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ABSTRACT 

Software development teams always need methods that can help in producing 

high-quality software with reduced development effort and delivery time. Model-

Driven Engineering (MDE) as well as Aspect-Oriented Software Development 

(AOSD) techniques help in reducing the delivery time, and also positively contribute 

to quality of the produced software. Through the use of AOSD techniques in 

combination with MDE, an integration of excellent abstraction mechanisms of MDE 

and capabilities of AOSD with regards to modularity and composition of concerns 

can be perceived, which is expected to enhance the positive effects of both 

techniques. To this end, different integration approaches have appeared in literature, 

but aspect-oriented code generation has advantages over the other approaches. 

Consequently, a number of aspect-oriented code generation approaches have been 

offered, but all such approaches lack several features mandatory to materialize a 

workable integration of aspect technologies in the context of MDE. To address these 

issues, this research was conducted to present an approach for aspect-oriented model-

driven code generation, which focuses on elaborating the conceptual relationship 

between design models and the implementation code, and exploits the same to obtain 

aspect-oriented code that is more reusable and maintainable. The key outcomes of 

this research are the elaboration of the conceptual mappings between elements of 

visual design and constructs of the code, mapping of the visual models to 

implementation-specific text-based models, and a technique for generation of aspect-

oriented code. The applicability of the proposed approach is shown by the use of case 

studies, whereas the quality of the approach is measured using reusability and 

maintainability metrics. A comparison of the proposed approach with existing 

approaches substantiates its efficacy in terms of reusability and maintainability of 

code, showing an outperformance of other approaches by the proposed approach 

against 78% of the employed quality metrics.  
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ABSTRAK 

Pasukan pembangunan perisian sentiasa memerlukan kaedah yang boleh 
membantu dalam menghasilkan perisian yang berkualiti tinggi dengan 
mengurangkan usaha pembangunan dan masa penghantaran. Kejuruteraan 
berpandukan model (MDE) dan teknik Pembangunan Perisian Berorientasikan 
Aspek (AOSD) membantu dalam mengurangkan masa penghantaran dan juga 
menyumbangkan kepada kualiti perisian yang dihasilkan. Dengan penggunaan 
teknik-teknik AOSD yang digabungkan dengan MDE, gabungan ini dijangka boleh 
memperbaiki kesan positif kedua-dua teknik dengan integrasi mekanisma 
pengabstrakan MDE yang baik dan kemampuan AOSD dari segi kemodularan dan 
komposisi yang boleh diamati. Untuk ini, pendekatan-pendekatan integrasi yang 
berbeza telah muncul di dalam literatur, tetapi penjanaan kod berorientasikan aspek 
mempunyai banyak kelebihan berbanding pendekatan yang lain. Walaupun, pelbagai 
pendekatan penjanaan kod berorientasikan aspek telah ditawarkan, tetapi kesemua 
pendekatan tersebut kurang dari segi ciri-ciri mandatori untuk membolehkan 
integrasi teknologi aspek di dalam konteks MDE dilaksanakan. Bagi menyelesaikan 
kekurangan ini, kajian ini telah dijalankan untuk menunjukkan satu pendekatan 
penjanaan kod berorientasikan aspek dan berpandukan model, di mana ia fokus 
kepada penghuraian hubungan konseptual di antara reka bentuk model dan 
pelaksanaan kod, dan mengolah kedua-duanya untuk mencapai kod berorientasikan 
aspek yang mempunyai kadar kebolehgunaan semula dan kebolehselenggaraan yang 
lebih. Penghasilan utama kajian ini adalah penghuraian pemetaan elemen-elemen 
reka bentuk visual dan pembinaan kod, pemetaan model visual untuk model 
berasaskan teks dan perlaksanaan-spesifik dan teknik untuk penjanaan kod 
berorientasikan aspek. Kebolehgunaan pendekatan yang dicadangkan ini telah 
ditunjukkan melalui kajian kes, manakala kualiti pendekatan diukur menggunakan 
metrik kebolehgunaan semula dan kebolehsenggaraan. Perbandingan di antara 
pendekatan yang dicadangkan dengan pendekatan-pendekatan sedia ada berkaitan 
keberkesanannya dari segi kebolehgunaan semula dan kebolehsenggaraan kod, 
menunjukkan pendekatan yang dicadangkan mengatasi pendekatan-pendekatan lain 
sebanyak 78% dengan menggunakan metrik pengukuran kualiti. 
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  CHAPTER 1

INTRODUCTION 

1.1 Overview 

Model-Driven Engineering (MDE) is an approach to software development that 

stresses upon making models the primary development artifact, and using these models 

as source in a process leading to automatic generation of the final application code. It 

emphasizes on subjecting models to a refinement process, through automatic 

transformations, until a running system is obtained. By doing so, MDE aims at providing 

higher level of abstraction in development of systems which further results in an 

improved understanding of complex systems. Moreover, it addresses problems in 

software systems development that originate from existence of heterogeneous platforms. 

It achieves this through keeping different levels of model abstractions; and by 

transforming models from Platform Independent Models (PIMs) to Platform Specific 

Models (PSMs).  In this context, automatic generation of application code (i.e., 

automatic model-driven code generation) offers many advantages such as the rapid 

development of high quality code, reduced number of accidental programming errors, 

enhanced consistency between design and code, to name a few. In addition to these, 

several other benefits have also been reported in (Afonso et al., 2006; Karakostas and 

Zorgios, 2008). 

