REDUCING INDOOR AIR CONTAMINANTS INSIDE A CAMPUS BUS PASSENGER COMPARTMENT

NOOR EMILIA BINTI AHMAD SHAFIE

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MARCH 2016

This is dedicated to my beloved husband (Dr. Iqbal Bin Mokhtar) and parents (Ahmad Shafie Bin Ariffin, Noor Lida Binti Raffie, Mokhtar Bin Ahmad & Sabariah Binti Md. Kassim).

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Dr. Haslinda Binti Mohamed Kamar the main supervisor, for her guidance, support, understanding and encouragement over the past years. I would like to thank to Assoc. Prof. Dr. Nazri Bin Kamsah the co-supervisor, for his encouragement, advice, understanding and support.

I am indebted to University Teknologi Malaysia (UTM) and the Ministry of Higher Education for providing the funding on this PHD study (Vot No. 06H75).

Thanks are extended to Mr. Khairul Nizam Bin Mod Noh for providing professional technical assistance in UTM bus service. Thanks are also given to MD Interactive and Exact Analytical for supplying and providing professional technical assistance in instrumentation and measurement.

Finally, I want to express my gratitude to my husband, parents and friends for their fully support and love.

ABSTRACT

Good ventilation system is important to provide fresh air and comfortable environment for passengers. Lack of fresh air inside a bus compartment may cause various illnesses such as headache, asthma, cardiovascular and lung cancer. Two factors influence the ventilation system effectiveness namely the arrangement of air supply diffusers and the air return grilles. This thesis presents a study on air contaminants inside a university's bus passenger compartment. The goal is to find a suitable ventilation arrangement that can reduce the concentration of the air contaminants. First a field measurement was carried out on a selected bus to measure the air contaminants at the front section, middle section and rear section. The contaminants include carbon monoxide, carbon dioxide, formaldehyde and particulate matter. Then computational fluid dynamics flow analyses were carried out on simplified model of the bus compartment employing renormalization group k-ε model for air flow, species transport for gases and discrete phase for particles. Five cases of ventilation arrangements were considered namely displacement ventilation with two air return grilles, underfloor air distribution with two air return grilles, mixing ventilation with four air return grilles, displacement ventilation with four air return grilles and underfloor air distribution with four air return grilles. It was found from the field measurements that the concentration of carbon monoxide, carbon dioxide, formaldehyde, particulate matter 1, particulate matter 2.5 and particulate matter 10 were 7 ppm, 1102 ppm, 0.18 ppm, 52 μ g/m³, 52 μ g/m³ and 51 μ g/m³, respectively. Results of flow simulations show that the underfloor air distribution with four air return grilles is able to reduce the contaminants concentration inside the passenger compartment. On average, the concentrations of carbon monoxide, carbon dioxide, formaldehyde, particulate matter 1, particulate matter 2.5 and particulate matter 10 were reduced by about 40%, 10%, 38%, 37%, 33% and 30%, respectively.

ABSTRAK

Sistem pengudaraan yang baik adalah penting untuk memberikan udara segar dan persekitaran yang selesa kepada penumpang. Kekurangan udara di dalam ruangan bas akan menyebabkan pelbagai penyakit seperti sakit kepala, asma, sakit jantung dan kanser paru-paru. Dua faktor mempengaruhi keberkesanan sistem pengudaraan iaitu susun atur sistem bekalan udara peresap dan jeriji udara pulangan. Tesis ini membentangkan kajian terhadap bahan cemar udara di dalam ruangan penumpang bas universiti. Matlamat kajian ini adalah untuk mencari susun atur sistem pengudaraan yang sesuai bagi mengurangkan kepekatan bahan cemar udara. Pertama pengukuran lapangan telah dijalankan pada bas yang telah dipilih untuk mengukur bahan cemar pada bahagian depan, bahagian tengah dan bahagian belakang. Bahan cemar ini terdiri daripada karbon monoksida, karbon dioksida, formaldehid dan zarah. Kemudian analisis aliran pengkomputeraan dinamik bendalir dijalankan pada model ruangan bas dengan menggunakan model telah renormalization group k- ε untuk aliran udara, species transport untuk gas dan discrete phase untuk zarah. Lima kes susun atur pengudaraan iaitu pengudaraan anjakan dengan dua jeriji udara pulangan, pengudaraan udara bawah lantai dengan dua jeriji udara pulangan, pengudaraan percampuran dengan empat jeriji udara pulangan, pengudaraan anjakan dengan empat jeriji udara pulangan dan pengudaraan udara bawah lantai dengan empat jeriji udara pulangan telah dikaji. Didapati daripada data pengukuran dimana tahap kepekatan karbon monoksida, karbon dioksida, formaldehid, zarah 1, zarah 2.5 dan zarah 10 adalah 7 ppm, 1102 ppm, 0.18 ppm, 52 μ g/m³, 52 μ g/m³ dan 51 μ g/m³, masing-masing. Keputusan simulasi aliran menunjukkan pengudaraan udara bawah lantai dengan empat jeriji udara pulangan mampu mengurangkan tahap kepekatan bahan cemar di dalam ruangan penumpang. Secara purata, tahap kepekatan karbon monoksida, karbon dioksida, formaldehid, zarah 1, zarah 2.5 dan zarah 10 telah berkurang sebanyak 40%, 10%, 38%, 37%, 33% dan 30%, masing-masing.

TABLE OF CONTENTS

TITLE

CHAPTER

	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	TAB	BLE OF CONTENTS	vii
	LIST	Г OF TABLES	xi
	LIST	Γ OF FIGURES	xiv
	LIST	Γ OF ABBREVIATIONS	xvii
	LIST	Γ OF SYMBOLS	xix
	LIST	Γ OF APPENDICES	XX
1	INT	PODUCTION	1
I			1
	1.1	Introduction	1
	1.2	Problem Statement	4
	1.3	Objectives of the Research	4
	1.4	Scopes of the Research	5
	1.5	Important of the research	6

1.6 Thesis Outline

PAGE

6

LITERATURE REVIEW		
Introduction		
Indoor Air Contaminant	9	
2.2.1 Gas Contaminants	10	
2.2.2 Particle Contaminants	12	
2.2.3 Standards and Guidelines of Indoor Air		
Contaminant	13	
2.2.4 Effects of Indoor Air Contaminants on		
Human Health	14	
2.2.5 Contaminant Concentration Level in a Bus		
Passenger Compartment	17	
Bus Transportation System	26	
2.3.1 Types of Bus Service	26	
2.3.2 Air-Conditioning System	28	
Ventilation	30	
2.4.1 Types of Ventilation System	31	
2.4.1.1 Mixing Ventilation	31	
2.4.1.2 Displacement Ventilation	33	
2.4.1.3 Underfloor Air Distribution	34	
Computational Fluid Dynamics Analysis on		
Ventilation System	36	
Summary and Research Gap	51	
	Introduction Introduction Indoor Air Contaminant 2.2.1 Gas Contaminants 2.2.2 Particle Contaminants 2.2.3 Standards and Guidelines of Indoor Air Contaminant 2.2.4 Effects of Indoor Air Contaminants on Human Health 2.2.5 Contaminant Concentration Level in a Bus Passenger Compartment Bus Transportation System 2.3.1 Types of Bus Service 2.3.2 Air-Conditioning System Ventilation 2.4.1.1 Mixing Ventilation 2.4.1.2 Displacement Ventilation 2.4.1.3 Underfloor Air Distribution Computational Fluid Dynamics Analysis on Ventilation System Summary and Research Gap	

