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ABSTRACT 

 

 

Good ventilation system is important to provide fresh air and comfortable 

environment for passengers. Lack of fresh air inside a bus compartment may cause 

various illnesses such as headache, asthma, cardiovascular and lung cancer. Two 

factors influence the ventilation system effectiveness namely the arrangement of air 

supply diffusers and the air return grilles. This thesis presents a study on air 

contaminants inside a university’s bus passenger compartment. The goal is to find a 

suitable ventilation arrangement that can reduce the concentration of the air 

contaminants. First a field measurement was carried out on a selected bus to measure 

the air contaminants at the front section, middle section and rear section. The 

contaminants include carbon monoxide, carbon dioxide, formaldehyde and 

particulate matter. Then computational fluid dynamics flow analyses were carried out 

on simplified model of the bus compartment employing renormalization group k-ε 

model for air flow, species transport for gases and discrete phase for particles. Five 

cases of ventilation arrangements were considered namely displacement ventilation 

with two air return grilles, underfloor air distribution with two air return grilles, 

mixing ventilation with four air return grilles, displacement ventilation with four air 

return grilles and underfloor air distribution with four air return grilles. It was found 

from the field measurements that the concentration of carbon monoxide, carbon 

dioxide, formaldehyde, particulate matter 1, particulate matter 2.5 and particulate 

matter 10 were 7 ppm, 1102 ppm, 0.18 ppm, 52 µg/m3, 52 µg/m3 and 51 µg/m3, 

respectively. Results of flow simulations show that the underfloor air distribution 

with four air return grilles is able to reduce the contaminants concentration inside the 

passenger compartment. On average, the concentrations of carbon monoxide, carbon 

dioxide, formaldehyde, particulate matter 1, particulate matter 2.5 and particulate 

matter 10 were reduced by about 40%, 10%, 38%, 37%, 33% and 30%, respectively. 

 

 



vi 
 

ABSTRAK 

 

 

 Sistem pengudaraan yang baik adalah penting untuk memberikan udara segar 

dan persekitaran yang selesa kepada penumpang. Kekurangan udara di dalam 

ruangan bas akan menyebabkan pelbagai penyakit seperti sakit kepala, asma, sakit 

jantung dan kanser paru-paru. Dua faktor mempengaruhi keberkesanan sistem 

pengudaraan iaitu susun atur sistem bekalan udara peresap dan jeriji udara pulangan. 

Tesis ini membentangkan kajian terhadap bahan cemar udara di dalam ruangan 

penumpang bas universiti. Matlamat kajian ini adalah untuk mencari susun atur 

sistem pengudaraan yang sesuai bagi mengurangkan kepekatan bahan cemar udara. 

Pertama pengukuran lapangan telah dijalankan pada bas yang telah dipilih untuk 

mengukur bahan cemar pada bahagian depan, bahagian tengah dan bahagian 

belakang. Bahan cemar ini terdiri daripada karbon monoksida, karbon dioksida, 

formaldehid dan zarah. Kemudian analisis aliran pengkomputeraan dinamik bendalir 

telah dijalankan pada model ruangan bas dengan menggunakan model 

renormalization group k-ε untuk aliran udara, species transport untuk gas dan 

discrete phase untuk zarah. Lima kes susun atur pengudaraan iaitu pengudaraan 

anjakan dengan dua jeriji udara pulangan, pengudaraan udara bawah lantai dengan 

dua jeriji udara pulangan, pengudaraan percampuran dengan empat jeriji udara 

pulangan, pengudaraan anjakan dengan empat jeriji udara pulangan dan pengudaraan 

udara bawah lantai dengan empat jeriji udara pulangan telah dikaji. Didapati 

daripada data pengukuran dimana tahap kepekatan karbon monoksida, karbon 

dioksida, formaldehid, zarah 1, zarah 2.5 dan  zarah 10 adalah 7 ppm, 1102 ppm, 

0.18 ppm,  52 µg/m3, 52 µg/m3 dan 51 µg/m3, masing-masing. Keputusan simulasi 

aliran menunjukkan pengudaraan udara bawah lantai dengan empat jeriji udara 

pulangan mampu mengurangkan tahap kepekatan bahan cemar di dalam ruangan 

penumpang. Secara purata, tahap kepekatan karbon monoksida, karbon dioksida, 

formaldehid, zarah 1, zarah 2.5 dan zarah 10 telah berkurang sebanyak 40%, 10%, 

38%, 37%, 33% dan 30%, masing-masing. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Indoor air quality is one of the major environmental concerns since people 

spend about 90% of their time indoors and about 7% of their daily time commuting, 

mostly between their workplace and their residence [1]. At present, many people use 

public transport buses for workplace, shopping, recreation and others [2]. Apart from 

public transport buses, university shuttle buses have attracted extensive attention 

since many students use this transportation in a university campus to travel to class, 

extracurricular activities and others [3].  

