºC, 1050ºC, 1100ºC, 1150ºC and 1200ºC for 3 hours 

followed by water quench.  The untreated and heat treated alloys were then subjected 

to high temperature oxidation under isothermal and cyclic condition for 500 hours 

and 150 cycles respectively in a specially designed oxidation rig.  

Thermogravimetric analysis in high purity oxygen was also performed on the alloys.  

The alloys were then analysed using optical microscope, scanning electron 

microscope, energy dispersive spectrometer and X-ray diffractometer.  The results 

show that the oxide scales formed consist of various metal-based oxides with 

thickness of 1 µm to 10 µm.  Both alloys show parabolic growth indicating the oxide 

was formed based on diffusion-controlled mechanism.  It was found that the heat 

treatment processes at 950ºC, 1000ºC and 1050ºC produced fine austenite grains of 

55 – 61 µm for Fe-33Ni-19Cr and 27 – 33 µm for Fe-40Ni-24Cr alloys.  Alloys 

treated at 1100ºC, 1150ºC and 1200ºC produced coarse austenite grains of 65 – 100 

µm for Fe-33Ni-19Cr and 36 – 41 µm for Fe-40Ni-24Cr alloys.  Both alloys with 

fine austenite grains exhibited lower oxidation rate in isothermal and cyclic oxidation 

tests.  This is due to the availability of ion diffusion path within the grain boundaries 

of fine grain alloys and hence allows the rapid formation of the protective oxide 

layer.  Therefore, these alloys can be used for high temperature applications. 
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ABSTRAK 

 

 

 

 

Superaloi berasaskan nikel mempunyai kebolehan untuk membentuk lapisan 

perlindungan oksida permukaan pada suhu tinggi yang memberikan rintangan kepada 

pengoksidaan suhu tinggi.  Di dalam kajian ini dua jenis aloi berasaskan nikel iaitu, 

Fe-33Ni-19Cr dan Fe-40Ni-24Cr telah dirawat larutan untuk membezakan saiz bijian 

austenit supaya dapat dilihat kesannya kepada sifat pengoksidaan.  Kedua-dua aloi 

telah dirawat haba pada suhu 950ºC, 1000ºC, 1050ºC, 1100ºC, 1150ºC dan 1200ºC 

selama 3 jam diikuti dengan lindap kejut di dalam air.  Aloi yang tidak dirawat dan 

dirawat haba telah melalui ujikaji pengoksidaan pada suhu tinggi di bawah keadaan 

sesuhu selama 500 jam dan berkitar untuk 150 kitaran dengan menggunakan rig 

pengoksidaan yang direka khas.  Analisis termogravimetri dalam oksigen tulen telah 

juga dijalankan ke atas aloi tersebut.  Aloi tersebut kemudian telah dianalisis dengan 

menggunakan mikroskop optik, mikroskop imbasan elektron, spektrometer serakan 

tenaga dan pembelau sinar-X.  Keputusan kajian menunjukkan bahawa oksida yang 

terbentuk mengandungi pelbagai oksida berasaskan logam dengan ketebalan 1 µm 

hingga 10 µm.  Kedua-dua aloi menunjukkan pertumbuhan parabolik menandakan 

oksida yang terbentuk adalah berdasarkan mekanisma resapan terkawal.  Hasil kajian 

menunjukkan proses rawatan haba pada suhu 950ºC, 1000ºC dan 1050ºC telah 

menghasilkan saiz bijian austenit yang halus dengan saiz 55 – 61 µm bagi aloi Fe-

33Ni-19Cr dan 27 – 33 µm bagi aloi Fe-40Ni-24Cr.  Aloi yang dirawat haba pada 

suhu 1100ºC, 1150ºC dan 1200ºC menghasilkan saiz austenit yang kasar dengan saiz 

65 – 100 µm bagi aloi Fe-33Ni-19Cr dan 36 – 41 µm bagi aloi Fe-40Ni-24Cr.  

Kedua-dua aloi yang mempunyai austenit berbijian halus menunjukkan kadar 

pengoksidaan yang rendah bagi ujian pengoksidaan sesuhu dan berkitar.  Ini 

disebabkan terdapatnya laluan resapan ion di dalam sempadan bijian bagi aloi 

berbijian halus, oleh itu pembentukan pantas lapisan oksida pelindung boleh berlaku.  

Oleh itu, aloi tersebut boleh digunakan untuk aplikasi suhu tinggi. 
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EDX spectrum of area A, (f) EDX spectrum of spot B, 

(g) 8H1000 and (h) 8H1050. 
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5.14 Scanning electron micrographs of Fe-33Ni-19Cr alloy 

isothermally oxidized at 500ºC for 300 hours; (a) 

8H1100, (b) 8H1150, (c) 8H1200 and (d) 8HUT. 
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5.15 Scanning electron micrographs with corresponding 

EDX spectrum of 8H950 samples Fe-33Ni-19Cr alloy 

isothermally oxidized at 500ºC for 500 hours; (a) 

8H950 at 10000x, (b) 8H950 at 25000x, (c) EDX 

spectrum of area C, (d) EDX spectrum of area D and 

(e) EDX spectrum of area E. 
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5.16 A proposed physical model for Ti-rich oxide formation 

as isolated particles, (a) initial growth, (b) expanded 

view of (a), (c) lateral growth of the oxide, (d) vertical 

growth of the oxide and formation of continuous oxide 

layer. 
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5.17 Scanning electron micrographs with corresponding 