Aspect orientation and the related paradigm, i.e., Aspect-Oriented Software 

Development (AOSD) (Elrad et al., 2002; Rashid et al., 2006; Sánchez et al., 2010; 
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Hoffman and Eugster, 2013) provide an approach to software engineering which allows 

explicit identification, separation, and encapsulation of concerns that cut across the 

primary modularization of a system. These crosscutting concerns cannot be clearly 

decomposed from primary functionality (core concerns) of the system, and thus cannot 

be effectively modularized, when using well-known object-oriented development 

techniques. Hence these concerns end up scattered throughout the system and tangled 

with the core concerns of system. Even though the crosscutting concerns usually 

originate from non-functional requirements such as logging, security, persistence, and 

optimization, but the phenomenon encompasses the functional ones too, which often 

have their behavioral logic spread out over several modules. Using aspect-orientation, 

these concerns are identified, modeled and implemented independent of each other as 

well as separate from the main functional concerns of the system. Once separated in this 

way into modules, these concerns need some composition mechanism to control where 

and when concern behavior is applied. This effectiveness of modularization is achieved 

through applying aspect orientation at analysis phase using Early Aspects (Rashid et al., 

2006), during design using Aspect-oriented Modeling (Elrad et al., 2002), and using 

Aspect-oriented Programming (Kiczales et al., 1997) for implementation. The separation 

of crosscutting concerns from core functionality of the system achieved through aspect-

orientation eventually results in improving the reusability and maintainability qualities 

of software, which in turn contribute positively to several quality factors such as 

understandability, flexibility and extensibility (Hannemann and Kiczales, 2002; Garcia 

et al., 2005; Hovsepyan et al., 2010; Piveta et al., 2012). 

In order to combine the use of aspect orientation and MDE (Amaya et al., 2005; 

Clemente et al., 2011; Pinto et al., 2012), aspect-oriented models developed using 

Aspect-Oriented Modeling (AOM) approaches (cf. (beeck et al., 2006; Wimmer et al., 

2011)) can be integrated and used within the context of MDE in at least two different 

ways. This eventually results in forming two distinct lines of research for the integration 

of aspect orientation and MDE. Along the first line are approaches that propose using a 

model weaver to compose the base model (one that models core concerns) and the 

aspect model (model which represents crosscutting concerns) in such a way that a non-

aspect-oriented (object-oriented) model is obtained. Then, standard code generation 
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approaches can be used to generate code into one of the object-oriented programming 

languages. In contrast, the second line of research comprises of approaches that explore 

direct transformation of the source aspect-oriented model into code of a target aspect-

oriented language, and then rely on weaver provided by the target language to deal with 

crosscutting aspects.  

While transforming aspect models into object-oriented code may provide some 

benefits such as using existing code generators, the technique is bound to lose the 

aspectual features owing to lack of their support by object-oriented programming 

languages. This means that the concerns that have been composed once at the model 

level can no longer be reproduced in a separated form. As aspect orientation is used in 

software development projects with the clear intention of separation of concerns (and 

their reuse as needed), it is unreasonable to lose this separation during model to code 

transformation. This is the main idea that inspires the current research to studying the 

direct transformation of aspect-oriented models into aspect-oriented code.      

1.2 Research background  

When it comes to the use of aspect-oriented technologies in the context of MDE 

(Amaya et al., 2005; Clemente et al., 2011; Pinto et al., 2012), early literature has paid 

much attention to aspect-oriented modeling, whereas the issue of their transformation 

into code, i.e., model-driven code generation, has been rarely investigated. However, in 

order to discuss the existing research in the broader context of the integration of AOSD 

and MDE, it may be classified into two major groups: AOM notations along with model 

weavers, and mechanisms to transform AO models into AO code.  

The core idea behind the use of model weavers with AO models is to provide 

composition mechanism so that models can be simulated, tested and debugged prior to 

execution. The Motorola experience (Baker et al., 2005) and the Motorola WEAVR 
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report (Cottenier et al., 2007b)  have presented many benefits associated with 

simulation, testing and debugging of models. In this context, significant work has been 

accomplished in the domain of aspect-oriented modeling and composition approaches. 

Majority of aspect-oriented modeling approaches extend UML by modeling either 

structure or behavior, or both, using UML diagrams extended with aspect-oriented 

concepts. However, there is comparatively little number of proposals that address 

extending behavior diagrams. As far as the composition approaches for aspect-oriented 

modeling are concerned, there are two broader categories: asymmetric and symmetric 

composition approaches.  An asymmetric composition refers to an approach which 

models aspects separate from other components in the system. Aspects are used to 

model crosscutting concerns, whereas components are used to model non-crosscutting 

concerns (the base). In order to obtain a composed view of the system, aspects are 

applied to (i.e., woven into) the base. On the other hand, symmetric composition 

approach does not make any distinction between aspects and the base. In this approach, 

a system is simply regarded as a set of concerns that are to be composed. Therefore, 

these approaches separate all concerns that exist in a system, rather than separating 

crosscutting concerns from non-crosscutting ones.  

The initial work on aspect-oriented modeling was presented in (Grundy, 2000). 