2

3

METHODOLOGY		
3.1	Introduction	53
3.2	Field Measurement	55
	3.2.1 Test Instrument	58
	3.2.2 Test Procedure of Gas and Particle	
	Detections	61

3.3	Comp	utational Fluid Dynamics Analysis	63
	3.3.1	Geometry (Baseline Model)	64
	3.3.2	Mesh and Grid Verification	67
	3.3.3	Boundary Conditions and Properties	72
	3.3.4	Governing Equation and Finite Volume	
		Method	80
	3.3.5	Solver, Solution Methods and	
		Convergence	83
	3.3.6	Verification	85
		3.3.6.1 Air Flow Model	85
		3.3.6.2 Discretization Scheme	87
		3.3.6.3 Numerical Iteration	87
		3.3.6.4 Uncertainty and Error in CFD	
		Simulation	89
		3.3.6.5 Uncertainty and Error in Field	
		Measurement	90
	3.3.7	Validation	95
		3.3.7.1 Validation on Air Contaminants	
		Concentration	95
3.4	Param	netric Analysis (Cases)	98
3.5	Summ	nary	103

RESULTS AND DISCUSSION 104 4 4.1 Indoor Air Contaminants Concentration 104 4.1.1 Field Measurements on Gas and Particle Concentrations 105 Statistical Analysis 4.1.2 111 Summary 4.1.3 113 CFD Simulation on Ventilation System Design 4.2 114 Effects of Ventilation System Design 4.2.1 on Air Contaminants Concentration (Baseline Case) 114

		4.2.1.1 Spatial Distribution of Gases	
		Concentration in the Entire	
		Bus Compartment	117
		4.2.1.2 Spatial Distribution of Particles	
		Concentration in the Entire	
		Bus Compartment	121
	4.2.2	Effects of Ventilation System Design	
		on Air Contaminants Concentration	
		(Parametric Analysis)	126
		4.2.2.1 Case 1 (MV+DV&2RG)	127
		4.2.2.2 Case 2 (MV+UFAD&2RG)	131
		4.2.2.3 Case 3 (MV&4RG)	135
		4.2.2.4 Case 4 (MV+DV&4RG)	139
		4.2.2.5 Case 5 (MV+UFAD&4RG)	143
4.3	New Y	Ventilation System Design	148
	4.3.1	Spatial Distribution of Gases	
		Concentration in the Entire Bus	
		Compartment	150
	4.3.2	Spatial Distribution of Particles	
		Concentration in the Entire Bus	
		Compartment	154
	4.3.3	Air Flow Pattern	159
	4.3.4	Particulate Matter Transport Pattern	161
	4.3.5	Summary	163

CONCLUSIONS AND RECOMMENDATIONS		164	
5.1	Conclusions	164	
5.2	Recommendations of Future Work	166	
	CON 5.1 5.2	 CONCLUSIONS AND RECOMMENDATIONS 5.1 Conclusions 5.2 Recommendations of Future Work 	

REFERENCES	167
Appendices A-I	177-219

LIST OF TABLES

TITLE

PAGE

2.1	Sources of gas contaminants	11
2.2	Sources of particle contaminants	12
2.3	Comparison of indoor environment standards and	
	guidelines	13
2.4	Formaldehyde exposure levels in relation	
	to human health	14
2.5	Types of indoor air quality instruments	24
2.6	Summary of literature review related to indoor	
	air contaminant inside a bus passenger compartment	25
2.7	Summary of literature review related to ventilation	
	strategy	48
2.8	Summary of literature review related to CFD	
	method in analysing ventilation strategy	49
3.1	Description of the bus used for the field	
	measurements	56
3.2	The range and accuracy of the anemometer, indoor	
	environmental quality and particle counter	
	instruments	60
3.3	Dimensions of the CFD model	64
3.4	Types of grid, grid element and grid size	71
3.5	Boundary conditions used in CFD model	76
3.6	Properties of air	79
3.7	Properties of solid	79

3.8	Properties of gas	79
3.9	Properties of particle	79
3.10	Discretizations versus CO and PM1 concentrations	87
3.11	Number of iterations versus gases concentration	88
3.12	Number of iterations versus particles concentration	88
3.13	Uncertainty calculation of CO, CO ₂ and CH ₂ O	
	concentrations	89
3.14	Uncertainty calculation of PM1, PM2.5 and PM10	
	Concentrations	
3.15	Uncertainty calculation of CO concentration	91
3.16	Uncertainty calculation of CO ₂ concentration	92
3.17	Uncertainty calculation of CH ₂ O concentration	92
3.18	Uncertainty calculation of PM1 concentration	93
3.19	Uncertainty calculation of PM2.5 concentration	93
3.20	Uncertainty calculation of PM10 concentration	94
3.21	Validation of CO concentration with field	
	measurement data	96
3.22	Validation of CO ₂ concentration with field	
	measurement data	96
3.23	Validation of CH ₂ O concentration with field	
	measurement data	96
3.24	Validation of PM1 concentration with field	
	measurement data	97
3.25	Validation of PM2.5 concentration with field	
	measurement data	97
3.26	Validation of PM10 concentration with field	
	measurement data	97
3.27	Detail description of parametric analysis	98
4.1	Statistical results of CO, CO ₂ and CH ₂ O	
	concentrations	112
4.2	Statistical results of PM1, PM2.5 and PM10	
	concentrations	113
4.3	Air contaminants concentration level at the	
	breathing level	125

4.4	Comparison of air contaminants concentration		
	level on each case	147	
4.5	Dimensions of a new ventilation system design	149	
4.6	Air contaminants concentration level at the		
	breathing level	158	

LIST OF FIGURES

PAGE

Source of complaints in an enclosed environment		
Percentage of passengers on different modes		
transportation	10	
Air contaminants from the vehicles exhaust	11	
Types of particle sizes	12	
Different types of particle sizes	15	
The accumulated particles in a human lung	16	
CO ₂ concentration level versus time	18	
CO concentration level versus time	18	
PM2.5 concentration level versus time	18	
The total vehicles travel in every year in Malaysia	26	
Types of bus services in Malaysia (a) Public		
(b) School (c) Highway (d) Factory		
(e) University	27	
The schematic layout of air-conditioning system	28	
The schematic of a roof package unit	29	
The schematic of a floor package unit	30	
Mixing ventilation systems	32	
Short circuiting flow phenomenon	32	
Displacement ventilation systems	33	
The schematic diagram of displacement		
ventilation systems	34	
Underfloor air distribution systems	35	
	Source of complaints in an enclosed environment Percentage of passengers on different modes transportation Air contaminants from the vehicles exhaust Types of particle sizes Different types of particle sizes The accumulated particles in a human lung CO ₂ concentration level versus time CO concentration level versus time PM2.5 concentration level versus time The total vehicles travel in every year in Malaysia Types of bus services in Malaysia (a) Public (b) School (c) Highway (d) Factory (e) University The schematic layout of air-conditioning system The schematic of a roof package unit Mixing ventilation systems Short circuiting flow phenomenon Displacement ventilation systems The schematic diagram of displacement ventilation systems Underfloor air distribution systems	

