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ABSTRACT 

 

 

Xylitol is currently produced in a large scale by a chemical reduction process 

that needs high energy and cost.  Biological conversion of xylitol utilizing 

microorganisms could be an alternative methodology that is environmentally friendly 

and economical.  This method has been proven to offer a high-yield and competitive.  

However, one of the major drawback in xylitol production using bacteria is the low 

yield.  Cell immobilization is a promising solution for the enhancement of xylitol 

production.  This study was carried out to improve the xylitol production, cell 

stability and performance by immobilizing recombinant Escherichia coli (E. coli) on 

untreated multiwalled carbon nanotubes (MWCNT) using optimum cultural 

condition.  The influence of different treatment on MWCNT and cultural 

environments on xylitol production, xylose reductase activity, cell viability and lysis 

of immobilized E. coli were investigated.  The immobilized cells on untreated 

MWCNT exhibited about 2-8-fold increase in xylitol production compared to free 

cells.  The immobilized cells also demonstrated a 22-315% reduction of β-

galactosidase activity, as indication of reduced cell lysis and a 17-401% increase in 

plasmid stability compared to free cells.  The xylitol production was successfully 

improved using central composite design for the response surface methodology.  The 

optimized cultivation conditions obtained for pH, temperature and isopropyl β-D-1-

thiogalactopyranoside concentration were 7.42, 29 
o
C and 0.005 mM, respectively.  

Under the optimized conditions, the xylitol concentration was 6.325 g/L, 

representing 91.5% of the predicted value (6.905 g/L) and 1.16-fold higher than the 

value before optimization process (5.467 g/L).  This study demonstrated that the 

immobilized cells system could be a promising approach to improve the productivity 

of xylitol using recombinant E. coli.  
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ABSTRAK 

 

 

Xilitol kini dihasilkan dengan skala besar menggunakan proses reduksi kimia 

yang memerlukan kos dan tenaga yang tinggi.  Penukaran biologi xilitol yang 

menggunakan bakteria adalah kaedah alternatif yang lebih mesra alam dan 

berekonomi.  Pendekatan ini telah dibuktikan dapat menawarkan hasil yang tinggi 

dan kaedah yang berdaya saing.  Walau bagaimanapun, salah satu penghalang 

terbesar pengeluaran xilitol dengan menggunakan bakteria ialah pengeluaran yang 

rendah.  Imobilisasi sel adalah satu langkah penyelesaian yang boleh menjanjikan 

peningkatan pengeluaran xilitol.  Kajian ini dijalankan bertujuan untuk 

meningkatkan pengeluaran xilitol, kestabilan dan prestasi sel oleh imobilisasi 

rekombinan Escherichia coli (E. coli) ke atas tiub nano karbon pelbagai lapisan 

(MWCNT) tidak dirawat menggunakan keadaan kultur yang optimum.  Kesan 

rawatan yang berbeza terhadap MWCNT dan persekitaran kultur untuk pengeluaran 

xilitol, aktiviti reduktase xilosa, kebolehhidupan sel dan lisis oleh E. coli yang 

diimobilisasikan telah dikaji.  Sel yang diimobilisasikan pada MWCNT tidak dirawat 

mempamerkan peningkatan 2-8 kali ganda dalam pengeluaran xilitol berbanding sel 

bebas.  Sel yang diimobilisasikan juga menunjukkan penurunan 22-315% aktiviti β-

galaktosidase, merujuk kepada penurunan sel lisis, dan peningkatan 17-401% 

kestabilan plasmid berbanding sel bebas.  Pengeluaran xilitol telah berjaya 

ditingkatkan menggunakan reka bentuk komposit pusat bagi kaedah permukaan 

gerak balas.  Keadaan kultur yang optimum diperoleh bagi pH, suhu dan kepekatan 

isopropil β-D-1-tiogalaktopiranosida adalah masing-masing 7.42, 29 
o
C dan 0.005 

mM.  Kepekatan xilitol sebanyak 6.325 g/L, mewakili 91.5% daripada nilai yang 

diramalkan (6.905 g/L) dan 1.16 kali ganda tinggi daripada nilai sebelum proses 

pengoptimuman (5.467 g/L) dengan menggunakan keadaan optimum.  Kajian ini 

menunjukkan bahawa sistem sel yang diimobilisasikan merupakan pendekatan yang 

menjanjikan peningkatan pengeluaran xilitol dengan menggunakan rekombinan E. 