This initial proposal performed structure modeling using extended class and component 

diagrams, whereas only the communication diagram was extended for behavior 

modeling. It provided asymmetric composition mechanism. Some other works that have 

provided asymmetric composition include Aspect-Oriented Design Modeling (Stein et 

al., 2002b; Stein et al., 2002a), Aspect-Oriented Architecture Models (France et al., 

2004), UML for Aspect-Oriented Software Development  (Pawlak et al., 2002), 

Dynamic Component and Aspect-oriented Platform (Pinto et al., 2005), Aspect-oriented 

Executable Modeling (Fuentes and Sanchez, 2007a), and Motorola WEAVR (Cottenier 

et al., 2007b). For structure, all these approaches primarily rely on extension of class 

diagram. In addition to class diagrams, only one approach (Aspect-oriented Architecture 

Models) supports the package diagram, and one (Dynamic Component and Aspect-
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Oriented Platform) supports component diagrams. Motorola WEAVR supports 

composite structure diagram and deployment diagram.    

Theme/UML (Clarke and Walker, 2001; Clarke, 2002; Clarke and Walker, 2002; 

Baniassad and Clarke, 2004) was the first approach to aspect-oriented modeling which 

used symmetric composition. It provides support for extended class and package 

diagrams for structure modeling, and sequence diagrams for behavior modeling. It can 

be regarded as a leading aspect-oriented approach among symmetric ones, since it 

provides complete mapping of the design to implementation (Clarke and Baniassad, 

2005), and initial results on its integration with model-driven engineering have been 

presented in literature (Carton et al., 2009). Other significant work that provides 

symmetric composition includes the State Charts UML Profile (Aldawud et al., 2002; 

Aldawud, 2003), Architectural Views of Aspects (Katara and Katz, 2003), and Aspect 

Modeling Language (Groher and Baumgarth, 2004). All these aspect-oriented extensions 

use the class diagrams for structure modeling, while latter two extend the package 

diagram as well. The former two approaches contribute mainly to behavior modeling in 

a sense that they have provided support for state chart diagram and sequence diagram. A 

combination of state charts and sequence diagrams in this way can be extended to 

represent complete behavior of a system in aspect-oriented way. Another recent and a 

prominent approach to aspect-oriented modeling is Reusable Aspect Models (RAM) 

(Klein and Kienzle, 2007; Abed and Kienzle, 2009; Kienzle et al., 2009; Kienzle, 2013). 

RAM is a multi-view aspect modeling approach which is unique in the sense that it 

provides one coherent approach to aspect-oriented modeling by integrating existing class 

diagram, state chart diagram, and sequence diagram approaches. Moreover, reuse of 

aspects is the core idea of RAM.  

Regardless of the specific features supported by each of the AOM notations 

discussed above, the respective weaving mechanisms provided by all these approaches 

result in a woven (object-oriented) model. Therefore, these approaches may be extended 

to work in integration with existing object-oriented code generation techniques (e.g., 

(Chauvel and Jézéquel, 2005; Niaz and Tanaka, 2005; Pilitowski and Dereziñska, 2007; 
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Stavrou and Papadopoulos, 2009; Badreddin et al., 2014)) in order to obtain code from 

the woven model. Nevertheless, even though the modeling approaches may work 

effectively in combination with their associated weaving mechanisms (integrated with 

OO code generators) for the purpose of model analysis and execution, they are not 

expected to provide effective support with regards to the development of software. This 

is for the reason that: (1) the generated code is object-oriented, and hence, lacks the 

support for aspectual features envisioned at the model level and (2) the code is usually 

generated with the intention of model analysis and execution only, and therefore, results 

in maintenance and other related problems if it was to be maintained manually 

(Simmonds and Reddy, 2009; Hovsepyan et al., 2010; Papotti et al., 2013). It has to be 

emphasized here that one would expect the need for manual code maintenance and 

evolution until MDE becomes an extremely mature discipline. These problems arise 

owing to the ineffective handling of crosscutting concerns by these approaches. As they 

do not retain the separation of concerns after a model has been woven (and further 

transformed into code), they result in implementation code that is difficult to reuse and 

maintain. 

The approaches that propose transformation of an aspect-oriented model directly 

into aspect-oriented code essentially do not suffer from problems mentioned above, as 

they tend to maintain the separation of concerns from model to code. Moreover, these 

approaches are mainly inspired by benefits resulting from existence of a direct mapping 

between constructs of design model and the programming language. In this regard, a 

number of empirical studies, for example (Hannemann and Kiczales, 2002; Garcia et al., 

2005; Cacho et al., 2006; Fuentes and Sánchez, 2007; Greenwood et al., 2007) have 

reported potential benefits of using aspect-oriented techniques in software development. 