EDX spectrum of 8H1000 samples Fe-33Ni-19Cr alloy 

isothermally oxidized at 500ºC for 500 hours; (a) 

8H1000 at 5000x, (b)8H1000 at 25000x, (c) EDX 

spectrum of area F, and (d) EDX spectrum of area G. 
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5.18 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy isothermally 

oxidized at 500ºC for 500 hours; (a) 8H1050, (b) EDX 

spectrum of area H, (c) 8H1100 at 10000x and (d) 

8H1100 at 25000x 
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5.19 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy isothermally 

oxidized at 500ºC for 500 hours; (a) 8H1150 at 5000x, 

(b) 8H1150 at 25000x, (c) 8H1150 at 50000x and (d) 

EDX spectrum of area I. 
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5.20 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy isothermally 

oxidized at 500ºC for 500 hours; (a) 8H1200 at 

10000x, (b) 8H1200 at 25000x, (c) 8HUT at 10000x, 

(d) 8HUT at 25000x, (e) EDX spectrum of area J and 

(f) EDX spectrum of area K. 
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5.21 Cross sectional scanning electron micrographs of Fe-

33Ni-19Cr alloy isothermally oxidized at 500ºC for 

500 hours; (a) 8H950, (b) EDX spectrum of spot Q, (c) 

8H1000 and (d) EDX line scan spectrum of 8H1050.  
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5.22 Cross sectional scanning electron micrographs of Fe-

33Ni-19Cr alloy isothermally oxidized at 500ºC for 

500 hours; (a) EDX line scan spectrum of 8H1100, (b) 

8H1150, (c) 8H1200 and (d) 8HUT. 
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5.23 Isothermal oxidation kinetics of Fe-33Ni-19Cr alloy at 

700ºC. 

 

129 

5.24 Weight change as a function of exposure time of Fe-

33Ni-19Cr alloy at 700ºC; (a) double log plots 

indicating parabolic rate law (m = 2) and (b) square of 

weight change indicating Kp value (mg
2
cm

-4
s

-1
).  The 

fitting parameter R
2
 with a value approaching one 

denotes the increasing consistence of the data with the 

fitting. 
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5.25 X-ray diffraction spectrums of Fe-33Ni-19Cr alloy 

isothermally oxidized at 700ºC for 500 hours; (a)  

8H950, (b)  8H1000, (c)  8H1050  (d)  8H1100, 

(e)  8H1150, (f)  8H1200 and (g)  8HUT. 
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5.26 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy isothermally 

oxidized at 700ºC for 150 hours; (a) 8H950, (b) EDX 

spectrum of area A, (c) 8H1000, (d) 8H1050 (e) 

8H1100, (f) 8H1150, (g) 8H1200 and (h) 8HUT. 
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5.27 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy isothermally 

oxidized at 700ºC for 300 hours; (a) 8H950, (b) EDX 

spectrum of area B, (c) EDX spectrum of area C, (d) 

8H1000 (e) 8H1050, (f) 8H1100, (g) EDX spectrum of 

area D and (h) EDX spectrum of area E. 
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5.28 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy isothermally 

oxidized at 700ºC for 300 hours; (a) 8H1150, (b) EDX 

spectrum of area F, (c) 8H1200 (1000x), (d) 8H1200 

(8000x), (e) EDX spectrum of area G and (f) 8HUT. 
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5.29 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy isothermally 

oxidized at 700ºC for 500 hours; (a) 8H950, (b) EDX 

spectrum of area H, (c) EDX spectrum of area I, (d) 

8H1000, (e) EDX spectrum of area J, (f) EDX 

spectrum of area K and (g) 8H1050. 
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5.30 A proposed physical model for Mn-Cr spinel oxide 

formation reveal grain boundary oxide. 

 

143 

5.31 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy isothermally 

oxidized at 700ºC for 500 hours; (a) 8H1100 (500x), 

(b) 8H1100 (1000x), (c) 8H1150 (500x), (d) 8H1150 

(1000x), (e) 8H1200 (500x), (f) 8H1200 (1000x), (g) 

EDX spectrum of area L and (h) 8HUT. 
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5.32 Cross sectional scanning electron micrographs of Fe-

33Ni-19Cr alloy isothermally oxidized at 700ºC for 

500 hours (EDX line scan: Magnification 2500x); (a) 

8H950, (b) 8H950 (10000x), (c) 8H1000, (d) 8H1050, 

(e) 8H1100, (f) 8H1150, (g) 8H1200 and (h) 8HUT. 
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5.33 Isothermal oxidation kinetics of Fe-33Ni-19Cr alloy at 

900ºC 

 

148 

5.34 Weight change as a function of exposure time of Fe-

33Ni-19Cr alloy at 900ºC; (a) double log plots 

indicating parabolic rate law (m = 2) and (b) square of 

weight change indicating Kp value (mg
2
cm

-4
s

-1
).  The 

fitting parameter R
2
 with a value approaching one 

denotes the increasing consistence of the data with the 

fitting. 