2.20	The schematic diagram of underfloor air	
	distribution systems	35
3.1	Methodology flow chart	54
3.2	Field measurement flow chart	55
3.3	Bus passenger compartment	56
3.4	Location measurements of gases and particles	
	inside the bus passenger compartment	57
3.5	The in-campus route followed during the field	
	measurement	58
3.6	Indoor environmental quality instrument (gas)	59
3.7	Indoor environmental quality instrument (particle)	59
3.8	Anemometer instrument	60
3.9	CFD analysis steps flow chart	
	(baseline case analysis)	63
3.10	Orthogonal diagram of the bus passenger	
	compartment (a) Top view (b) Side view	
	(c) Front view	65
3.11	Perspective diagram of the bus passenger	
	compartment (a) Front view (b) Side view	66
3.12	The concentration level of CO via the number	
	of elements	67
3.13	The concentration level of PM1 via the number	
	of elements	68
3.14	The meshed of CFD model	69
3.15	Rectangular Cartesian grids	81
3.16	Rectangular Cartesian grids	82
3.17	Convergence of the gas contaminant (CO)	84
3.18	Convergence of the particle contaminant (PM1)	84
3.19	The comparison of viscous models via CO	
	concentration	85
3.20	The comparison of viscous models via PM1	
	concentration	86
3.21	CFD analysis steps flow chart	
	(parametric analysis)	99

3.22	Case 1 (MV+DV&2RG)	100
3.23	Case 2 (MV+UFAD&2RG)	100
3.24	Case 3 (MV&4RG)	101
3.25	Case 4 (MV+DV&4RG)	101
3.26	Case 5 (MV+UFAD&4RG)	102
4.1	Locations of data collection of gas and	
	particle concentrations (front section,	
	middle section and rear section)	104
4.2	CO concentration versus time	105
4.3	CO ₂ concentration versus time	106
4.4	CH ₂ O concentration versus time	107
4.5	PM1 concentration versus time	108
4.6	PM2.5 concentration versus time	109
4.7	PM10 concentration versus time	110
4.8	The components of air contaminants through	
	the bus door	115
4.9	Top view of the bus passenger compartment	
	(locations of cross sections A-A'	
	(front section), B-B' (middle section)	
	and C-C' (rear section)	115
4.10	Sampling locations of air contaminants	
	concentration level (front section,	
	middle section and rear section)	116
4.11	Sampling height of air contaminants	
	concentration level	116
4.12	Spatial distribution of CO concentration	
	(a) In cross section A-A' (front section)	
	(b) In cross section B-B' (middle section)	
	(c) In cross section C-C' (rear section)	118
4.13	Spatial distribution of CO ₂ concentration	
	(a) In cross sections A-A' (front section)	
	(b) In cross section B-B' (middle section)	
	(c) In cross section C-C' (rear section)	119

4.14	Spatial distribution of CH ₂ O concentration	
	(a) In cross sections A-A' (front section)	
	(b) In cross section B-B' (middle section)	
	(c) In cross section C-C' (rear section)	120
4.15	Spatial distribution of PM1 concentration	
	(a) In cross sections A-A' (front section)	
	(b) In cross section B-B' (middle section)	
	(c) In cross section C-C' (rear section)	122
4.16	Spatial distribution of PM2.5 concentration	
	(a) In cross sections A-A' (front section)	
	(b) In cross section B-B' (middle section)	
	(c) In cross section C-C' (rear section)	123
4.17	Spatial distribution of PM10 concentration	
	(a) In cross sections A-A' (front section)	
	(b) In cross section B-B' (middle section)	
	(c) In cross section C-C' (rear section)	124
4.18	Top view of the bus passenger compartment	
	(locations of cross sections A-A' (plane a-a)	
	and B-B' (plane b-b)	126
4.19	Comparison of gas concentrations over the	
	length of the bus (a) CO (b) CO_2 (c) CH_2O	128
4.20	Comparison of particulate concentrations	
	over the length of the bus (a) PM1 (b) PM2.5	
	(c) PM10	130
4.21	Comparison of gas concentrations over the	
	length of the bus (a) CO (b) CO_2 (c) CH_2O	132
4.22	Comparison of particulate concentrations	
	over the length of the bus (a) PM1 (b) PM2.5	
	(c) PM10	134
4.23	Comparison of gas concentrations over the	
	length of the bus (a) CO (b) CO_2 (c) CH_2O	136
4.24	Comparison of particulate concentrations	
	over the length of the bus (a) PM1 (b) PM2.5	
	(c) PM10	138

4.25	Comparison of gas concentrations over the	
	length of the bus (a) CO (b) CO_2 (c) CH_2O	140
4.26	Comparison of particulate concentrations	
	Over the length of the bus (a) PM1 (b) PM2.5	
	(c) PM10	142
4.27	Comparison of gas concentrations over the	
	length of the bus (a) CO (b) CO_2 (c) CH_2O	144
4.28	Comparison of particulate concentrations	
	over the length of the bus (a) PM1 (b) PM2.5	
	(c) PM10	146
4.29	Orthogonal diagram of the bus passenger	
	compartment (a) Top view (b) Side view	
	(c) Front view	149
4.30	Spatial distribution of CO concentration	
	(a) In cross section A-A' (front section)	
	(b) In cross section B-B' (middle section)	
	(c) In cross section C-C' (rear section)	151
4.31	Spatial distribution of CO ₂ concentration	
	(a) In cross sections A-A' (front section)	
	(b) In cross section B-B' (middle section)	
	(c) In cross section C-C' (rear section)	152
4.32	Spatial distribution of CH ₂ O concentration	
	(a) In cross sections A-A' (front section)	
	(b) In cross section B-B' (middle section)	
	(c) In cross section C-C' (rear section)	153
4.33	Spatial distribution of PM1 concentration	
	(a) In cross sections A-A' (front section)	
	(b) In cross section B-B' (middle section)	
	(c) In cross section C-C' (rear section)	155
4.34	Spatial distribution of PM2.5 concentration	
	(a) In cross sections A-A' (front section)	
	(b) In cross section B-B' (middle section)	
	(c) In cross section C-C' (rear section)	156