Another study (Hovsepyan et al., 2010) has discovered that approaches pursuing aspect-

oriented programming languages result in compact, smaller, less complex and more 

modular implementations. Beside academia, the use of aspect technologies at the 

implementation level is now well-established in industrial circles, as the designers of 

mainstream implementation frameworks (e.g., JBoss, Spring) are increasingly adopting 

it. 
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The initial work on mapping of aspect-oriented design to aspect-oriented 

programming language was initially presented in 2002 by mapping Theme/UML models 

to AspectJ (Kiczales et al., 2001) code (Clarke and Walker, 2002). Besides providing 

traceability between constructs of both languages, this work majorly contributed to 

providing means for assessing the two languages and their incompatibilities. However, 

some decisions in the mapping process resulted in code that imposed stronger 

restrictions on reusing the modules. A similar but enhanced mapping has been provided 

for Reusable Aspect Models (RAM) recently (Kramer, 2010; Kramer and Kienzle, 

2011). This mapping has provided several improvements to approach of Theme/UML 

mapping by using AspectJ’s recent support for annotations. Enhanced flexibility and 

better support for reuse are major distinctive features of RAM’s mapping approach as 

compared to Theme/UML. Mapping of Theme/UML to CaesarJ code has also been 

explored by Jackson et al. (2008). The mapping of Theme/UML to CaesarJ, is very 

similar to the mapping done for AspectJ, but this work does not address various 

problems that arise from specific properties of CaesarJ in the context of mapping from 

model to code. Recently, in (Loukil et al., 2013), architectural aspects described in 

AO4AADL have been mapped to AspectJ aspects with the help of transformation rules 

based on Real-Time Separation for Java  (RTSJ) (Autret, 2009) rules. However, all these 

works mainly focus on highlighting the conceptual relationship between constructs of 

design and code, and make use of sequence diagrams for behavior implementation. 

Therefore, details related to implementation of the code generation such as an 

implementation savvy representation of visual models, or details of code generation 

process have not been addressed by these approaches. Moreover, the use of only 

sequence diagrams limits the extent of code to be generated. This is for the reason that 

sequence diagrams are considered suitable for modeling behavior of controller objects 

that involve sequence of method calls. They cannot effectively model the detailed object 

behavior.   

Some other work focuses on generating the aspect-oriented code from extended 

UML models and addresses some other concerns as well. All work that follows in this 

category, however, lacks in at least two aspects: (1) they have not discussed the detailed 
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mapping as to how the artifacts at model level are translated to code level constructs, 

and (2) they have not addressed behavior diagrams at all. In this regard, the work of 

Bennett et al. (2010) has provided an approach that uses graph-based transformation 

algorithms to transform aspect design into AspectJ code. For implementation, they have 

used XML schemas to textually represent their architectural design models. However, 

they address only the class diagrams for this purpose. Groher and Schulze (2003) 

propose an experimental design notation based on the standard UML. This notation 

enhances reuse of aspect code by clearly separating the reusable programming-language- 

independent design from language-dependent crosscutting one. In (Evermann, 2007; 

Evermann et al., 2011), a template-based approach to generating AspectJ code has been 

proposed. This is different from previous work in the sense that it generates code from a 

comprehensive specification of the AspectJ meta-model. It defines a meta-model for the 

AspectJ language in the form of a UML profile which utilizes the built-in features of 

UML by using stereotypes and tags to specify the meta-model of AspectJ. By 

implementing specific constructs of AspectJ instead of defining new element types into 

UML meta-model, this AspectJ meta-model specification becomes compatible for use 

with any of the existing CASE tools that support XMI interface. Hecht et al. (2005) have 

proposed an approach to generating code from Theme/UML models in AspectJ. They 

develop XML representation of Theme/UML models and use the Theme approach to 

mapping from model to code. Furthermore, these approaches do not provide sufficient 

details with regards to the comparison of the generated code with that obtained using 

other mechanisms such as object-oriented implementation of the same concept.  

To conclude, aspect-oriented modeling and model-driven code generation are 

extensive study fields and much effort has been put to improving the mechanisms of 

exploiting aspect-orientation in the context of MDE. Despite several existing proposals, 

the efforts need furtherance with respect to the specific case in which the integration is 

carried out using aspect-oriented code generation. 
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1.3 Motivation  

Software development projects are aimed at producing high-quality software 

within allocated time. However, as the projects grow in size and complexity, achieving 

the goals of quality and on-time delivery become more challenging. For this reason, 

software projects often end up running over schedule, as found in software project 

management studies such as (Brooks, 1995). Moreover, these off-schedule projects often 

relinquish quality in order to meet the project deadlines, further leading to software 

products which are less reliable, less maintainable, and less adaptable. Therefore, to 

prevent them ending up running over schedule, or even worse, relinquishing quality in 

order to meet the deadlines, software teams are always in need of techniques that can 

help reducing delivery time, and also lend to raising the quality of the product.  

MDE techniques not only help in reducing the delivery time but also positively 

contribute to overall quality of the produced software (Fleurey et al., 2007; Aranda et 

al., 2012). In this context, at the design level, visual modeling languages such as 

(Rumbaugh et al., 1991; Jacobson, 1992; Booch, 1993; Group, 2007) support by 

providing modeling and model-checking capabilities (Fuentes and Sánchez, 2009). On 

the other hand, during the implementation and maintenance phases, the same effect is 

achieved by applying automatic code generation (Sánchez et al., 2010; Rahmouni and 

Mbarki, 2013). Automatically generated code, if correctly obtained, enhances the 

benefits of high-level modeling and analysis (Carton et al., 2009). Hence, in the past, it 

has been deemed ideal to develop approaches that generate or help to generate 

executable code from high level design models. So far as the benefits of automatic 

model-driven code generation are concerned, the most significant advantages include 

reduction in development time, and improvement in quality (Hovsepyan et al., 2006; 

Alonso et al., 2007; Papotti et al., 2013). The majority of automatic code generation 

approaches have addressed automatic code generation for object-oriented analysis and 

design models. Moreover, code generation has been presented using formal notations. 

