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ABSTRACT 

 

 

 

 

Sea level rise has posed a serious threat particularly to the coastal 

environment due to its prominent association to the land inundation. The rise of 

global sea level might be inevitable, however the assessment of the impending 

impacts of the sea level rise is a vital approach to mitigate the incoming impacts. 

This study is an initiative to assist coastal vulnerability assessment due to the sea 

level rise impacts specifically across Malaysian coastal regions by using Mean Tidal 

Range parameter derived from tidal models. The tidal models were generated from 

merged along-track TOPEX and Jason-1 sea level anomalies (SLA) data retrieved in 

Radar Altimeter Database System (RADS) for South China Sea region covering 

latitude 0° N to 13° N and longitude 98° E to 120° E. Tidal harmonic analysis was 

performed by using t-tide Matlab programme to estimate amplitude and phase for 

tidal constituents M2, S2, K1 and O1 from altimetry data. The corresponding tidal 

constituents were subsequently interpolated into 0.25° square grids. The overall 

accuracy of the tidal models is Root Sum Square (RSS) whose value is 8.59 cm, 

while the Root Mean Square (RMS) of Mean Tidal Range values derived from the 

tidal models is 17.12 cm. Subsequent to the derivation of Mean Tidal Range from the 

corresponding tidal models, it can be inferred that Mean Tidal Range values for 

Malaysian coastal regions vary from 81.95 cm to 158.97 cm. There is a consensus in 

various coastal vulnerability studies that a region whose Mean Tidal Range value 

less than 2 meters is the most susceptible region to the sea level rise impacts. 

Therefore, Malaysian coastal regions can be generally categorized as vulnerable due 

to the sea level rise threats. The use of tidal models are expected to complement the 

existing coastal management system in order to monitor level of coastal severity 

caused by the sea level rise impacts especially for Malaysian coastal regions.  
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ABSTRAK 

 

Kenaikan aras laut telah mengakibatkan ancaman yang serius terutamanya 

kepada kawasan pantai disebabkan oleh perkaitan rapatnya dengan banjir. Kenaikan 

aras laut sejagat mungkin tidak dapat dielakkan, walau bagaimanapun penilaian 

impak kenaikan aras laut adalah penting untuk mengurangkan impak yang 

mendatang. Kajian ini adalah suatu inisiatif  bertujuan untuk membuat penilaian 

kerentanan kawasan pantai terhadap kesan kenaikan aras laut khususnya sepanjang 

kawasan pantai Malaysia menggunakan pemboleh ubah min julat pasang surut yang 

diperoleh daripada model pasang surut. Model pasang surut telah dihasilkan daripada 

gabungan data anomali aras laut (SLA) sepanjang trek TOPEX dan Jason-1 yang 

diperolehi daripada sistem pangkalan data altimeter radar (RADS) untuk kawasan 

Laut China Selatan yang merangkumi latitud 0° N hingga 13° N dan longitud 98° E 

hingga 120° E. Analisis harmonik pasang surut telah dilakukan dengan menggunakan 

program Matlab T-TIDE untuk menganggar amplitud dan fasa bagi juzuk-juzuk 

pasang surut M2, S2, K1 dan O1 daripada data altimeter. Juzuk-juzuk pasang surut 

tersebut kemudiannya diinterpolasi kepada petak grid 0.25°. Ketepatan keseluruhan 

bagi model pasang surut dinyatakan dengan punca jumlah kuasa dua (RSS) dimana 

nilainya adalah 8.59 cm, manakala nilai punca min kuasa dua (RMS) bagi min julat 

pasang surut yang diperoleh daripada model pasang surut adalah 17.12 cm. Berikutan 

dengan penerbitan min julat pasang surut daripada model pasang surut tersebut, nilai-

nilai min julat pasang surut bagi kawasan pantai Malaysia boleh disimpulkan 

berbeza-beza daripada 81.95 cm ke 158.97 cm. Terdapat satu kesepakatan dalam 

banyak kajian kerentanan pantai iaitu sesuatu kawasan yang mempunyai nilai min 

julat pasang surut kurang daripada 2 meter adalah kawasan yang paling terdedah 

kepada impak kenaikan aras laut. Oleh itu, kawasan-kawasan pantai Malaysia secara 

umumnya boleh dikategorikan sebagai berbahaya kepada ancaman kenaikan aras 

laut. Penggunaan model pasang surut dijangka dapat saling melengkapi sistem 

pengurusan pantai sedia ada untuk memantau tahap keterukan kawasan pantai 

disebabkan kesan-kesan kenaikan aras laut terutamanya untuk kawasan-kawasan 

pantai Malaysia. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

The increase in sea level around the world attracts global attention. The 

increase in global sea level is prominently known as sea level rise has been studied 

by many researchers. The escalation in awareness regarding the sea level rise 

phenomenon leads to numerous studies in related fields to assess the future impacts 

as well as improving the understanding related to the sea level rise. 