 

 

 

 

 

 

149 

5.35 X-ray diffraction spectrums of Fe-33Ni-19Cr alloy 

isothermally oxidized at 900ºC for 500 hours; (a)  

8H950, (b)  8H1000, (c)  8H1050, (d)  8H1100, 

(e)  8H1150, (f)  8H1200 and (g)  8HUT. 
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5.36 Scanning electron micrographs of Fe-33Ni-19Cr alloy 

isothermally oxidized at 900ºC for 100 hours; (a) 

8H950 (500x), (b) 8H950 (2500x), (c) EDX spectrum 

of area A, (d) 8H1000, (e) 8H1050 and (f) 8H1100. 
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5.37 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy isothermally 

oxidized at 900ºC for 100 hours; (a) 8H1150, (b) EDX 

spectrum of area B, (c) EDX spectrum of area C, (d) 

8H1200 and (e) 8HUT. 
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5.38 A proposed physical model of grain boundary attack 

produces notch features that would develop the grain 

boundary oxide topographies under the plan view. 
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5.39 Scanning electron micrographs of Fe-33Ni-19Cr alloy 

isothermally oxidized at 900ºC for 150 hours; (a) 

8H950, (b) 8H1000, (c) 8H1000 [spherical oxide], (d) 

8H1000 [needle-like oxide], (e) 8H1050, (f) 8H1100, 

(g) 8H1150 (1000x), (h) 8H1150 (10000x), (i) 8H1200 

and (j) 8HUT. 
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5.40 Scanning electron micrographs of Fe-33Ni-19Cr alloy 

isothermally oxidized at 900ºC for 300 hours; (a) 

8H950, (b) 8H1000, (c) 8H1050, (d) 8H1100, (e) 

8H1150, (f) 8H1200 (1000x), (g) 8HUT and (h) 

8H1200 (3000x). 
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5.41 Scanning electron micrographs of Fe-33Ni-19Cr alloy 

oxidized at 900ºC for 300 hours indicate minor oxide 

spallation; (a,c) 8H1100 and (b,d) 8H1200. 
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5.42 Back scattered electron image of scanning electron 

micrographs of Fe-33Ni-19Cr alloy isothermally 

oxidized at 900ºC for 500 hours; (a) 8H950, (b) 

8H1000, (c) 8H1050, (d) 8H1100, (e) 8H1150, (f) 

8H1200 (1000x), (g) 8HUT and (h) 8H1200 (3000x). 
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5.43 Scanning electron micrographs of Fe-33Ni-19Cr alloy 

isothermally oxidized at 900ºC for 500 hours; (a) 

8H950 (500x), (b) 8H950 (10000x) [angular oxide], (c) 

8H1000 (500x), (d) 8H1000 (10000x) [angular oxide], 

(e) 8H1000 (5000x) [spherical oxide], (f) 8H1050 

(1000x) and (g) 8H1050 (5000x). 
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5.44 Scanning electron micrographs of Fe-33Ni-19Cr alloy 

isothermally oxidized at 900ºC for 500 hours; (a) 

8H1100 (100x), (b) 8H1100 (1000x), (c) 8H1100 

(5000x) [oxide spalling spot], (d) 8H1150 (100x), (e) 

8H1150 (3000x) [oxide spalling spot], (f) 8H1150 

(500x), (g) 8H1200 (100x), (h) 8H1200 (500x), (i) 

8H1200 (3000x) [oxide spalling spot], (j) 8H1200 

(5000x) and (k) 8HUT (1000x). 
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5.45 Cross sectional scanning electron micrographs of Fe-

33Ni-19Cr alloy oxidized at 900ºC for 500 hours (EDX 

line scan: Magnification 2500x); (a) 8H950, (b) 

8H1000, (c) 8H1050, (d) 8H1100, (e) 8H1150, (f) 

8H1200 and (g) 8HUT. 
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5.46 Cross sectional scanning electron micrographs of Fe-

33Ni-19Cr alloy isothermally oxidized at 900ºC for 

500 hours showing internal oxidation; (a) 8H950, (b) 

8H1000, (c) 8H1050, (d) 8H1100, (e) 8H1150, (f) 

8H1200 and (g) 8HUT. 
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5.47 A proposed physical model of internal oxide 

penetration into the grain boundary for fine and coarse 

grain sample. 
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5.48 Isothermal oxidation kinetics of fine grain (8H950) and 

coarse grain (8H1200) Fe-33Ni-24Cr alloy at various 

oxidation temperature [Full line represent coarse grain 

and dash line represent fine grain]. 
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5.49 Isothermal oxidation kinetics of Fe-40Ni-24Cr alloy at 

500ºC. 
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5.50 Weight change as a function of exposure time of Fe-

40Ni-24Cr alloy at 500ºC; (a) double log plots 

indicating parabolic rate law (m = 2) and (b) square of 

weight change indicating Kp value (mg
2
cm

-4
s

-1
).  The 

fitting parameter R
2
 with a value approaching one 

denotes the increasing consistence of the data with the 

fitting. 

 

 

 

 

 

 

178 

5.51 X-ray diffraction spectrums of Fe-40Ni-24Cr alloy 

isothermally oxidized at 500ºC for 500 hours;             

(a)  HR950, (b)  HR1000, (c)  HR1050,           

(d)  HR1100, (e)  HR1150, (f)  HR1200 and     

(g)  HRUT. 

 

 

 

 

180 

5.52 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-40Ni-24Cr alloy isothermally 

oxidized at 500ºC for 300 hours; (a) HR950 (500x), (b) 

HR950 (10000x), (c) EDX spectrum of area A, (d) 

EDX spectrum of area B, (e) HR1000, (f) HR1050, (g) 

HR1100, (h) HR1150, (i) HR1200 and (j) HRUT. 