 

  

Indoor air contaminants are typically found inside the bus passenger 

compartment namely gases (CO, CO₂, and CH₂O) and particles (PM1, PM2.5 and 

PM10) [4]. The air contaminants such as CO, CO₂, CH₂O, PM1, PM2.5 and PM10 

originate from mobile sources (exhaust gas) [5]. Based on the previous studies, the 

concentration levels of CO, CO₂, CH₂O, PM1, PM2.5 and PM10 were exceeded the 

threshold limit values by the World Health Organization guideline [2]. Peak hours, 

passenger’s board and unboard, weather condition, ventilation setting, ventilation 

system, bus engine and bus age are the factors that influences the air contaminants 
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concentration level inside the bus passenger compartment [6]. The exposure of CO, 

CO₂, CH₂O, PM1, PM2.5 and PM10 concentrations could threaten the passenger’s 

health in both the short and long term. Air contaminants concentration is responsible 

for a wide range of health consequences such as headache, eye irritation, lung cancer, 

cardiovascular, tuberculosis, asthma and airborne transmission (Severe Acute 

Respiratory Syndrome and Avian Influenza and Swine Influenza) [7]. The particulate 

matters such as PM1, PM2.5 and PM10 can penetrate into the thoracic part of the 

airway and accumulate in the respiratory system [8].  Particles less than 10 µm in 

diameter can be inhaled and 80% of them will be deposited in the human respiratory 

system, possibly leading to fatal outcomes [9]. 

 

 

In bus passenger compartments require good ventilation system to provide 

fresh air and comfortable environment for passenger.  In engineering approach, the 

efficiency of ventilation system is evaluated by the indoor air quality.  Indoor Air 

Quality (IAQ) refers to the effect, good or bad of the contents of the air inside an 

enclosed environment [10]. Good IAQ is the quality of air which has no unwanted 

contaminants. Poor IAQ occurs when contaminants are present in excessive 

concentrations. Knowledge concerning the air contaminants concentration level is 

very important to prevent the inhalation of harmful air contaminants by passengers 

when commuting in a bus.  The ventilation systems of buses must be improved as 

bus travel is used for business, shopping, campus, school, recreation or others 

activities.  Several factors affect the performance of the ventilation system such as air 

supply velocity, air supply temperature, layout of the air supply diffusers and layout 

of the air return grilles [11].   
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Three types of ventilation system have been widely used in an enclosed 

environment such as mixing ventilation, displacement ventilation and underfloor air 

distribution [12]. Within the last few years, the mixing ventilation system has 

become a popular design and has been used in bus transportation. A common 

example of the mixing ventilation system is one equipped with ceiling-based air 

supply diffusers and air return grilles [12]. In bus transportation, the air is supplied 

via air supply diffusers (placed on the ceiling mounted ducting above passenger 

seats) and released through the air return grilles (placed on the roof). Based on the 

previous studies, this system is not capable of removing the indoor air contaminants 

when the door is opened for boarding and unboarding passengers [2]. This is because 

much of the supply air leaves the compartment without mixing with compartment air 

due to improper layout of air supply diffusers and air return grilles. When this 

situation occurs, the air contaminants will accumulate at the tight space of the 

compartment such as on the floor and passenger seats [13]. Therefore, as an 

alternative, modification of the present ventilation system is needed to reduce the air 

contaminants concentration inside the bus passenger compartment. 

 

 

The bus ventilation system is very important in order to reduce the air 

contaminants concentration level. At present, research works on reducing indoor air 

contaminants inside the bus passenger compartment is limited especially using 

computational fluid dynamics (CFD) software [14].  CFD software offers an 

alternative platform which is more convenient than experimental practice to predict 

the indoor air contaminant in various applications [15]. Hence, an investigation of 

indoor air contaminants using CFD method is necessity to find a suitable ventilation 

system design that would lower the level of air contaminants inside the bus passenger 

compartment.   
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1.2 Problem Statement 

 

 

The present ventilation system in bus is not capable of reducing the air 

contaminants. This is due to improper arrangements of the ventilation system such as 

the air supply diffusers and the air return grilles. In bus compartment the 

concentration level of air contaminants such as gases and particles exceeded the 

threshold limit set by the World Health Organization guideline due to improper 

arrangements of the ventilation system. The excessive concentration of gas and 

particle contaminants could affect passenger’s health when commuting in a bus. 