 

 

According to Church et. al. (2010), data from coastal and island tide gauges 

indicate that the average rate of global sea level rise was 1.7 mm per year during 

1900s. However, recent satellite records has demonstrated a dramatic change in the 

trend of the sea level rise whose rate is accelerated to 0.18 meter to 0.59 meter 

(Intergovernmental Panel on Climate Change, 2007) (IPCC). Such acceleration can 

be anticipated due to recent rate of environmental pollutions whose the impacts alter 

the climate patterns.  
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Sea level rise is a result from the increase in global temperature. This has 

introduced the world to a threat called global warming. Due to the temperature 

gradient, the rise in global temperature transfers the heat to the ocean’s surface and 

subsequently causing the ocean’s volume to increase. Theoretically, the water 

particles gain energy when each of the particles receives heat and causing the water 

volume to expand. In this context heat is absorbs from the sea surface. Consequently, 

the increase in ocean’s volume is called ocean’s thermal expansion and many 

believed that this phenomenon is the main driver to sea level rise phenomenon.  

 

 

Apart from ocean’s thermal expansion, another factor whose the impact 

contributing to the sea level rise is the melting glaciers (Church et. al., 2010). 

Similarly to the ocean’s thermal expansion, the melting glaciers and polar ice caps 

are also triggered by the global warming. As mentioned earlier, those factors 

contributing to sea level rise are the resultant from global warming phenomenon. The 

rise in global temperature is yielded by the increase in greenhouse gas to the air 

(Church et. al., 2010). The increase in greenhouse gas amount to the air is believed to 

be the primary factor to amplify the rate of sea level rise in future. 

 

 

Sea level rise does not occur uniformly all around the world due to the 

influence of the winds, variation in earth gravitational force and currents (Feng et. 

al., 2013). Thus, some regions may experience severe sea level rise while other 

regions may experience less. Based on a study conducted by Din (2014), sea level 

data derived from TOPEX, Jason-1, ERS-1, ERS-2 and Envisat satellite altimeter 

from 1993 to 2008 the result has indicated that Malaysia is also experiencing sea 

level rise at 4.47±0.71mm per year. Another study done by Reyes and Blanco (2012) 

has predicted 100 cm sea level increase in future will inundate 5000 hectares of the 

Manila Bay. Thus, having safety measures to assess potential threats due to sea level 

rise impacts is vital especially in the coastal regions. 
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1.2 Problem Statement 

 

 

Coastal areas are the most affected areas due to the sea level rise 

phenomenon. In fact, the sea level rise has the potential to permanently alter the 

coastal areas due to its association to land inundation, flooding in low-lying areas, 

contributes to coastal erosion and leads to saltwater intrusion into fresh water 

(Church et. al., 2010). Thus, it is important to evaluate the susceptibility of a coastal 

area to provide mitigation measures and subsequently alleviate the impending 

impacts of sea level rise.  

 

 

One of most important coastal parameter used to assess the vulnerability of a 

coastal area to the impacts of sea level rise is the Mean Tidal Range. Mean Tidal 

Range parameter is commonly derived from tide gauge data. The use of tide gauge 

data is inarguably accurate and feasible to conduct site specific coastal vulnerability 

study. However, in order to conduct coastal vulnerability study over a larger area for 

instance conducting study at national level, the distribution of tidal stations along 

coastal regions is apparently insufficient. The inadequacy of tidal stations 

distribution is exacerbated by the fact that tides in shallow water region is extremely 

localized to the location where the tidal station is located (Hok, 2012). 

 

 

Hence, in this study Mean Tidal Range is derived from tidal models 

generated from satellite altimetry data.  The proposition of using tidal models to 

derive Mean Tidal Range is basically to compensate the scarcity of tidal stations 

along coastal regions. Therefore, Mean Tidal Range parameter can be derived 

anywhere within area of study even though in the area where tide gauge data is 

absent. The combination of satellite altimetry and tide gauge sea level data provides 

a tremendous potential to monitor global sea level rise, facilitates coastal 

vulnerability assessment and subsequently benefits the authority, environmentalists 

and private agencies to develop a systematic coastal management and planning to 

mitigate future sea level rise impacts on coastal area where most human settlements 

are located. 
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1.3 Objectives of the Study 

 

 

The aim of the study is to generate tidal models from TOPEX and Jason-1 

SLA data to assess the impending sea level rise threats particularly in Malaysian 

coastal regions. Three objectives have been outlined in order to achieve the aim of 

the study. The objectives are as follows: 

 

 

i) To generate tidal models for South China Sea from TOPEX and 

Jason-1 SLA data. 