 

 

 

 

 

182 

5.53 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-40Ni-24Cr alloy isothermally 

oxidized at 500ºC for 500 hours; (a) HR950 (1000x), 

(b) HR950 (10000x), (c) HR950 (50000x), (d) EDX 

spectrum of area C, (e) EDX spectrum of area D and 

(f) EDX spectrum of area E. 
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5.54 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-40Ni-24Cr alloy isothermally 

oxidized at 500ºC for 500 hours; (a) HR1000, (b) EDX 

spectrum of area F, (c) HR1050, (d) EDX spectrum of 

area G, (e) HR1100 and (f) EDX spectrum of area H. 
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5.55 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-40Ni-24Cr alloy isothermally 

oxidized at 500ºC for 500 hours; (a) HR1150, (b) EDX 

spectrum of area I, (c) HR1200, (d) EDX spectrum of 

area J and (e) HRUT. 
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5.56 Cross sectional scanning electron micrographs of Fe-

40Ni-24Cr alloy isothermally oxidized at 500ºC for 

500 hours (EDX line scan: Magnification 10000x); (a) 

HR950, (b) HR1000, (c) HR1050, (d) HR1100, (e) 

HR1150, (f) HR1200 and (g) HRUT. 
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5.57 Isothermal oxidation kinetics of Fe-40Ni-24Cr alloy at 

700ºC. 

 

191 

5.58 Weight change as a function of exposure time of Fe-

40Ni-24Cr alloy at 700ºC; (a) double log plots 

indicating parabolic rate law (m = 2) and (b) square of 

weight change indicating Kp value (mg
2
cm

-4
s

-1
).  The 

fitting parameter R
2
 with a value approaching one 

denotes the increasing consistence of the data with the 

fitting. 
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5.59 X-ray diffraction spectrums of Fe-40Ni-24Cr alloy 

isothermally oxidized at 700ºC for 500 hours;            

(a)  HR950, (b)  HR1000, (c)  HR1050,           

(d)  HR1100, (e)  HR1150, (f)  HR1200 and      

(g)  HRUT. 
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5.60 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-40Ni-24Cr alloy isothermally 

oxidized at 700ºC for 150 hours; (a) HR950 (250x), (b) 

HR950 (2500x), (c) EDX spectrum of area A, (d) 

HR1000, (e) HR1050 (250x), (f) HR1050 (2500x), (g) 

EDX spectrum of area B and (h) HR1100. 
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5.61 Scanning electron micrographs of Fe-40Ni-24Cr alloy 

isothermally oxidized at 700ºC for 150 hours; (a) 

HR1150, (b) HR1200, (c) HRUT (500x) and (d) 

HRUT (10000x). 
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5.62 Scanning electron micrographs of Fe-40Ni-24Cr alloy 

isothermally oxidized at 700ºC for 300 hours; (a) 

HR950, (b) HR1000, (c) HR1050, (d) HR1100, (e) 

HR1150 and (f) HRUT. 

 

 

 

199 

5.63 Scanning electron micrographs with corresponding 

EDX spectrum of HR1200 Fe-40Ni-24Cr alloy 

isothermally oxidized at 700ºC for 300 hours; (a) 100x, 

(b) 3000x, (c) EDX spectrum of area C and (d) EDX 

spectrum of area D. 
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5.64 Scanning electron micrographs with corresponding 

EDX spectrum of HR950 sample Fe-40Ni-24Cr alloy 

isothermally oxidized at 700ºC for 500 hours; (a) 

1000x, (b) rough region (3000x), (c) flat region 

(3000x), (d) EDX spectrum of area E and (e) EDX 

spectrum of area F. 
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5.65 Scanning electron micrographs with corresponding 

EDX spectrum of HR1000 sample Fe-40Ni-24Cr alloy 

isothermally oxidized at 700ºC for 500 hours; (a) 100x, 

(b) 1000x, (c) EDX spectrum of area G and (d) EDX 

spectrum of area H. 
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5.66 Scanning electron micrographs of HR1050 sample Fe-

40Ni-24Cr alloy isothermally oxidized at 700ºC for 

500 hours. 
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5.67 Scanning electron micrographs of HR1100 sample Fe-

40Ni-24Cr alloy isothermally oxidized at 700ºC for 

500 hours. 
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5.68 Scanning electron micrographs of HR1150 sample Fe-

40Ni-24Cr alloy isothermally oxidized at 700ºC for 

500 hours. 
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5.69 Scanning electron micrographs of Fe-40Ni-24Cr alloy 

isothermally oxidized at 700ºC for 500 hours; (a) 

HR1200 (100x), (b) HR1200 (1000x), (c) HR1200 

(500x), (d) HR1200 (3000x), (e) HRUT (100x) and (f) 

HRUT (1000x).   
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5.70 Cross sectional scanning electron micrographs of Fe-

40Ni-24Cr alloy oxidized at 700ºC for 500 hours (EDX 

line scan: Magnification 2500x); (a) HR950, (b) 

HR1000, (c) HR1050, (d) HR1100, (e) HR1150, (f) 

HR1200 and (g) HRUT. 
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5.71 Isothermal oxidation kinetics of Fe-40Ni-24Cr alloy at 

900ºC. 