Examples of code generation using formal notations include Petri Nets (Philippi, 2006), 

Software Cost Reduction (SCR) (Rauchwerger et al., 2005), and Cinderella SLIPPER 
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(Rauchwerger et al., 2005). These approaches have achieved complete code generation 

and they have proposed techniques for optimized code generation. In some other works 

such as (Chauvel and Jézéquel, 2005; Niaz and Tanaka, 2005; Pilitowski and 

Dereziñska, 2007; Stavrou and Papadopoulos, 2009), models represented in UML have 

been used to generate fully executable object-oriented code. UML models have also 

been used to generate code for web applications (Rahmouni and Mbarki, 2013). 

Advanced issues such as handling of class associations with the help of model-oriented 

languages have been explored in the perspective of code generation (Badreddin et al., 

2014). Further, many of currently available commercial (e.g., IBM Rational Software 

Architect (Leroux et al., 2006), AjileJ StructureViews (AjileJ, 2011), MagicDraw UML 

(NoMagic, 2011)) as well as open source (e.g., ArgoUML (Tigris.org, 2012), Eclipse 

UML2 Tools (Eclipse.org, 2012)) object-oriented CASE tools support the generation of 

code stubs. However, all this work has been carried out in object-oriented paradigm, and 

thus eventually results in scattered and tangled code.   

Aspect oriented techniques too, just like the MDE, aim to positively affect the 

delivery time and quality of the software products. Specifically, they achieve this goal 

by providing better modularization of components leading to improving their reuse and 

enhancing other quality factors such as maintainability (Burrows et al., 2010b; Giunta et 

al., 2012). Thus, MDE and aspect orientation possess some complementary properties 

(Pinto et al., 2012). While modeling increases the level of abstraction, it suffers from 

difficulties when it comes to the refinement and integration of system perspectives. 

Aspect orientation, on the other hand, allows better modularization and composition of 

concerns, but lacks appropriate abstraction mechanisms (Cottenier et al., 2007b). 

Therefore, an integration of these two technologies can increase the benefits of both 

(Pinto et al., 2012). This is because, on one hand, excellent abstraction mechanisms of 

MDE will become available to aspect-oriented techniques and on the other hand, MDE 

will be augmented by the capabilities of aspect-oriented techniques with regards to 

modularity and composition of concerns. Such an integration can be realized by 

subjecting aspect-oriented models to a transformation process that leads to generation of 

application code into a target AO programming language. Therefore, owing to the 
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benefits associated with direct transformation of aspect-oriented models into aspect-

oriented code (Hannemann and Kiczales, 2002; Garcia et al., 2005; Cacho et al., 2006; 

Fuentes and Sánchez, 2007; Greenwood et al., 2007), a few efforts have been made to 

achieve the same and initial results have been reported in the literature, for example, 

(Whittle et al., 2009; Bennett et al., 2010; Evermann et al., 2011; Kramer and Kienzle, 

2011; Loukil et al., 2013). All such approaches are naturally based on model-driven 

architecture, meaning that they use a source model developed in some notation extended 

from UML as input and generate the target aspect-oriented code according to some 

transformation definition. However, each of these approaches generates code in a way 

that it supports certain specific features of aspect-oriented code generation (e.g., limited 

structure), while eliminating others (e.g., behavioral part, reuse of functionality at code 

level, implementation details etc.). Therefore, the use of aspect orientation in integration 

with MDE cannot be exploited to an extent that it actually results in aspect-oriented 

code, which is more maintainable and reusable for developers, and possesses both the 

structure as well as behavior. Consequently, there is a need for an approach that bases 

upon a mature AOM design notation and eventually produces executable aspect code, to 

realize a practicable integration of aspect orientation in the larger context of MDE.  

1.4 Problem statement 

The software development process can be significantly improved, and the effort 

involved in writing and maintaining software can be reduced by employing aspect 

orientation in integration with MDE techniques. The past research has mostly focused on 

applying aspect orientation in the context of MDE by providing only the model 

composition facilities for AO models, which results in a common object-oriented model 

and leads to object-oriented code. However, this approach of integrating aspect 

orientation and MDE does not effectively solve the problem of supporting software 

development teams in reducing their effort for writing and maintaining code. The main 

reason for the ineffectiveness of this approach is that it results in the loss of clear 

relationship between the elements of AO design and the generated code (consequently 
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making the reuse and maintenance of code more difficult) on one hand, and elimination 

of numerous benefits of applying aspect-orientation on the other hand. As far as the 

possibility of generating AO code is concerned, it has not been given much attention. 

Therefore, the approaches that consider aspect-oriented model-driven code generation 

either do not elaborate the relationship between constructs of model and code, or do not 

effectively address the issues involved in actual generation of code such as elaboration 

of implementation models and code generation process. Furthermore, all current 

approaches suffer from at least one common problem, which is their inability to generate 

comprehensive object behavior. Hence a practicable integration of aspect orientation and 

MDE cannot be provided.  

In this study, we intend to propose an approach for the integration of aspect 

orientation and MDE that solves the problems mentioned above. The main problem to 

be addressed can be specified as:  

“How can we apply aspect orientation in combination with MDE, by generating 

aspect-oriented code that is more reusable and maintainable than its object-oriented 

counterpart, for both structure and behavior specified in the input aspect-oriented 

models?” 