Therefore, the bus ventilation systems need to redesign to reduce the level of air 

contaminants. Two methods were identified namely a field measurement and CFD 

simulation. The field measurement was carried out to quantify the concentrations of 

CO, CO₂, CH₂O, PM1, PM2.5 and PM10 inside the bus. The CFD simulation model 

is to predict the air contaminants concentration level inside the bus. Five types of 

ventilation system design were considered namely a displacement ventilation with 

two air return grilles, underfloor air distribution with two air return grilles, mixing 

ventilation with four air return grilles, displacement ventilation with four air return 

grilles and underfloor air distribution with four air return grilles.  

 

 

 

1.3 Objectives of the Research 

 

 

Three objectives were developed to achieve the aim of this research. The 

following objectives are as follows: 

 

1. To quantify the indoor air contaminants concentration level inside a campus bus 

passenger compartment. 

2. To examine the effects of present ventilation system design (baseline case) on 

contaminants concentration level through the use of CFD method. 

3. To establish suitable ventilation system design for reducing the indoor air 

contaminants concentration level inside the campus bus passenger compartment. 
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1.4 Scopes of the Research 

 

 

The scope of this research is divided in two parts, i.e. field measurement and 

CFD simulation. The field measurements were carried out in a university shuttle bus 

passenger compartment. The distance of bus travelled within a university campus is 

48 km. The measurements were conducted during the peak hour period to examine 

the gas (CO, CO₂ and CH₂O) and particle (PM1, PM2.5 and PM10) concentration. In 

this study, the door is opened during quantification of the air contaminants 

concentration inside the bus passenger compartment. The weather condition was 

clear and no rain fell while the field measurements were conducted. 

 

 

Ansys CFD Fluent software (R-14) was used to develop a simplified      

three-dimensional model of the bus passenger compartment. The CFD model was 

meshed using the tetrahedron elements. In this study, the boundary condition of the 

air contaminants was prescribed at the door only due to outside air contaminants 

entering the bus. The passenger compartment is assumed clean and without air 

contaminants. Three types of air flow analysis namely RNG k-ε turbulent model, 

species transport model and discrete phase model were used to predict the 

distribution of air flow and air contaminants. Five types of ventilation system design 

were considered namely a displacement ventilation with two air return grilles, 

underfloor air distribution with two air return grilles, mixing ventilation with four air 

return grilles, displacement ventilation with four air return grilles and underfloor air 

distribution with four air return grilles.  The comparison between the field data and 

CFD simulation on various ventilation system designs were discussed. 
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1.5 Important of the Research 

 

 

Understanding the link between ventilation system design and air 

contaminants concentration can help to reduce the level of air contaminants 

concentration inside a bus passenger compartment. The reducing of air contaminants 

concentration enhances the air quality inside the bus compartment and to prevent the 

indoor air diseases to passengers. 

 

 

 

 

1.6 Thesis Outline 

 

 

 Chapter 1 presents an introduction, problem statement, objectives and scopes 

of this research.  

 

 

In Chapter 2, a review on field measurement and CFD simulation on air 

contaminants concentration in an enclosed environment are presented. Different 

types of air contaminants namely gases and particles are investigated. The effects of 

air contaminants on passenger health are also presented in this chapter. The 

methodology on a field measurement and CFD analysis on air contaminants 

concentration in an enclosed environment has been reviewed. In addition, different 

types of ventilation systems such as mixing ventilation, displacement ventilation and 

underfloor air distribution in an enclosed environment are presented. 

 

 

Chapter 3 presents the methodology of this study. The methodology is 

divided into two parts, i.e. field measurement and CFD simulation analysis. The field 

measurements are conducted to quantify the air contaminants concentration level 

inside the bus passenger compartment. The measured data is used for boundary 

condition in the CFD model and validation. A three-dimensional CFD model has 
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been developed in order to simulate and predict the air contaminants concentration 

inside the bus environment. Five cases of parametric analysis are presented in this 

chapter.  

 

 

In Chapter 4, the results of field measurements and CFD simulation on air 

contaminants concentration are presented. The levels of air contaminants 

concentration are discussed at the front section, middle section and rear section of the 

passenger compartment. The CFD simulations results are discussed based on the 

whole bus compartment, passenger seats and breathing level to examine the air 

contaminants concentration level. A parametric analysis on the various cases of 

ventilation system design is presented in this chapter. A new ventilation system 

design that was obtained from the parametric analysis was discussed based on the air 

flow and air contaminants. 

 

 

Chapter 5 presents a conclusion on air contaminant concentration levels 

inside the bus passenger compartment. The levels of air contaminants concentration 

levels and the effects of present ventilation system are concluded in this chapter. As 

well, the best ventilation system designs that reduce the indoor air contaminants 

inside the passenger compartment are presented. Several recommendations for future 

work have been proposed in this chapter. 
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