 

209 

5.72 Weight change as a function of exposure time of Fe-

40Ni-24Cr alloy at 900ºC; (a) double log plots 

indicating parabolic rate law (m = 2) and (b) square of 

weight change indicating Kp value (mg
2
cm

-4
s

-1
).  The 

fitting parameter R
2
 with a value approaching one 

denotes the increasing consistence of the data with the 

fitting. 
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5.73 X-ray diffraction spectrums of Fe-40Ni-24Cr alloy 

isothermally oxidized at 900ºC for 500 hours;            

(a)  HR950, (b)  HR1000, (c)  HR1050,          

(d)  HR1100, (e)  HR1150, (f)  HR1200 and      

(g)  HRUT. 
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5.74 Scanning electron micrographs of Fe-40Ni-24Cr alloy 

isothermally oxidized at 900ºC for 100 hours 

indicating minor oxide spallation; (a) HR950, (b) 

HR1000, (c) HR1050, (d) HR1100, (e) HR1150, (f) 

HR1200 and (g) HRUT. 
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5.75 Scanning electron micrographs of Fe-40Ni-24Cr alloy 

oxidized at 900ºC for 150 hours (100x); (a) HR950, (b) 

HR1000, (c) HR1050, (d) HR1050 (500x), (e) 

HR1100, (f) HR1100 (500x), (g) HR1150, (h) HR1150 

(500x), (i) HR1200 and (j) HRUT. 

 

 

 

 

217 

5.76 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-40Ni-24Cr alloy oxidized at 

900ºC for 300 hours; (a) HR950, (b) HR1000, (c) EDX 

spectrum of area A, (d) EDX spectrum of area B, (e) 

HR1050 (500x), (f) HR1050 (3000x), (g) HR1050 

(EDX image), (h) EDX spectrum of area C, (i) EDX 

spectrum of area D, (j) EDX spectrum of area E and 

(k) EDX spectrum of area F.   
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5.77 Scanning electron micrographs of Fe-40Ni-24Cr alloy 

oxidized at 900ºC for 300 hours; (a) HR1100, (b) 

HR1150, (c) HR1200 and (d) HRUT. 
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5.78 Scanning electron micrographs of Fe-40Ni-24Cr alloy 

oxidized at 900ºC for 500 hours; (a) HR950, (b) 

HR1000, (c) HR1050, (d) HR1100, (e) HR1150, (f) 

HR1200,  (g) HRUT and (h) HR1200 (3000x). 

 

 

 

222 

5.79 Cross sectional scanning electron micrographs of Fe-

40Ni-24Cr alloy oxidized at 900ºC for 500 hours (EDX 

line scan: Magnification 5000x); (a) HR950, (b) 

HR1000, (c) HR1050, (d) HR1100, (e) HR1150, (f) 

HR1200 and (g) HRUT. 

 

 

 

 

224 

5.80 Isothermal oxidation kinetics of fine grain (HR950) 

and coarse grain (HR1200) Fe-40Ni-19Cr alloy [Full 

line represent coarse grain and dash line represent fine 

grain]. 
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5.81 Isothermal oxidation kinetic of Fe-33Ni-19Cr and Fe-

40Ni-24Cr alloy oxidized at: (a) 500ºC, (b) 700ºC and 

(c) 900ºC.  [Full line represent coarse grain, dash line 

represent fine grain, red colour represent Fe-40Ni-24Cr 

alloy and blue colour represent Fe-33Ni-24Cr alloy]. 

 

 

 

 

227 

5.82 Cyclic oxidation kinetics of Fe-33Ni-19Cr alloy at 

700ºC. 

 

230 

5.83 X-ray diffraction spectrums of Fe-33Ni-19Cr alloy 

after cyclic oxidation at 700ºC for 150 cycles; (a)  

8H950, (b)  8H1000, (c)  8H1050, (d)  8H1100, 

(e)  8H1150, (f)  8H1200 and (g)  8HUT.  
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5.84 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy after cyclic 

oxidation at 700ºC for 100 cycles; (a) 8H950 (1000x), 

(b) EDX spectrum of image (a), (c) 8H1000, (d) 

8H1050, (e) 8H1100, (f) 8H1150, (g) 8H1200 and (h) 

8HUT. 
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5.85 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy after cyclic 

oxidation at 700ºC for 150 cycles; (a) 8H950 (500x), 

(b) 8H950 (2500x), (c) EDX spectrum of area A, (d) 

EDX spectrum of area B, (e) 8H1000 (500x), (f) 

8H1000 (2500x), (g) EDX spectrum of area C and (h) 

EDX spectrum of area D. 
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5.86 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy after cyclic 

oxidation at 700ºC for 150 cycles; (a) 8H1050 (500x), 

(b) 8H1050 (2500x), (c) EDX spectrum of area E, (d) 

EDX spectrum of area F, (e) 8H1100 (500x), (f) 

8H1100 (2500x), (g) EDX spectrum of area G and (h) 

EDX spectrum of area H. 
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5.87 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy after cyclic 

oxidation at 700ºC for 150 cycles; (a) 8H1150, (b) 

8H1200 and (c) 8HUT. 
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5.88 Cross sectional scanning electron micrographs 

corresponding EDX line scan analysis of Fe-33Ni-

19Cr alloy after cyclic oxidation at 700ºC for 150 

cycles; (a) 8H950, (b) 8H1000, (c) 8H1000 (elemental 

mapping) and (d) 8H1050. 
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5.89 Cross sectional scanning electron micrographs 

corresponding EDX line scan analysis of Fe-33Ni-

19Cr alloy after cyclic oxidation at 700ºC for 150 

cycles; (a) 8H1100, (b) 8H1150, (c) 8H1200 and (d) 

8HUT. 
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5.90 Cyclic oxidation kinetics of Fe-33Ni-19Cr alloy at 

900ºC. 