4.35	Spatial distribution of PM10 concentration	Spatial distribution of PM10 concentration			
	(a) In cross sections A-A' (front section)				
	(b) In cross section B-B' (middle section)				
	(c) In cross section C-C' (rear section)	157			
4.36	Velocity vectors of a new ventilation system				
	design (a) CO (b) CO_2 (c) CH_2O (d) PM1				
	(e) PM2.5 (f) PM10	160			
4.37	Particle trajectories of PM1 concentration	161			
4.38	Particle trajectories of PM2.5 concentration	162			
4.39	Particle trajectories of PM10 concentration	162			

LIST OF ABBREVIATIONS

ACH	-	Air exchange rate
ASHRAE	-	American Society of Heating, Refrigerating and
		Air-Conditioning Engineers
BC	-	Baseline case
BTEX	-	Benzene, toluene, ethyl-benzene and xylenes
CFD	-	Computational fluid dynamics
C1	-	Case 1
C2	-	Case 2
C3	-	Case 3
C4	-	Case 4
C5	-	Case 5
СО	-	Carbon monoxide
CO2	-	Carbon dioxide
CH₂O	-	Formaldehyde
DPM	-	Discrete phase model
DV	-	Displacement ventilation
EPA	-	Environment Protection Agency
GCI	-	Grid convergence index
HPC	-	Handheld particle counter
H1N1	-	Avian influenza and swine influenza
IAQ	-	Indoor air quality
IAC	-	Indoor air contaminant
IEQ	-	Indoor environmental quality
MAHC _S	-	Monoaromatic hydrocarbons
MV	-	Mixing ventilation

NIOSH	-	National Institute for Occupational Safety and Health
NO ₂	-	Nitrogen dioxide
OSHA	-	Occupational Safety and Health Administration
O ₂	-	Oxygen
PPM	-	Part per million
PMs	-	Particulate matters
PM1	-	Particulate matter 1
PM2.5	-	Particulate matter 2.5
PM10	-	Particulate matter 10
RANS	-	Reynolds-averaged Navier-Stokes
RG	-	Return grille
RNG	-	Renormalization-group
SARS	-	Severe acute respiratory syndrome
SD	-	Standard deviation
SIMPLE	-	Semi-implicit method for pressure linked equations
SO ₂	-	Sulphur dioxide
SF_6	-	Sulphur hexafluoride
TLVs	-	Threshold limit values
UTM	-	Universiti Teknologi Malaysia
UFPs	-	Ultrafine particles
UFAD	-	Underfloor air distribution
WHO	-	World Health Organization

LIST OF SYMBOLS

Α	-	Cross sectional area
С	-	Contaminant
Ст	-	Maximum measured
Ср	-	Maximum predicted
D	-	Diameter
D_H	-	Hydraulic diameter
g	-	Gravity
hr	-	Hour
L	-	Length
т	-	Meter
m^3	-	Cubic meter
\dot{m}_p	-	Mass flowrate of particle
Р	-	Wetted perimeter
Re	-	Reynold number
ST	-	Rate of thermal energy production
Т	-	Diffusion coefficient
u _f	-	Friction velocity
v,u,w	-	Velocity
у	-	Distance to the wall
y^+	-	Non-dimensional number
ρ	-	Density
υ	-	Kinematic viscosity
μg	-	Microgram

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A1	University shuttle bus	177
A2	Description of the bus	177
A3	Front section of the bus passenger compartment	178
A4	Rear section of the bus passenger compartment	178
B1	CFD model of Baseline Case	179
B2	CFD model of Case 1	179
B3	CFD model of Case 2	180
B4	CFD model of Case 3	180
B5	CFD model of Case 4	181
B6	CFD model of Case 5	181
C1	CFD Fluent simulation settings	182
D1	CFD Fluent steps flow chart	192
E1	Contour x-z plane of air contaminants (Case 5)	193
E2	Contour y-z plane of air contaminants (Case 5)	196
F1	Ansys license server (ce.utmgrid.utm.my)	199
G1	Samples data	200
G2	Statistical calculations	212
H1	Instrument calibration certificate of gas	
	contaminants	216
H2	Instrument calibration certificate of particle	
	contaminants	217
I1	List of publications	218
I2	List of conferences	219

CHAPTER 1

INTRODUCTION

1.1 Introduction

Indoor air quality is one of the major environmental concerns since people spend about 90% of their time indoors and about 7% of their daily time commuting, mostly between their workplace and their residence [1]. At present, many people use public transport buses for workplace, shopping, recreation and others [2]. Apart from public transport buses, university shuttle buses have attracted extensive attention since many students use this transportation in a university campus to travel to class, extracurricular activities and others [3].

Indoor air contaminants are typically found inside the bus passenger compartment namely gases (CO, CO₂, and CH₂O) and particles (PM1, PM2.5 and PM10) [4]. The air contaminants such as CO, CO₂, CH₂O, PM1, PM2.5 and PM10 originate from mobile sources (exhaust gas) [5]. Based on the previous studies, the concentration levels of CO, CO₂, CH₂O, PM1, PM2.5 and PM10 were exceeded the threshold limit values by the World Health Organization guideline [2]. Peak hours, passenger's board and unboard, weather condition, ventilation setting, ventilation system, bus engine and bus age are the factors that influences the air contaminants

concentration level inside the bus passenger compartment [6]. The exposure of CO, CO_2 , CH_2O , PM1, PM2.5 and PM10 concentrations could threaten the passenger's health in both the short and long term. Air contaminants concentration is responsible for a wide range of health consequences such as headache, eye irritation, lung cancer, cardiovascular, tuberculosis, asthma and airborne transmission (Severe Acute Respiratory Syndrome and Avian Influenza and Swine Influenza) [7]. The particulate matters such as PM1, PM2.5 and PM10 can penetrate into the thoracic part of the airway and accumulate in the respiratory system [8]. Particles less than 10 μ m in diameter can be inhaled and 80% of them will be deposited in the human respiratory system, possibly leading to fatal outcomes [9].

In bus passenger compartments require good ventilation system to provide fresh air and comfortable environment for passenger. In engineering approach, the efficiency of ventilation system is evaluated by the indoor air quality. Indoor Air Quality (IAQ) refers to the effect, good or bad of the contents of the air inside an enclosed environment [10]. Good IAQ is the quality of air which has no unwanted contaminants. Poor IAQ occurs when contaminants are present in excessive concentrations. Knowledge concerning the air contaminants concentration level is very important to prevent the inhalation of harmful air contaminants by passengers when commuting in a bus. The ventilation systems of buses must be improved as bus travel is used for business, shopping, campus, school, recreation or others activities. Several factors affect the performance of the ventilation system such as air supply velocity, air supply temperature, layout of the air supply diffusers and layout of the air return grilles [11].

Three types of ventilation system have been widely used in an enclosed environment such as mixing ventilation, displacement ventilation and underfloor air distribution [12]. Within the last few years, the mixing ventilation system has become a popular design and has been used in bus transportation. A common example of the mixing ventilation system is one equipped with ceiling-based air supply diffusers and air return grilles [12]. In bus transportation, the air is supplied via air supply diffusers (placed on the ceiling mounted ducting above passenger seats) and released through the air return grilles (placed on the roof). Based on the previous studies, this system is not capable of removing the indoor air contaminants when the door is opened for boarding and unboarding passengers [2]. This is because much of the supply air leaves the compartment without mixing with compartment air due to improper layout of air supply diffusers and air return grilles. When this situation occurs, the air contaminants will accumulate at the tight space of the compartment such as on the floor and passenger seats [13]. Therefore, as an alternative, modification of the present ventilation system is needed to reduce the air contaminants concentration inside the bus passenger compartment.