In order to address the main research problem given above, we need to provide 

answers to the following research questions as a pre-requisite.   

1) What is an effective AOM approach that possesses the ability to model a system 

in a comprehensive manner, makes the reuse of modeled functionality 

straightforward, and lends itself to code generation?  

2) What are the elements of an aspect-oriented design that are vital to generation of 

behavioral code, in order to maximize the amount of generated code, and thus 

produce a workable combination of aspect orientation with MDE? 



13 
 

3) How can the coherence between the aspect-oriented design and the target aspect-

oriented programming language be considered, and how can the elements of the 

former be mapped to the constructs of the latter? 

4) How can the common problems in aspect code generation benefit from existing 

solutions in other disciplines like object-oriented? 

5) What are different options to transforming the visual model into a computer-

understandable text-based model? 

6) How can the aspect-oriented code be actually obtained? 

7) What is the effect of proposed integration approach on the quality of final code 

in terms of its reusability and maintainability? 

1.5 Research objectives 

The final goal of this research is to propose an approach for the integration of 

aspect orientation and MDE through aspect-oriented code generation. The approach, to 

be referred to as the aspect-oriented model-driven code generation approach throughout 

this thesis, has to take a source AO model and generate AO code that contains 

implementation of both structure as well as behavior represented in the design. 

Moreover, the approach has to support the code generation for aspectual as well as non-

aspectual parts of the model. The specific objectives aimed at achieving this goal are: 

1) To elaborate a method for mapping AO models representing the system structure 

and object behavior to AO code. 

2) To define a text-based implementation model that transforms the visual AO 

design model into a formal and equivalent textual representation, and supports its 

systematic translation into code.  

3) To develop an aspect-oriented code generation technique that applies the 

mapping method to the textual representation of design models, and generates 

structural as well as behavioral code for both aspectual and non-aspectual parts. 
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4) To evaluate the proposed approach of integration against the other approach in 

terms of reusability and maintainability of the generated code.   

1.6 Research scope  

The scope of this research study is limited to:   

1) This research is related to supporting the software application development 

through AO design and code generation. Therefore, other issues that may have 

impact on the development such as requirements engineering are not dealt with 

in this study.     

2) For the purpose of AO design, this research is intended to determine an effective 

AOM notation from the whole corpus of existing ones. Thus, proposing a new 

design notation is not part of the scope of this research.  

3) This research focuses on generating aspect-oriented code for Java/ AspectJ 

languages only.   

4) The proposed integration approach has been validated for small to medium-sized 

general-purpose software applications.  

5) Metrics-based measurement of performance of the integration approach against 

other approach has been conducted by applying reusability and maintainability 

metrics only.        

1.7 Thesis outline 

This thesis is organized as follows: Chapter 2 provides the basic background for 

this study and sets the research in context. Specifically, it reviews different approaches 

for the use of aspect technologies in MDE context, and determines the prerequisites for 

the current research. This chapter also evaluates the corpus of existing AOM notations in 
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the context of their integration in MDE process through code generation and makes 

selection of the approach to be employed in this work. Research methodology employed 

to conducting this research is presented in Chapter 3. The conceptual mapping method 

for implementation of various elements of design model at the code level is discussed in 

Chapter 4. A prerequisite to the systematic code generation, the text-based 

representation of the aspect models is presented in Chapter 5. Chapter 6 provides the 

details of the code generation technique, by introducing the code generation algorithm 

and describing application of the same on the textual representation of aspect models. 

The applicability of the proposed integration approach is demonstrated with the help of 

two case studies in Chapter 7 and Chapter 8. Chapter 9 discusses the results by 

explaining the measurement process used to validate the results and by comparing the 

proposed integration approach with the other existing approach. Chapter 10 concludes 

the thesis while highlighting the findings, resolved issues and future work.  
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APPENDIX A  

AOM APPROACHES EVALUATED IN THE CONTEXT OF CODE 

GENERATION 

A.1) The Aspect-Oriented Design Model Notation for AspectJ 

Aspect-Oriented Design Model (AODM) notation of Stein et al. (2002b) 

provides a design technique specific to AspectJ. Therefore, it extends UML with the 

only intention to support AspectJ's concepts at the design level. To exploit the huge 

resemblance between the core concepts of AspectJ and UML, it provides UML 

representation for basic constructs of AspectJ, namely join points, pointcuts, 

introductions, and aspects. Mainly the class, statechart and sequence diagrams are used 

for structure and behavior modeling. They represent join points using UML links, and 

apply the concept of adopted links to different diagrams in a way specific to each 

diagram. Similarly, an advice in AspectJ is viewed as analogous to an operation in 

UML. Aspects are represented as classes of a special stereotype named <<aspect>>.  

In principle, AODM has been specified using the UML's standard extension mechanism, 

but for certain specifications meta-model has also been extended. For example, the UML 

extend relationship, from which the <<crosscut>> stereotype has been derived 

originally, can be specified between use cases only. 
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A.2) The UMLAUT Framework  

UML All pUrpose Transformer (UMLAUT) is an open framework proposed by 

Ho et al. (2002) for developing application-specific weavers that can generate detailed 

aspect-oriented design from a high level design modeled using UML. The UML model 

elements can be input using various formats such as XMI and Java source. Extensions to 

UML are done through the UML Profile mechanism. The weaving process is 

implemented as a model transformation applied to the UML model. Specifically, the 

weave operation is defined as a transformation rule from an initial model to a final one.  