 

243 

5.91 X-ray diffraction spectrums of Fe-33Ni-19Cr alloy 

after cyclic oxidation at 900ºC for 150 cycles;            

(a)  8H950, (b)  8H1000, (c)  8H1050,             

(d)  8H1100, (e)  8H1150, (f)  8H1200 and       

(g)  8HUT. 
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5.92 Scanning electron micrographs of Fe-33Ni-19Cr alloy 

after cyclic oxidation at 900ºC for 100 cycles; (a) 

8H950, (b) 8H1000, (c) 8H1050, (d) 8H1100, (e) 

8H1150 (500x), (f) 8H1150 (2500x), (g) 8H1200 and 

(h) 8HUT.   
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5.93 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy after cyclic 

oxidation at 900ºC for 150 cycles; (a) 8H950, (b) 

8H1000, (c) EDX spectrum of area A and (d) EDX 

spectrum of area B. 
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5.94 Scanning electron micrographs with corresponding 

EDX spectrum of Fe-33Ni-19Cr alloy after cyclic 

oxidation at 900ºC for 150 cycles; (a) 8H1050, (b) 

8H1100 (100x), (c) 8H1100 (1000x), (d) 8H1150, (e) 

8H1200, (f) 8HUT, (g) EDX spectrum of area C and 

(h) EDX spectrum of area D. 
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5.95 Cross sectional scanning electron micrographs of Fe-

33Ni-19Cr alloy after cyclic oxidation at 900ºC for 150 

cycles (EDX line scan: Magnification 2500x); (a) 

8H950, (b) 8H1000, (c) 8H1050, (d) 8H1100, (e) 

8H1150, (f) 8H1200 and (g) 8HUT. 
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5.96 Cyclic oxidation kinetics of Fe-40Ni-24Cr alloy at 

700ºC. 

 

254 

5.97 X-ray diffraction spectrums of Fe-40Ni-24Cr alloy 

after cyclic oxidation at 700ºC for 150 cycles;            

(a)  HR950, (b)  HR1000, (c)  HR1050,          

(d)  HR1100, (e)  HR1150, (f)  HR1200 and     
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Superalloys is an alloy developed for elevated temperature service for 

extended periods of time with excellent metallurgical stability performance, with 

combinations of good mechanical properties, good surface stability and high 

temperature oxidation and corrosion resistant.  Superalloys are heat resistant alloys 

of nickel (Ni), iron (Fe) and cobalt (Co) based alloys that frequently operate at 

temperature exceeding 540ºC.  Superalloys are widely used in industrial applications 

where their high temperature strength and/or oxidation resistance is required.  Ni-

based superalloys are the most complex of the superalloys and are used in nuclear 

reactors, gas turbines, petrochemical, aerospace, and heat-treating industries, due to 

their favourable strength and excellent resistance to oxidation at elevated 

temperatures (Barnard et al., 2010).  Ni-based superalloys has the ability to form 

protective surface oxide scales at high temperatures that provides them with 

resistance to further high temperature oxidation (Barnard et al., 2010; Fulger et al., 

2009).  Based on its advantages, these alloys are widely used in many applications as 

high temperature structural materials. 
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Ni-based alloy is characterized by the high phase stability of the face centre 

cubic austenite matrix.  The high content of Ni maintains an austenitic structure to 

provide structure stability even at room temperature.  Ni-based alloy are used for a 

variety of applications, mainly involved corrosion-resistance and/or heat-resistance. 

The typical heat-resistance Ni-based alloys are nickel-chromium (Ni-Cr) and iron-

nickel-chromium (Fe-Ni-Cr) containing 65 to 80 % Ni and 35 to 70 % Ni 

respectively. Fe-Ni-Cr alloys are corrosion- and heat-resistant alloys, which are 

developed for high-temperature oxidizing environments.  The Fe-Ni-Cr alloys form a 

protective surface film of Cr2O3, which have excellent corrosion resistance in many 

severe environments (Campbell, 2008).  Oxidation and corrosion resistance is 

provided by the formation of a protective oxide layer which is formed when the 

metal is exposed to oxygen and encapsulates the material, and thus protecting the rest 

of the component.  Fe-33Ni-19Cr and Fe-40Ni-24Cr alloys are a standard material of 

construction for various types of power generation and thermal processing related 

applications.   

 

 

In these applications, the components are often subjected to the repeated 

thermal cyclic, which results a temperature gradient on heating and cooling.  A 

process of heat exchanger in the component involved heat production that affecting 

materials degradation.  Therefore, microstructural stability, oxidation and corrosion 

resistance behaviour of materials for related applications become a high priority 

(Pandey et al., 2009; Fulger et al., 2009; Agüero et al., 2005).  The key to good 

corrosion resistance is to establish a continuous layer of a slow growing, 

thermodynamically stable oxide layer such that subsequent oxidation that are 

responsible for the protection of metallic alloys in high temperature application (Nie 

et al., 2010; Peter et al., 2009). 