The bus ventilation system is very important in order to reduce the air contaminants concentration level. At present, research works on reducing indoor air contaminants inside the bus passenger compartment is limited especially using computational fluid dynamics (CFD) software [14]. CFD software offers an alternative platform which is more convenient than experimental practice to predict the indoor air contaminant in various applications [15]. Hence, an investigation of indoor air contaminants using CFD method is necessity to find a suitable ventilation system design that would lower the level of air contaminants inside the bus passenger compartment.

1.2 Problem Statement

The present ventilation system in bus is not capable of reducing the air contaminants. This is due to improper arrangements of the ventilation system such as the air supply diffusers and the air return grilles. In bus compartment the concentration level of air contaminants such as gases and particles exceeded the threshold limit set by the World Health Organization guideline due to improper arrangements of the ventilation system. The excessive concentration of gas and particle contaminants could affect passenger's health when commuting in a bus. Therefore, the bus ventilation systems need to redesign to reduce the level of air contaminants. Two methods were identified namely a field measurement and CFD simulation. The field measurement was carried out to quantify the concentrations of CO, CO₂, CH₂O, PM1, PM2.5 and PM10 inside the bus. The CFD simulation model is to predict the air contaminants concentration level inside the bus. Five types of ventilation system design were considered namely a displacement ventilation with two air return grilles, underfloor air distribution with two air return grilles, mixing ventilation with four air return grilles, displacement ventilation with four air return grilles and underfloor air distribution with four air return grilles.

1.3 Objectives of the Research

Three objectives were developed to achieve the aim of this research. The following objectives are as follows:

- 1. To quantify the indoor air contaminants concentration level inside a campus bus passenger compartment.
- 2. To examine the effects of present ventilation system design (baseline case) on contaminants concentration level through the use of CFD method.
- 3. To establish suitable ventilation system design for reducing the indoor air contaminants concentration level inside the campus bus passenger compartment.

1.4 Scopes of the Research

The scope of this research is divided in two parts, i.e. field measurement and CFD simulation. The field measurements were carried out in a university shuttle bus passenger compartment. The distance of bus travelled within a university campus is 48 km. The measurements were conducted during the peak hour period to examine the gas (CO, CO₂ and CH₂O) and particle (PM1, PM2.5 and PM10) concentration. In this study, the door is opened during quantification of the air contaminants concentration inside the bus passenger compartment. The weather condition was clear and no rain fell while the field measurements were conducted.

Ansys CFD Fluent software (R-14) was used to develop a simplified three-dimensional model of the bus passenger compartment. The CFD model was meshed using the tetrahedron elements. In this study, the boundary condition of the air contaminants was prescribed at the door only due to outside air contaminants entering the bus. The passenger compartment is assumed clean and without air contaminants. Three types of air flow analysis namely RNG k- ε turbulent model, species transport model and discrete phase model were used to predict the distribution of air flow and air contaminants. Five types of ventilation system design were considered namely a displacement ventilation with two air return grilles, underfloor air distribution with two air return grilles, mixing ventilation with four air distribution with four air return grilles. The comparison between the field data and CFD simulation on various ventilation system designs were discussed.

1.5 Important of the Research

Understanding the link between ventilation system design and air contaminants concentration can help to reduce the level of air contaminants concentration inside a bus passenger compartment. The reducing of air contaminants concentration enhances the air quality inside the bus compartment and to prevent the indoor air diseases to passengers.

1.6 Thesis Outline

Chapter 1 presents an introduction, problem statement, objectives and scopes of this research.

In Chapter 2, a review on field measurement and CFD simulation on air contaminants concentration in an enclosed environment are presented. Different types of air contaminants namely gases and particles are investigated. The effects of air contaminants on passenger health are also presented in this chapter. The methodology on a field measurement and CFD analysis on air contaminants concentration in an enclosed environment has been reviewed. In addition, different types of ventilation systems such as mixing ventilation, displacement ventilation and underfloor air distribution in an enclosed environment are presented.

Chapter 3 presents the methodology of this study. The methodology is divided into two parts, i.e. field measurement and CFD simulation analysis. The field measurements are conducted to quantify the air contaminants concentration level inside the bus passenger compartment. The measured data is used for boundary condition in the CFD model and validation. A three-dimensional CFD model has been developed in order to simulate and predict the air contaminants concentration inside the bus environment. Five cases of parametric analysis are presented in this chapter.

In Chapter 4, the results of field measurements and CFD simulation on air contaminants concentration are presented. The levels of air contaminants concentration are discussed at the front section, middle section and rear section of the passenger compartment. The CFD simulations results are discussed based on the whole bus compartment, passenger seats and breathing level to examine the air contaminants concentration level. A parametric analysis on the various cases of ventilation system design is presented in this chapter. A new ventilation system design that was obtained from the parametric analysis was discussed based on the air flow and air contaminants.

Chapter 5 presents a conclusion on air contaminant concentration levels inside the bus passenger compartment. The levels of air contaminants concentration levels and the effects of present ventilation system are concluded in this chapter. As well, the best ventilation system designs that reduce the indoor air contaminants inside the passenger compartment are presented. Several recommendations for future work have been proposed in this chapter.

REFERENCES

- Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., & Engelmann, W. H. (2001). The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. *Journal of Exposure Analysis and Environmental Epidemiology*, 11(3), 231-252.
- Zhu, S., Demokritou, P., & Spengler, J. (2010). Experimental and numerical investigation of micro-environmental conditions in public transportation buses. *Building and Environment*, 45(10), 2077-2088.
- Zhang, Q., Fischer, H. J., Weiss, R. E., & Zhu, Y. (2013). Ultrafine particle concentrations in and around idling school buses. *Atmospheric Environment*, 69, 65-75.
- 4. Shek Ka Wing (2010). *Thermal & indoor air quality environment on air conditioned buses*. Doctor Philosophy, Hong Kong Polytechnic University.
- 5. Hess-Kosa, K. (2011). *Indoor air quality: the latest sampling and analytical methods*. CRC Press.
- Chan, A. T. (2003). Commuter exposure and indoor–outdoor relationships of carbon oxides in buses in Hong Kong. *Atmospheric Environment*, 37(27), 3809-3815.
- Lau, W. L., & Chan, L. Y. (2003). Commuter exposure to aromatic VOCs in public transportation modes in Hong Kong. *Science of the Total Environment*, 308(1), 143-155.
- Kadiyala, A., & Kumar, A. (2011). Study of in-vehicle pollutant variation in public transport buses operating on alternative fuels in the city of Toledo, Ohio. *Open Environmental & Biological Monitoring Journal*, 4, 1-20.