coli.  
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CHAPTER 1 

INTRODUCTION  

1.1 Background of Study  

Xylitol (C5H12O5), is a sugar alcohol and a natural food sweetener that has 

many commercial applications especially in food, pharmaceutical and oral health 

industries (Mohamad et al., 2014; Rafiqul and Sakinah, 2012; Lagoas, 1998; 

Granström et al., 2007a).  High global demand on xylitol, is as a result of its insulin-

independent metabolism, anticarcinogenicity, excellent sweetening power and 

pharmacological properties (Povelainen, 2008).  Additionally, xylitol is utilized as 

moisturizer, cryoprotectant, preservative and an antioxidant (Mohamad et al., 2014).  

Xylitol has be produced by using solid-liquid extraction, chemical synthesis and 

biological processes.  In solid-liquid extraction, the naturally occurring xylitol is 

extracted from fruits and vegetables.  However, this process often yields low xylitol 

recovery with less than 9 g/L (Lagoas, 1998).  Currently, xylitol is manufactured 

industrially by reducing pure xylose that is produced by acid-catalysed hydrolysis.  

The hydrogenation of D-xylose from hemicellsulosic hydrolyzates has been applied 

to produce xylitol wherein the downstream processing is very expensive (Mohamad 

et al., 2014; Rafiqul and Sakinah, 2012; Granström et al., 2007a).  The production of 

xylitol by chemical reduction bring other drawbacks, for example, involvement of 

high pressure high temperature and pressure and the use of an costly compound 

(Saha, 2003).  Hence, it has been useful to discover methods for an efficient xylitol 

production by microorganisms. 
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Fermentation approach for the xylitol production is attractive owing to the 

problems associated with the quality and cost-effective product when chemically 

production is applied (Rafiqul and Sakinah, 2012; Saha, 2003).  In biological 

production of xylitol, most studies extensively used Candida sp. compared to 

metabolically engineered Sacharomyces cerevisiae because they are able to keep the 

redox balance during the synthesis of xylitol as they are good natural D-xylose 

consumers (Granström et al., 2007b).  In addition, these yeast strains are considered 

as the best producer of xylitol (Parajo et al., 1995; Winkelhausen and Kuzmanova, 

1998; Roberto et al., 1999).  Previously, very few literature reports xylitol production 

by bacteria which is used xylose and xylulose as substrate.  There are some studies 

have been used bacteria for the xylitol production including Corynebacterium sp.  

(Rangaswamy and Agblevor, 2002; Yoshitake et al., 1973), Enterobacter 

liquefaciens (Yoshitake et al., 1976), Cellulomonas cellulans, Corynebacterium 

glutamicum, Corynebacterium ammoniagenes, Serratia marcescens (Rangaswamy 

and Agblevor, 2002) and Bacillus coagulans, and Mycobacterium smegmatis 

(Izumori and Tuzaki, 1988).  Engineered E. coli is also one of the potential bacteria 

for the development of efficient industrial-scale production of xylitol from 

hemicellulose hydrolysate (Zhao et al., 2012), although in many engineered E. coli 

has been shown to produce relatively low xylitol yield of recombinant protein 

(Schein 2010).  Moreover, xylitol has been widely produced in free cells.  Even 

though in some cases remarkable yields were gained, but the xylitol productivity 

were very low. 