 

ii) To validate the tidal models from tide gauges data. 

 

iii) To derive Mean Tidal Range from tidal models for Malaysian coasts. 

 

 

 

 

1.4 Scope of the Study 

 

 

Climate change has triggered gradual increase in global mean sea level 

(MSL) and the subsequent impacts may permanently affect coastal areas. Thus, the 

assessment on the physical threats due to sea level rise phenomenon is necessary for 

coastal planning and management purposes. Therefore, Mean Tidal Range is derived 

from tidal models generated from satellite altimetry sea level data to further assess 

the susceptibility of Malaysian coastal regions to the impending sea level rise threats. 

The following Table 1.1 enlists the important elements and processes involved 

throughout the study.  
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Table 1.1 : Scope of the study 

Research phases Research scope 

Literature study 

and planning 

Climate change Satellite altimetry principles 

Coastal vulnerability assessment Tidal study 

Data acquisition 

and processing 

Radar 

Altimeter 

Database 

System 

(RADS) 

Preliminary data filtering 

Coastal tide 

gauges data 
Altimetric data corrections 

Along-track SLA time series 

SLA data 

assessments 

 

SLA trend 

validation 

 

12 hours mean of coastal tidal data 

Mean difference of altimetric SLA and 

relevant coastal tidal data 

Altimetric SLA and tidal data correlation  

Harmonic 

analysis 

Coastal altimetry data performance 

Altimetry Phase A and B data precision 

Tidal modelling 

Spectral Analysis Along track SLA time series 

Harmonic 

analysis 

Interpolation 
Inverse Distance Weighting  

Kriging method 

Models validation 

Mean Tidal 

Range 

computation 

Mean Tidal Range 

Computation 
Mean Tidal Range validation 

Data analysis and 

discussion 

Altimetry data processing  
SLA 

validation 

Models 

validation 

Altimetry data precision and performance at coastal regions 

Mean Tidal Range assessments for the study area 

 

 

The whole flow of the study comprises six phases such as literature study and 

planning, data acquisition and processing, SLA data assessment, modelling the tides, 

Mean Tidal Range derivation and data analysis and discussion. The input data and 

area selected for the study are discussed in the next section. 
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1.4.1 Input Data 

 

 

There are 3 main input data used such as SLA obtained from satellite 

altimeter, tide gauge data for various locations provided by Department of Surveying 

and Mapping Malaysia (DSMM) and tidal constituents from Tide Table 2015 

produced by National Hydrographic Centre. These data are used for tidal modelling 

and data validation purposes. Table 1.2 describes the input data involve in tidal 

modelling and data validations. 

 

 

Table 1.2 : Input data 

Data Description 

Satellite altimetry SLA i) Obtained from TOPEX and Jason-1 

altimeter. 

ii) Data retrieved from RADS. 

iii) Processed from 1993 to 2011. 

iv) Main input data for tidal modelling. 

Tide gauge i) Provided by the DSMM. 

ii) 7 tidal stations are selected. 

iii) Data available starting from 1993 to 2011 

for each tidal station. 

iv) Dedicated for SLA data assessments. 

Tide Table 2015 i) Produced by National Hydrographic 

Centre. 

ii) 8 tidal stations are selected. 

iii) Used for tidal models and Mean Tidal 

Range validation. 
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Referring to Table 1.2, satellite altimetry SLA data from 1993 to 2011 are 

selected to match the tide gauge data provided by the DSMM. The selection of these 

common years between satellite altimetry data and tide gauge data is an important 

feature to facilitate further analysis. 

 

 

 

 

1.4.2 Area of the Study 

 

 

South China Sea is located in South East Asia region and bordered by several 

countries such as China, Philippines, Brunei, Malaysia, Singapore and Vietnam. It 

also interacts with Pacific Ocean in north-east region and Celebes Sea in the eastern 

part. The southern region of the South China Sea is selected for further tidal 

modelling purpose due to its immense influence to Malaysia coastal regions. The 

area subject for tidal modelling covers from latitude 0° N to 13° N and longitude 98° 

E to 120° E. Figure 1.1 shows the southern part of the South China Sea. 