- Vijayan, A., & Kumar, A. (2010). Experimental and statistical analyses to characterize in-vehicle fine particulate matter behavior inside public transit buses operating on B20-grade biodiesel fuel. *Atmospheric Environment*, 44(34), 4209-4218.
- Chan, M. Y. (2005). Commuters' exposure to carbon monoxide and carbon dioxide in air-conditioned buses in Hong Kong. *Indoor and Built Environment*, 14(5), 397-403.
- Hsu, D. J., & Huang, H. L. (2009). Concentrations of volatile organic compounds, carbon monoxide, carbon dioxide and particulate matter in buses on highways in Taiwan. *Atmospheric Environment*, 43(36), 5723-5730.
- 12. Awbi, H. B. (2003). Ventilation of buildings. Taylor & Francis.
- Rim, D., Siegel, J., Spinhirne, J., Webb, A., & McDonald-Buller, E. (2008). Characteristics of cabin air quality in school buses in Central Texas. *Atmospheric Environment*, 42(26), 6453-6464.
- Lin, Z., Jiang, F., Chow, T. T., Tsang, C. F., & Lu, W. Z. (2006). CFD analysis of ventilation effectiveness in a public transport interchange. *Building and Environment*, 41(3), 254-261.
- Tian, Z. F., Tu, J. Y., Yeoh, G. H., & Yuen, R. K. K. (2007). Numerical studies of indoor airflow and particle dispersion by large eddy simulation. *Building and environment*, 42(10), 3483-3492.
- 16. Maroni, M., Seifert, B., & Lindvall, T. (Eds.). (1995). *Indoor air quality: a comprehensive reference book*. Elsevier.
- 17. Land Public Transport Commission. (2007). National highway development plan in Malaysia. *Technical Report*.
- Faiz, A., Weaver, C. S., & Walsh, M. P. (1996). Air pollution from motor vehicles: standards and technologies for controlling emissions. World Bank Publications.
- ASHRAE Standard Committee. (2013). ASHRAE HANDBOOK: Fundamentals 2013.
- NIOSH. 2004. NIOSH Pocket Guide to Chemical Hazards (NPG). National Institute for Occupational Safety and Health, February.
- U.S. Department of Labor, Occupational Safety and Health Administration. Code of Federal Regulations, Title 29, Part 1910.1000-1910.1450.

- U.S. Environmental Protection Agency. 2008. Code of Federal Regulations, Title 40, Part 50. National Ambient Air Quality Standards.
- World Health Organization. 2000. Air Quality Guidelines for Europe, 2nd Edition. World Health Organization Regional Publications, European Series No. 91.World Health Organization, Regional Office for Europe, Copenhagen.
- 24. Proctor, N. H., & Hughes, J. P. (1980). Chemical Hazards of the Workplace. *The American Journal of Forensic Medicine and Pathology*, 1(4), 369.
- Koskela, R. S., Mutanen, P., Sorsa, J. A., & Klockars, M. (2005). Respiratory disease and cardiovascular morbidity. *Occupational and Environmental Medicine*, 62(9), 650-655.
- Adar, S. D., Davey, M., Sullivan, J. R., Compher, M., Szpiro, A., & Liu, L. J. S. (2008). Predicting airborne particle levels aboard Washington State school buses. *Atmospheric Environment*, 42(33), 7590-7599.
- Gomez-Perales, J. E., Colvile, R. N., Fernandez-Bremauntz, A. A., Gutierrez-Avedoy, V., Paramo-Figueroa, V. H., Blanco-Jimenez, S., & Nieuwenhuijsen, M. J. (2007). Bus, minibus, metro inter-comparison of commuters' exposure to air pollution in Mexico City. *Atmospheric Environment*, 41(4), 890-901.
- Li, S., Chen, S., Zhu, L., Chen, X., Yao, C., & Shen, X. (2009). Concentrations and risk assessment of selected monoaromatic hydrocarbons in buses and bus stations of Hangzhou, China. *Science of the Total Environment*, 407(6), 2004-2011.
- Wong, L. T., Mui, K. W., Cheung, C. T., Chan, W. Y., Lee, Y. H., & Cheung, C. L. (2011). In-cabin exposure levels of carbon monoxide, carbon dioxide and airborne particulate matter in air-conditioned buses of Hong Kong. *Indoor and Built Environment*, 20(4), 464-470.
- Mohammadyan, M., Alizadeh, A., & Mohammadpour, R. A. (2009). Personal exposure to PM10 among bus drivers in Sari, Iran. *Indoor and Built Environment*, 18(1), 83-89.
- Chen, X., Zhang, G., Zhang, Q., & Chen, H. (2011). Mass concentrations of BTEX inside air environment of buses in Changsha, China. *Building and Environment*, 46(2), 421-427.
- Zhang, Q., & Zhu, Y. (2010). Measurements of ultrafine particles and other vehicular pollutants inside school buses in South Texas. *Atmospheric Environment*, 44(2), 253-261.

- Song, W. W., Ashmore, M. R., & Terry, A. C. (2009). The influence of passenger activities on exposure to particles inside buses. *Atmospheric Environment*, 43(39), 6271-6278.
- Asmi, E., Antola, M., Yli-Tuomi, T., Jantunen, M., Aarnio, P., Makela, T., & Hameri, K. (2009). Driver and passenger exposure to aerosol particles in buses and trams in Helsinki, Finland. *Science of the Total Environment*, 407(8), 2860-2867.
- Chan, L. Y., Lau, W. L., Lee, S. C., & Chan, C. Y. (2002). Commuter exposure to particulate matter in public transportation modes in Hong Kong. *Atmospheric Environment*, 36(21), 3363-3373.
- 36. Lu, H., & Zhu, L. (2007). Pollution survey of carbonyl compounds in train air. *Frontiers of Environmental Science & Engineering in China*, 1(1), 125-128.
- Behrentz, E., Fitz, D. R., Pankratz, D. V., Sabin, L. D., Colome, S. D., Fruin, S. A., & Winer, A. M. (2004). Measuring self-pollution in school buses using a tracer gas technique. *Atmospheric Environment*, 38(23), 3735-3746.
- Borak, J., & Sirianni, G. (2007). Studies of self-pollution in diesel school buses: methodological issues. *Journal of Occupational and Environmental Hygiene*, 4(9), 660-668.
- Wohrnschimmel, H., Zuk, M., Martinez-Villa, G., Ceron, J., Cardenas, B., Rojas-Bracho, L., & Fernandez-Bremauntz, A. (2008). The impact of a Bus Rapid Transit system on commuters' exposure to Benzene, CO, PM 2.5 and PM 10 in Mexico City. *Atmospheric Environment*, 42(35), 8194-8203.
- Chio, C. P., Cheng, Y. H., Ling, M. P., Chen, S. C., & Liao, C. M. (2012). Quantitative estimation of excess mortality for drivers and passengers exposed to particulate matters in long-distance buses. *Atmospheric Environment*, 51, 260-267.
- Molle, R., Mazoue, S., Gehin, E., & Ionescu, A. (2013). Indoor-outdoor relationships of airborne particles and nitrogen dioxide inside Parisian buses. *Atmospheric Environment*, 69, 240-248.
- Tartakovsky, L., Baibikov, V., Czerwinski, J., Gutman, M., Kasper, M., Popescu, D., & Zvirin, Y. (2013). In-vehicle particle air pollution and its mitigation. *Atmospheric Environment*, 64, 320-328.
- 43. Chandra, A. R. (2010). *Refrigeration and air conditioning*. PHI Learning Pvt. Ltd.