A.3) The UML Profile for AOSD  

The UML Profile for Aspect-Oriented Software development has been presented 

by Aldawud (2003). It extends the standard UML package structure to define an AOSD 

package, which is used to encapsulate all elements defined by the AOSD profile. 

Crosscutting concerns are modeled using aspects, which are extensions to UML core 

classes. A new stereotype <<aspect>> is used to model aspects, which are further 

classified into synchronous or asynchronous aspects. In this profile, synchronous aspects 

are distinguished from asynchronous ones in that they usually control the behavior of the 

core classes. The <<crosscut>> stereotype is used to model crosscutting 

relationships. For behavior modeling, this profile does not dictate any specific 

behavioral package; however, currently only the use of Collaboration and State machine 

packages has been outlined for this profile. 

A.4) aSideML Notation  

The aSideML's Notation of Chavez (2004) is a meta-model extension of UML to 

support aspect-oriented concepts. Aspects are defined by parameterizing different model 

elements, and one or more crosscutting interface is defined to organize join point 

description and the crosscutting behavior of the aspect. Crosscutting features are defined 
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as an extension to the original features of the class. Specifically, to model structure, a 

new construct called aspect diagram is introduced which extends features of a UML 

class diagram. Collaboration and sequence diagrams are extended for modeling behavior 

of the aspect. The join points are defined by means of an enhanced sequence diagram. 

Weaving of models is also provided which supports the same set of diagrams and 

generates woven class diagrams, woven collaboration diagrams and woven sequence 

diagrams.  

A.5) Theme/UML 

Theme/UML (Clarke and Walker, 2002; Baniassad and Clarke, 2004; Clarke and 

Baniassad, 2005) has basically evolved from work on composition patterns (Clarke and 

Walker, 2001; Clarke and Walker, 2002), and is considered one of the early approaches 

to aspect-oriented modeling. In this approach, a new declaratively complete unit named 

“Theme” is proposed at the design level to represent system concerns, which are 

essentially collections of structures and behaviors inferred from requirements. A 

distinction has been made between the “base” themes and the “aspect” themes, where 

aspect themes refer to crosscutting behavior. In Theme/UML approach, an aspect theme 

is differentiated from a base theme in the sense that in addition to other behavior, it may 

define some behavior that is triggered by behavior in some other theme. As far as 

modeling is process is concerned, first the triggered behavior needs to be identified and 

captured in the form of templates and then the crosscutting behavior related to those 

templates is modeled. Later, the base themes which are not affected by the crosscutting 

themes are modeled using the standard UML design process. A different approach is 

used to modeling of aspect themes by representing them using a new complete unit of 

modularization similar to a package in standard UML, with stereotype <<theme>>. 

This theme may comprise of any of the standard UML diagrams to model different 

views of the structure and behavior required for a concern to execute. Essentially, the 

aspect theme design is similar to a standard UML package that contains structural and 

behavioral diagrams. The only difference is the specification of templates listed inside 

the theme package notation and a sequence diagram for each of the templates grouping 
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in the theme package. Even though Theme/UML allows any kind of UML diagrams to 

be used for aspect-theme design, package and class diagrams are currently used for 

structure modeling, whereas sequence diagrams are used for behavior modeling. 

A.6) Aspect-Oriented Software Development with Use Cases 

Jacobson and Ng (2004) have proposed an approach which is based on the idea 

of using a development process where concerns are kept separated from requirements 

specification to the implementation phase. For this purpose, they define use case slices 

to specify high-level design and then refine this design to obtain detailed design. At 

detailed design level, they represent structure by means of class diagrams and behavior 

by means of sequence diagrams. Model weaving is not supported. One distinguishing 

characteristic of this approach is its support for traceability of models pertaining to a 

specific concern along different phases of software development.     

A.7) Aspect-Oriented Architecture Models  

The Aspect-Oriented Architecture Model approach of France et al. (2004) is 

based on composing model elements that present a single concept using different views. 

The model elements that are composed using this approach are needed to be of the same 

type. Aspects may specify concepts that are not present in a target model.   Templates 

are used in conjunction with package diagrams, class diagrams, communication 

diagrams and sequence diagram to represent aspects.  In this respect, this approach is 

similar to Theme/UML approach described previously. The compositor composition 

mechanism is used to provide the concern composition. Just like Theme/UML, primary 

models and aspect models are distinguished, where the latter represent crosscutting 

behavior. Later, a tool called Kompose (Fleurey et al., 2008) has also been developed 

which uses the composition technique proposed by Aspect-Oriented Architecture 

Models approach.  
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A.8) The UML Notation for AOSD   

The notation of (Pawlak et al. (2002); Pawlak et al. (2005)) is a UML profile 

based on UML 1.x to model a design using JAC Framework, which is a middleware to 

support concerns such as persistence, security, fault tolerance etc. in J2EE applications. 