 

 

 

Figure 1.1 South China Sea (Source: M-map) 
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The South China Sea is selected due to the availability of satellite altimetry 

tracks in the region and the suitability of its location to conduct the study. The 

availability of altimetry tracks is vital since altimetry data is the sole data input used 

to model the tides in the region. Furthermore, the presence of heavy industries, dense 

human settlements and tourism activities across Malaysian coasts increase the 

demand to monitor coastal regions particularly to alleviate the impacts to coastal 

hazards and subsequently contribute to a better coastal management and planning. 

 

 

 

 

1.5 Significance of the Study 

 

 

Current situation has indicated that the impacts of climate change are getting 

much severe than last few centuries. Sharp varying weather and the increase in storm 

intensity and frequency are the indications of weather responses to the climate 

change. Therefore, the implementation of coastal assessment due to the sea level rise 

phenomenon proposed in this study is expected to benefit coastal management and 

planning, providing alternative source of data for coastal assessment and introducing 

to the use to satellite altimetry data instead of sole dependency on tide gauge data. 

 

 

Thus, this study is conducted to assess the susceptibility of Malaysian coastal 

regions to the coastal threats posed by the sea level rise phenomenon and roughly 

identify the affected areas. The assessments of future threats lead by the sea level rise 

phenomenon towards coastal areas are indispensable to support future coastal 

planning and management especially to the region like Bintulu and Chendering 

where various industries and dense human settlements are located. As a consequence, 

the authorities and environmentalists can take mitigation measures as well as 

providing alternatives to the region where the impacts of sea level rise is immense. 
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In term of the provision of sea level data for coastal assessment, the use of 

tide gauge alone is inefficient to study the Mean Tidal Range behaviour along 

Malaysian coastal regions due to its sparse distributions to compensate the locality of 

tidal behaviour (Hok, 2012), expensive operation and maintenance. Therefore, the 

proposition of the use of tidal models generated for the South China Sea is the most 

plausible solution as an alternative to accommodate the scarcity of tide gauge 

network along Malaysian coasts. The use of tidal models allows the computation of 

Mean Tidal Range parameter at any location along Malaysian coastal regions. 

 

 

The satellite altimetry data is utilized to generate the tidal models such as 

TOPEX and Jason-1 SLA data. Satellite altimetry technique provides more reliable 

data to generate tidal models in term of providing long term sea level time series. 

Continuous sea level data is one of the criteria to produce a good tidal model. 

Moreover, sea level measured by the satellite altimeter is the absolute sea level 

which implies to vertical land motion free sea level data. As opposed to satellite 

altimetry data, tide gauge data is rarely continuous and hampered by the effect of 

vertical land motion (Feng et. al., 2013). Absolute sea level data is an important 

feature in sea level rise study due to the fact that sea level rise is measured in 

milimeter level which the vertical land motions posed a great influence and 

consequently needs considerable attention.  

 

 

Furthermore, utilizing altimetry technique benefits the tidal models through 

the fact that altimetry along track data provides dense in situ tidal measurement in 

the offshore regions. Formerly, tidal measurement in the offshore regions is 

extrapolated from coastal tide gauges data. As the distance from tide gauges 

increases, the accuracy of extrapolated tides deteriorates (Vella, 2000). Since the 

tidal behaviour is localized to the location where the measurement was made, 

extrapolation technique from coastal tide gauge is considered inappropriate. Hence, 

satellite altimetry has produced enormous contribution in providing in situ tidal 

measurement in the offshore regions whose data is used in this study to produce tidal 

models. 
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1.6 Summary of the Chapter 

 

 

This Chapter 1 discusses the global and local sea level rise issues as well as 

the impacts induced by the sea level rise phenomenon particularly towards coastal 

vicinity. Consequently, coastal vulnerability assessment is indispensable in order to 

study the impending impacts of the sea level rise, identify the severity of an area due 

to the sea level rise impacts and assist local authority and decision makers to provide 

preventive and mitigation measures. 

 

 

The use of Mean Tidal Range parameter in this study is justified by its 

influence and potential to exacerbate the impacts of sea level rise and posed 

permanent changes in coastal setting. The paucity of tidal stations distribution along 

has hindered the implementation of coastal vulnerability assessment at national level. 

Thus, this study has suggested the use of tidal models instead of the use of tide gauge 

data to compute Mean Tidal Range parameter for Malaysian coastal region. 

 

 

The methodology of the study is briefly explained in this chapter. This 

methodology is basically introduced to achieve the objectives of the study, outline 

the scope of the study and provide justification of the input data involved and the 

significance of study area selected in this study. 

 

 

The importance of this study is elaborated in this study to emphasize the 

motivations of conducting the study. The notion of conducting this study is basically 

to help the local authorities, environmentalists and researchers to provide an effective 

coastal managements and planning system to mitigate the impending impacts of sea 

level rise. 
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