- Ashrae Fundamentals Handbook (2013) Ch. 16: Ventilation and infiltration, American Society of Heating Refrigeration and Air-Conditioning Engineers, Atlanta, GA.
- 45. Davidson, L. (1989). Ventilation by displacement in a three-dimensional room a numerical study. *Building and Environment*, 24(4), 363-372.
- Zhong, K., Yang, X., Feng, W., & Kang, Y. (2012). Pollutant dilution in displacement natural ventilation rooms with inner sources. *Building and Environment*, 56, 108-117.
- Lin, Z., Chow, T. T., Tsang, C. F., Fong, K. F., & Chan, L. S. (2005). CFD study on effect of the air supply location on the performance of the displacement ventilation system. *Building and environment*, 40(8), 1051-1067.
- Qiu-Wang, W., & Zhen, Z. (2006). Performance comparison between mixing ventilation and displacement ventilation with and without cooled ceiling. *Engineering computations*, 23(3), 218-237.
- Webster, T., Bauman, F., & Ring, E., (2002). Supply fan energy use in pressurized underfloor air distribution system. In: CBE Summary Report, Berkeley.
- Yu, B. F., Hu, Z. B., Liu, M., Yang, H. L., Kong, Q. X., & Liu, Y. H. (2009). Review of research on air-conditioning systems and indoor air quality control for human health. *International Journal of Refrigeration*, 32(1), 3-20.
- Zhang, K., Zhang, X., Li, S., & Jin, X. (2014). Review of underfloor air distribution technology. *Energy and Buildings*, 85, 180-186.
- 52. Khosrow. B (2012). Numerical simulation of turbulent airflow, tracer gas diffusion and particle dispersion in a mock up aircraft cabin. Doctor Philosophy, University of Technology, Tehran, Iran.
- Zhang, Z., & Chen, Q. (2006). Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms. *Atmospheric environment*, 40(18), 3396-3408.
- Ho, S. H., Rosario, L., & Rahman, M. M. (2011). Comparison of underfloor and overhead air distribution systems in an office environment. *Building and Environment*, 46(7), 1415-1427.
- 55. Kim, G., Schaefer, L., Lim, T. S., & Kim, J. T. (2013). Thermal comfort prediction of an underfloor air distribution system in a large indoor environment. *Energy and Buildings*, 64, 323-331.

- Serra, N., & Semiao, V. (2009). Comparing displacement ventilation and mixing ventilation as HVAC strategies through CFD. *Engineering Computations*, 26(8), 950-971.
- Zhong, K., Yang, X., & Kang, Y. (2010). Effects of ventilation strategies and source locations on indoor particle deposition. *Building and Environment*, 45(3), 655-662.
- 58. Zhang, T., & Chen, Q. Y. (2007). Novel air distribution systems for commercial aircraft cabins. *Building and Environment*, 42(4), 1675-1684.
- Zhu, S., Srebric, J., Spengler, J. D., & Demokritou, P. (2012). An advanced numerical model for the assessment of airborne transmission of influenza in bus microenvironments. *Building and Environment*, 47, 67-75.
- Cheong, K. W. D., & Phua, S. Y. (2006). Development of ventilation design strategy for effective removal of pollutant in the isolation room of a hospital. *Building and Environment*, 41(9), 1161-1170.
- 61. Xiang, L., & Wang, H. (2011). Numerical simulation of pollutant transport within an vehicle cabin. *In Advances in Computer Science, Environment, Eco informatics, and Education* (pp. 575-579). Springer Berlin Heidelberg.
- Gao, Z., & Zhang, J. S. (2010). Numerical analysis for evaluating the exposure reduction effectiveness of room air cleaners. *Building and Environment*, 45(9), 1984-1992.
- 63. Zhang, Z., & Chen, Q. (2007). Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. *Atmospheric Environment*, 41(25), 5236-5248.
- 64. Daithankar, N., Udawant, K. D., & Karanth, N. V. (2015). Prediction of thermal comfort inside a midibus passenger cabin using CFD and its experimental validation (No. 2015-26-0210). *SAE Technical Paper*.
- Vignesh, S., & Sachin, P. (2013). Evaluation of bus ventilation methods using CFD (No. 2013-26-0043). SAE Technical Paper.
- Pawar, S., Gade, U. R., Dixit, A., Tadigadapa, S. B., & Jaybhay, S. (2014). Evaluation of cabin comfort in air conditioned buses using CFD (No. 2014-01-0699). SAE Technical Paper.
- Lin, B., Wang, X. T., & Hu, X. (2012, January). Research on the Effect of Natural Ventilation on Buses in Summer Based on CFD Numerical Simulation Method. *In Advanced Materials Research* (Vol. 361, pp. 1056-1060).

- John, P., Sriram, B., Kumar, S., Kumar, S. V., Ramasamy, P., & Ram, C. V. (2013). Ventilation improvement in a non-ac bus (No. 2013-01-2457). SAE *Technical Paper*.
- 69. Riachi, Y., & Clodic, D. (2014). A numerical model for simulating thermal comfort prediction in public transportation buses. *International Journal of Environmental Protection and Policy*, 2(1), 1-8.
- Petrone, G., Fichera, G., & Scionti, M. (2008). Thermal and fluid-dynamical Optimisation of Passengers Comfort in a Touring Bus Cabin. *In COMSOL Conference*.
- Yan, W., Zhang, Y., Sun, Y., & Li, D. (2009). Experimental and CFD study of unsteady airborne pollutant transport within an aircraft cabin mock-up. *Building and Environment*, 44(1), 34-43.
- Bulinska, A., Popiolek, Z., & Bulinski, Z. (2014). Experimentally validated CFD analysis on sampling region determination of average indoor carbon dioxide concentration in occupied space. *Building and Environment*, 72, 319-331.
- Hou, X. T., Li, A. G., Wang, Z. H., & Zhao, Y. J. (2012). Numerical study on indoor air quality of commercial kitchen in china. *Advanced Materials Research*, 374, 1100-1105.
- Tung, Y. C., Shih, Y. C., & Hu, S. C. (2009). Numerical study on the dispersion of airborne contaminants from an isolation room in the case of door opening. *Applied Thermal Engineering*, 29(8), 1544-1551.
- 75. Bari, S., & Naser, J. (2010). Simulation of airflow and pollution levels caused by severe traffic jam in a road tunnel. *Tunnelling and Underground Space Technology*, 25(1), 70-77.
- Jiang, J., & Wang, X. (2012). On the numerical study of indoor particle dispersion and spatial distribution. *Air, Soil & Water Research*, (5), 23-40.
- 77. Chang, T. J., Kao, H. M., & Hsieh, Y. F. (2007). Numerical study of the effect of ventilation pattern on coarse, fine, and very fine particulate matter removal in partitioned indoor environment. *Journal of the Air & Waste Management Association*, 57(2), 179-189.
- Chang, T. J., & Hu, T. S. (2008). Transport mechanisms of airborne particulate matters in partitioned indoor environment. *Building and Environment*, 43(5), 886-895.