Currently, the profile does not support behavior modeling, whereas the support for 

structure modeling is provided by means of class diagrams. <<aspect>> stereotype is 

used to represent aspects, and they are linked with a target class using <<pointcut>> 

stereotypes. The association between the operations of base and aspect classes (i.e., the 

join point) is specified with the help of a proprietary language. This approach is similar 

to that of Jacobson et al. described previously in that it does not support model weaving.  

A.9) The Motorola WEAVR Approach  

The Motorola WEAVR approach (Cottenier et al., 2007a; Cottenier et al., 2007c) 

has been developed in an industrial setting, specifically in context of telecommunication 

industry. It uses Specification and Description Language (SDL) to specify models, 

which has partly been adopted in UML 2.x. The WEAVR approach is thus based on 

UML 2.x. The approach uses class diagrams and composite structure diagrams to 

represent structure. State machines, action language of SDL and sequence diagrams are 

used to model behavior. Individual aspects are represented using <<aspect>> 

stereotype and a pointcut-advice mechanism is used for composition of aspects and 

target models. Model execution and code generation are also supported.  

A.10) The Aspect-Oriented Executable Models Notation  

Aspect-Oriented Executable UML Models (AOEM) (Fuentes and Sanchez, 

2007a; Fuentes and Sanchez, 2007b) is a UML profile that extends the UML and its 

action semantics to construct aspect-oriented executable models. In AOEM, an aspect is 

represented by a UML class stereotyped as <<aspect>>, and comprises special 
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operations to model advices. Specifically, advices are modeled using activity diagrams 

without input objects and any number of output pins to modify values of intercepted 

objects. In (Fuentes and Sánchez, 2009), a dynamic weaving mechanism has also been 

provided by authors of the AOEM to enhance its models.  

A.11) The Concern Architecture View Approach 

Katara and Katz (2007) have provided a conceptual model for design of aspects 

by designing a concern architecture model. The approach can handle the specification of 

aspects both in symmetric as well as asymmetric manner. The conceptual model has 

been implemented as a UML Profile. Aspects are defined as augmentations to target 

model, and the composed model is obtained by mapping a non-aspect model to a new 

model containing aspect descriptions. The aspects are parametric in nature and thus can 

be bound or instantiated several times. To make them generic in this way, they are 

explicitly split into two parts: required (which defines the join point) and provided 

(which defines the augmentation to original model). To compose an aspect into a target 

model, a special operation called superimposition is used, which allows an aspect to 

augment another one. 

A.12) The Behavioral Aspect Weaving Approach 

The approach of Klein et al. (2007) is based on the concept of scenarios which 

are basically sequence diagrams or Message Sequence Charts. A pair of scenarios is 

used to define an aspect, one scenario representing the pointcut, and the other 

representing the advice. Just like AspectJ, the advice in this behavioral aspect weaving 

approach can be inserted “around”, “before”, or “after” a join point. In order to 

weave an aspect model into a target model, first a generic detection strategy is used 

which identifies all the join points in the target model, then a generic composition 

mechanism is applied to compose advice model with the target model at the identified 

join points.     
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A.13) Reusable Aspect Models   

Reusable Aspect Models (RAM) (Klein and Kienzle, 2007; Kienzle et al., 2009; 

Kienzle et al., 2010) is a multi-view modeling approach that combines existing AO 

approaches to model class, sequence and state diagrams into a single approach. Multi-

view modeling, in its essence, provides means to describing a system from multiple 

points of view, using different modeling notations, and thus allowing the use of the most 

appropriate modeling notation to describe facets different views of a system. RAM is 

different from all other AOM approaches in a sense that it views aspects as concerns that 

are reused many times in an application or across several applications. Therefore, this 

approach models any functionality that is reusable by means of an aspect.  Hence, 

different views (i.e., structure, message, and state views) of a reusable concern are 

encapsulated in the form of an aspect model which is essentially a special UML 

package. This aspect model comprises of three different compartments representing the 

structural view, state view and message view. These views are expressed using a UML 

class diagram, state diagram and sequence diagrams respectively.  

A.14) MATA notation  

Modeling Aspects using a Transformation Approach (MATA) (Whittle et al., 

2007; Whittle and Jayaraman, 2008; Whittle et al., 2009) is a graph transformation 

based approach to modeling and composing aspects. Both the base and aspect models 

are represented in the form of well-formed graphs. Since the idea of using graph rules is 

broadly applicable, MATA is seen as an approach which can be extended to any 

modeling diagrams, and even to other modeling languages. The only condition in this 

regard is that the modeling language to be represented using MATA must have a well-

defined meta-model. UML meta-model can be represented in the form of a graph by 

making each meta-class a node in the type graph, and making each meta-association an 

edge in the type graph. In this way, any UML model can be represented as an instance of 

this type graph. Aspects are defined using graph transformation rules, where the left-

hand-side (LHS) of a transformation rule is a pattern that defines the pointcuts which are 
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to be matched, whereas the right-hand-side (RHS) defines new elements to be added (or 

removed) at these pointcuts. MATA provides a convenient way of writing the graph 

rules by proposing that the rule be given on one diagram only, rather than writing graph 

rules using both LHS and RHS, since this needs repetition of unchanged elements on 

both sides of the rule. To this purpose, it defines three new stereotypes namely: (1) 

<<create>> to specify that a new element must be created by the graph rule, (2) 

<<delete>> to identify deletion of an element by a graph rule, and (3) 

<<context>> to avoid effect of (1) and (2) on elements. 
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