 

In an attempt to increase product yield, immobilization of cell has several 

benefits compared to free cells such as improved stability and productivity, cell 

reutilization, reduced contamination, continuous operation, and easier downstream 

processing.  As stated in a study by Domínguez (1998), in order to maintain the 

functionality of microorganisms in biological processes, the immobilization is a 

preferred technique.  The most common techniques of immobilization of cell 

employed in bioprocesses are adsorption, entrapment in a polymer gel and covalent 

binding to supports (Kosseva et al., 2009).  Immobilization supports such as calcium 

alginate, polyvinyl alcohol, polyacrylic hydrogel thin films, polyethylene oxide, 

polymer resins, porous glass spheres, zeolite and porous glass are most commonly 
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used in xylitol production previously.  However, the gel entrapment method that 

involved the use of calcium chloride during the solidification of gel reduced the pH 

of mixture and gave impacts on cell growth (Atanasova et al., 2009).  Futhermore, 

the major disadvantages of covalent binding to a matrix are expensive but low yield 

due to the exposure of the cells to poisonous reagents and severe reaction conditions.  

Therefore, the immobilization of cell by adsorption on multiwalled carbon nanotubes 

(MWCNT) has attracted great interest as a result of their special and unique 

characteristics.   

 

Carbon nanotubes is a new form of carbon that have created a great attention 

due to their unique tubular structure and excellent properties (Valcarcel and 

Cardenas, 2007).  The hollow and layered nanosizes structure make them as a good 

absorber because of the high electrical conductivity of carbon nanotubes (Tan et al., 

2012).  For example, the adsorption of metal ions on MWCNT is a fast process and 

only takes a few minutes (Li et al., 2002).  Generally, for the immobilization cells, 

there are two methods to improve the interactions between substrate and the cells 

which are chemical variation of the support surface to have high affinity to the cells 

(irreversible) and physical attachment of the cells on the support (reversible) (Folch 

and Toner, 2000).  The key factors in immobilization are the choice of support and 

immobilization method.  These crucial factors influence the stability and catalytic 

activity of the whole cells biocatalysts in order to achieve the goal of immobilization.  

Innovative studies and research of carbon nanotubes ought be continue to create new 

technologies and approaches by using carbon nanotubes as immobilization matrix for 

whole-cell biocatalyst. 
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In this study, MWCNT was chosen as a support for the cell immobilization.  

Recombinant E. coli were immobilized on MWCNT via adsorption to increase the 

productivity of xylitol, to decrease the cell lysis and to increase the plasmid stability.  

The main advantage of immobilization via adsorption is direct contact between 

nutrients and the matrix.  There has been no report on xylitol production by 

immobilized recombinant E. coli on multiwalled carbon nanotubes through 

adsorption technique.  The results presented propose that immobilization of cell is an 

encouraging method for xylitol production with high plasmid stability. 

1.2 Problem Statement  

The chemical xylitol production is expensive due to the use of expensive 

chemicals and materials.  As time goes on, demand for the production of xylitol 

keeps increasing and market is very high, especially in biomedical application.  

Formerly, the green innovation is introduced to the world, to create an alternative 

method for the biological xylitol production.  Application of recombinant E. coli as 

host organism in xylitol production faced problems such as low xylitol yield and 

plasmid stability, and high cell lysis due to overexpression limitation.  Cell 

immobilization approach is preferred to overcome the problems.  MWCNT is a 

potential material as immobilization support because of their unique and special 

characteristics in order to enhance the cell immobilization efficiency.  Therefore, the 

more effective cell immobilization technique, the high cell viability and plasmid 

stability, thus could improved the xylitol production. 
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1.3 Objective of Study 

The main objective of this study is to improve the xylitol production, cell 

stability and performance by immobilizing recombinant E. coli on multiwalled 

carbon nanotubes using optimum cultural conditions.   

1.4 Scopes of Study 

The following are the scopes of this research: 

 

a) Screening the effect of chemical treatment on multiwalled carbon 

nanotubes for immobilization of recombinant E. coli. 

b) Screening the effect of cultural conditions (medium, pH, temperature and 

IPTG concentration) on improvement of xylitol production and plasmid 

stability by the immobilized cells using one factor at one time method 

(OFAT). 

c) Optimization of the cultural conditions (pH, temperature and IPTG 

concentration) by central composite design (CCD) toward the 

achievement of maximum xylitol production. 
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