- Beghein, C., Jiang, Y., & Chen, Q. Y. (2005). Using large eddy simulation to study particle motions in a room. *Indoor Air*, 15(4), 281-290.
- Akbari, K., & Mahmoudi, J. (2012). Numerical simulation of radon transport and indoor air conditions effects. *International Journal of Scientific and Engineering Research*, 3(6), 1-10.
- Duci, A., Papakonstantinou, K., Chaloulakou, A., & Markatos, N. (2004). Numerical approach of carbon monoxide concentration dispersion in an enclosed garage. *Building and Environment*, 39(9), 1043-1048.
- Chao, C. Y. H., & Wan, M. P. (2004). Airflow and air temperature distribution in the occupied region of an underfloor ventilation system. *Building and Environment*, 39(7), 749-762.
- Cai, H., Long, W., Li, X., & Barker, D. (2010). Evaluating emergency ventilation strategies under different contaminant source locations and evacuation modes by efficiency factor of contaminant source. *Building and Environment*, 45(2), 485-497.
- Rim, D., & Novoselac, A. (2010). Ventilation effectiveness as an indicator of occupant exposure to particles from indoor sources. *Building and Environment*, 45(5), 1214-1224.
- Yam, R., Yuen, P. L., Yung, R., & Choy, T. (2011). Rethinking hospital general ward ventilation design using computational fluid dynamics. *Journal of Hospital Infection*, 77(1), 31-36.
- Kang, Y., Wang, Y., & Zhong, K. (2011). Effects of supply air temperature and inlet location on particle dispersion in displacement ventilation rooms. *Particuology*, 9(6), 619-625.
- Causone, F., Olesen, B. W., & Corgnati, S. P. (2010). Floor heating with displacement ventilation: an experimental and numerical analysis. *HVAC&R* Research, 16(2), 139-160.
- Villafruela, J. M., Olmedo, I., de Adana, M. R., Méndez, C., & Nielsen, P. V. (2013). CFD analysis of the human exhalation flow using different boundary conditions and ventilation strategies. *Building and Environment*, 62, 191-200.
- 89. Fiser, J., & Jicha, M. (2013). Impact of air distribution system on quality of ventilation in small aircraft cabin. *Building and Environment*, 69, 171-182.

- Cheong, K. W. D., Djunaedy, E., Chua, Y. L., Tham, K. W., Sekhar, S. C., Wong, N. H., & Ullah, M. B. (2003). Thermal comfort study of an airconditioned lecture theatre in the tropics. *Building and Environment*, 38(1), 63-73.
- Posner, J. D., Buchanan, C. R., & Dunn-Rankin, D. (2003). Measurement and prediction of indoor air flow in a model room. *Energy and Buildings*, 35(5), 515-526.
- 92. Srebric, J., & Chen, Q. (2002). An example of verification, validation, and reporting of indoor environment CFD analyses (RP-1133). *Transactions-American Society of Heating Refrigerating and Air Conditioning Engineers*, 108(2), 185-194.
- Gadgil, A. J., Lobscheid, C., Abadie, M. O., & Finlayson, E. U. (2003). Indoor pollutant mixing time in an isothermal closed room: an investigation using CFD. *Atmospheric Environment*, 37(39), 5577-5586.
- Zhao, B., Zhang, Y., Li, X., Yang, X., & Huang, D. (2004). Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method. *Building and Environment*, 39(1), 1-8.
- 95. Tian, Z. F., Tu, J. Y., Yeoh, G. H., & Yuen, R. K. K. (2006). On the numerical study of contaminant particle concentration in indoor airflow. *Building and Environment*, 41(11), 1504-1514.
- Chang, T. J., & Hu, T. S. (2008). Transport mechanisms of airborne particulate matters in partitioned indoor environment. *Building and Environment*, 43(5), 886-895.
- 97. Liu, D., Zhao, F. Y., & Tang, G. F. (2008). Numerical analysis of two contaminants removal from a three-dimensional cavity. *International Journal of Heat and Mass Transfer*, 51(1), 378-382.
- Rim, D., & Novoselac, A. (2008). Transient simulation of airflow and pollutant dispersion under mixing flow and buoyancy driven flow regimes in residential buildings. *ASHRAE Transactions*, 114(2), 130-142.
- Zhang, Z., Chen, X., Mazumdar, S., Zhang, T., & Chen, Q. (2009). Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup. *Building and Environment*, 44(1), 85-94.

- 100. Kao, H. M., Chang, T. J., Hsieh, Y. F., Wang, C. H., & Hsieh, C. I. (2009). Comparison of airflow and particulate matter transport in multi-room buildings for different natural ventilation patterns. *Energy and Buildings*, 41(9), 966-974.
- 101. Ali, A. A., Elsafty, A. F., & Elsayed, A. A. (2012). CFD investigation of indoor air distribution in marine applications. *European Journal of Scientific Research*, 88(2), 196-208.
- 102. De Lieto Vollaro, R. (2013). Indoor climate analysis for urban mobility buses:a CFD model for the evaluation of thermal comfort. *International Journal of Environmental Protection and Policy*, 1(1), 1.
- 103. Li, F., Liu, J., Pei, J., Lin, C. H., & Chen, Q. (2014). Experimental study of gaseous and particulate contaminants distribution in an aircraft cabin. *Atmospheric Environment*, 85, 223-233.
- 104. Fluent, ANSYS. (2011). 14.0 User's Manual. ANSYS Inc., Canonsburg, PA.
- 105. Richardson, L. F., & Gaunt, J. A. (1927). The deferred approach to the limit. Part I. Single lattice. Part II. Interpenetrating lattices. *Philosophical Transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character*, 299-361.
- 106. AIAA G-077-1998e, Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, American Institute of Aeronautics and Astronautics, Reston.
- 107. Cengel, Y. A., & Cimbala, J. M. (2006). *Fluid mechanics*. McGraw-Hill Education.
- Bergman, T. L., & Incropera, F. P. (2011). *Introduction to heat transfer*. John Wiley & Sons.
- 109. Zhang, Z., Zhang, W., Zhai, Z. J., & Chen, Q. Y. (2007). Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Comparison with experimental data from literature. *HVAC&R Research*, 13(6), 871-886.
- 110. Hughes, I., & Hase, T. (2010). *Measurements and their uncertainties: a practical guide to modern error analysis*. Oxford University Press.
- 111. ASTM E2655-14, Standard Guide for Reporting Uncertainty of Test Results and Use of the Term Measurement Uncertainty in ASTM Test Methods, ASTM International, West Conshohocken.