 

 

Extensive research has been carried out on oxidation related research on Fe-

Ni-Cr alloy for various applications.  Fe-33Ni-19Cr and Fe-40Ni-24Cr alloys were 

selected as promising materials based on studies by various researchers to operate in 

high temperature conditions.  These alloys show a high tendency to form a protective 

oxide film at high temperatures (Tan et al., 2011a; Nie et al., 2010; Jo et al., 2010). 
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However, oxide exfoliation was observed as one of a detrimental 

phenomenon, which may cause obstruction inside the components or severe 

oxidization damage (Tan et al., 2008b; Iglesias & Raffo Calderon, 2003).  One of the 

possible methods to mitigate the oxide spallation is to introduce compressive stresses 

at alloys surface, such as shot-peening (Tan et al., 2008b).  The metal usually has a 

higher coefficient of thermal expansion (CTE) than the oxide and induces a 

compressive stress in the oxide upon cooling (Khanna, 2002).  Apparently, 

introducing the compressive stress at alloy surface would help to reduce the 

accumulation of strain in the metal-oxide interfaces during cooling.  Results on shot-

peened sample showed the Cr-rich oxide, spinel and hematite were formed with the 

absence of magnetite on the refined surface grains improved the oxidation and oxide 

spallation resistance.  This is due to the small difference in CTE volume between the 

oxides and metal (Tan et al., 2008b).  The CTE volume (αv) of hematite and spinel 

decrease with a similar trend in transitioning from the testing temperature to room 

temperature, while, αv of magnetite becomes significantly different from that of 

spinel and hematite for temperatures below 400ºC.  The significant difference in αv 

of magnetite and spinel may have led to the sharper strain change at the spinel-

magnetite interface on as-received sample which may cause the exfoliation of oxide 

scale(Tan et al., 2008c).  While the smaller αv difference between hematite and spinel 

may have alleviated the strain at the spinel-hematite interface.  Furthermore, hematite 

has a higher thermal conductivity (12.6 W/m-K) than magnetite (5.0 W/m-K), which 

more rapidly dissipates heat and results in a higher strain intensity in the outer layer 

(hematite).  The increased strain intensity in hematite further decreased the strain 

change at the spinel-hematite interface.  The strain distribution and the αv of the 

oxides support the experimental observations that the oxide exfoliation occurred 

mostly at the spinel-magnetite interface.  

 

 

Thermomechanical treatment of grain boundary engineering also has been 

extensively investigated to improves the oxidation protection and other properties 

(Tan et al., 2013; Tan et al., 2011a; Tan & Allen, 2010; Tan et al., 2008a; Tan et al., 

2011b; Tan et al., 2006).  Whereas, the oxidation behaviour on the effect of grain 

refinement achieved by heat treatment has never been covered by other researchers.   
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Additionally, the carbides formation were found to have obvious influences 

on oxidation rate, which depends on the complex function of matrix structure (Wang 

et al., 2008).  The formation of precipitate at the scale-metal interface and at grain 

boundary depends on alloying element and working conditions of the oxidized 

samples (Kochubey et al., 2006).  The present of the precipitates may decrease the 

adherence of the oxide scale to the metallic substrate (Kochubey et al., 2006) and 

contribute to the preferred site for pit formation (Dutta, 2009; Tan et al., 2008a; Was 

et al., 2007; Dutta et al., 2004).  Whereas, internal oxidation of alloys led to 

increases the CTE mismatch between the oxides and metal (Hänsel et al., 2003).   

 

 

The metallurgical factors that influenced the oxidation rate include grain size 

and alloying elements addition (Deodeshmukh et al., 2011; Fulger et al., 2009; Zurek 

et al., 2008; Church et al., 2007; Wilson, 1995).  Influence of solution treatment 

temperature on mechanical properties of Fe-Ni-Cr alloy had been reported by        

Cai et al. (2003), and stated that the strength and the ductile properties are affected 

by different solution treatment and aging.  He also observed that microstructure 

analysis shows different morphologies of precipitation on the matrix and grain 

boundary with austenitic grains in specimens coarsen, with the increase of solution 

treatment temperature.  Zhang et al. (2008) reported that the solution treatments 

affected the formation of carbides precipitation and the average of grain size of the 

alloy.  The studies revealed that the average grain size increased with increasing the 

treatment temperature with fewer amounts of carbides found.  The solution 

treatments not only alter the alloy grain structure, but also affect the formation of 

carbides precipitates in the alloy.  Therefore, the solution treatment is one of the 

possible methods to control the formation of carbides which can hinder the massive 

decomposition of oxide precipitates.  

 

 

Grain refinements also affect the internal oxidation (Jo et al., 2010).  The 

grain size is related to internal oxidation at high temperature, specially, smaller 

grains provide more diffusion paths for alloying elements and oxygen.  Studies on 

Fe-53Ni-22Cr alloy found that oxidized samples forming Cr2O3 as an external oxide 

scale and Al2O3 as an internal oxide.  The average depth of internal oxide formed 
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along the grain boundary decreases in depth for smaller grain size, because internal 

oxidation took place mainly along grain boundaries.  Influence of grain size on the 

oxidation behaviour for other metal alloy also has been extensively studied by other 

researcher (Zheng et al., 2009; Peng et al., 2005; Niu et al., 2003; Perez, 2002; Yang 

et al., 2001; Perez & Adeva, 1998).  Studies had indicated that fine grain size shows 

better resistance to scale spallation, because of the finer grains increasing the 

relaxation of the oxide scale stress and improving the adhesion of the oxide layer on 

the matrix (Zheng et al., 2009; Peng et al., 2005; Niu et al., 2003; Perez, 2002; Yang 

et al., 2001; Perez & Adeva, 1998). 

 

 

The commercial Fe-Ni-Cr alloy is a Ni-based alloy widely used for high 

temperature applications as structural materials.  For that reason, the oxidation 

behavior of alloy has been extensively studied.  Fe-33Ni-19Cr and Fe-40Ni-24Cr 

alloys usually used as steam generator in heat exchanger and heat treating furnace 

component where the equipment are regularly subjected to repeating start-up and 

shut down cycles.  In addition, certain component would undergo long service times 

that require a material which need to sustain high temperature service condition.  

Generally, the oxidized Fe-Ni-Cr alloy often exposed to numerous thermal cycling 

conditions resulting in lower oxidation resistance.  Consequently, the isothermal and 

cyclic oxidation testing would give better understanding in the materials behavior 

during high temperature service and different operational conditions.   

 

 

To mitigate oxide spallation, researchers (Zheng et al., 2009; Tan et al., 

2008b; Tan et al., 2006; Niu et al., 2003) has found that surface modification, 

thermomechanical treatment and grain refinement would give superior effect on 

reduction of oxidation rate.  Solution treatment would give great effect on grain size 

alteration and controlling the precipitates formation of Fe-Ni-Cr alloy which is 

believed to serve a better oxidation protection at high temperature condition.  

However limited literature can be found on grain refinement effect of Fe-33Ni-19Cr 

and Fe-40Ni-24Cr alloys on the oxidation behaviour.  Solution treatment would give 

significant effect on grain size modification of Fe-Ni-Cr alloy.  Thus, research on 
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effect of different grain size on oxidation behavior was performed in this study to 

comprehend better understanding on oxidation mechanism. 

 

 

In order to further understand the mechanisms to mitigate oxide spallation, 

knowledge on the oxidation reaction related to ion diffusion must be fully 

investigated.  Grain refinement will affect the oxidation rate through grain boundary 

diffusion instead of lattice diffusion.  Grain boundary area act as a pathway for cation 

diffusion to the alloy surface (Stokes et al. 1989; Stott, et al., 1987), which develop 

rapid protective oxide layer.   

 

 

Therefore, grain refinement may be another approach to improve the 

resistance to oxide scale spallation, improve the oxide scale adhesion and reduce the 

depth of internal oxidation, while precipitation of carbide during heat treatment, will 

be one of factors that can also improve the oxidation resistance.  Based on these 

observations, research on the effect of various grain sizes by means of solution 

treatment processes on oxidation behaviour of Fe-33Ni-19Cr and Fe-40Ni-24Cr 

alloys was carried out to give a better understanding on oxidation mechanism at high 

temperature condition.   

 

 

 

 

1.2 Background of the Research 

 

 

Recent researchers (Tan et al., 2011(a); Fulger et al., 2009; Tan et al., 2008b; 

Tan et al., 2006; Iglesias & Raffo Calderon, 2003) indicate that a Fe-Ni-Cr alloy is 

one of most promising materials that show a high tendency to form a protective 

oxide film at high temperatures.  However oxide exfoliation may occur when the 

material is exposed at prolonged high temperatures.  The adhesion of oxide may be 

improved by solution treatment whereby variation in grain size may have an 

influence on the growth mechanism of oxide scale.  A comprehensive understanding 
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of their behaviour under high temperature oxidation environments needs to be 

developed, so that the alloys can be used widely at elevated temperatures without 

failure.   

 

 

The key issues for the oxidation behavior of Fe-Ni-Cr alloys are: 

(a) The alteration of grain size during heat treatment, which can potentially affect 

the mechanism and kinetics of oxidation. 

 

(b) The stabilities of oxide scale formation during oxidation, which can improve 

scale adhesion and mitigate scale exfoliation that will form a protective oxide 

layer on the metallic surface. 

 

 

 

 

1.3 Objective of the Research 

 

 

There are three main objective of this research, which are: 

(a) To investigate the mechanism of oxidation on solution treated and as-received 

samples of Fe-33Ni-19Cr and Fe-40Ni-24Cr alloys at high temperatures. 

 

(b) To determine the kinetics of oxidation on solution treated and as-received 

samples of Fe-33Ni-19Cr and Fe-40Ni-24Cr alloys at high temperatures. 

 

(c) To characterize the oxide scales formed on solution treated and as-received 

samples of Fe-33Ni-19Cr and Fe-40Ni-24Cr alloys based on qualitative and 

quantitative analysis. 
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1.4 Scope of the Research 

 

 

The scopes of this research are: 

(a) Studying the effect of solution treatment process on Fe-33Ni-19Cr and Fe-

40Ni-24Cr alloys at various solution treatment temperatures, namely 950ºC, 

1000ºC, 1050ºC, 1100ºC, 1150ºC and 1200ºC in order to vary the grain size 

of the alloys. 

 

(b) Determining the oxidation kinetics of solution treated and as-received 

samples of Fe-33Ni-19Cr and Fe-40Ni-24Cr alloys at different conditions 

(isothermal and cyclic oxidation) and temperatures (500ºC, 700ºC and 900ºC) 

in a specially built furnace. 

 

(c) Determining the oxidation kinetics in oxidizing environment of solution 

treated and as-received samples of Fe-33Ni-19Cr and Fe-40Ni-24Cr alloys 

under isothermal oxidation condition at different temperatures (500ºC, 700ºC 

and 900ºC) in high purity oxygen by using Thermogravimetric Analysis 

(TGA). 

 

(d) Investigating the properties and morphologies of the oxide scales formed at 

different oxidizing temperatures using scanning electron microscopy (SEM) 

technique. 

 

(e) Investigating the composition of the oxide scale formed on the surface of the 

materials using x-ray diffraction (XRD) and energy dispersive x-ray (EDX) 

techniques.   
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