

ASPECT-ORIENTED MODEL-DRIVEN CODE GENERATION APPROACH

FOR IMPROVING CODE REUSABILITY AND MAINTAINABILITY

ABID MEHMOOD

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

MAY 2014

iii

To my beloved parents, wife Irum, and our children Shuja and Rameen

iv

ACKNOWLEDGEMENT

First, I am grateful to Almighty Allah (swt) for always being the source of

strength, well-being, and gratification for me throughout my life and particularly

through the period of this research work.

I am thankful to Dr. Dayang Jawawi, my supervisor, for her vibrant and

invaluable guidance. Dr. Jawawi has continuously supported me during this research,

reviewing my work, providing clear advice, and entertaining numerous questions

with kind gestures.

I am highly obliged to my parents, brothers and sisters for their

encouragement, endless support and compassionate prayers. Their prayers have

always been a source of inspiration and encouragement for me. Here, I also

acknowledge the support of my dear friend and brother, Shabir Ahmed, who has

helped me along in ways he may not even know.

I owe a great debt of gratitude to my wife, Irum, for her love, huge patience,

support and motivation. This work would not have been accomplished without her

help and support indeed. Besides her, I also express much appreciation to our

children Shuja and Rameen, for helping me get through the hard times, and

understanding at the moments I was not with them.

v

ABSTRACT

Software development teams always need methods that can help in producing

high-quality software with reduced development effort and delivery time. Model-

Driven Engineering (MDE) as well as Aspect-Oriented Software Development

(AOSD) techniques help in reducing the delivery time, and also positively contribute

to quality of the produced software. Through the use of AOSD techniques in

combination with MDE, an integration of excellent abstraction mechanisms of MDE

and capabilities of AOSD with regards to modularity and composition of concerns

can be perceived, which is expected to enhance the positive effects of both

techniques. To this end, different integration approaches have appeared in literature,

but aspect-oriented code generation has advantages over the other approaches.

Consequently, a number of aspect-oriented code generation approaches have been

offered, but all such approaches lack several features mandatory to materialize a

workable integration of aspect technologies in the context of MDE. To address these

issues, this research was conducted to present an approach for aspect-oriented model-

driven code generation, which focuses on elaborating the conceptual relationship

between design models and the implementation code, and exploits the same to obtain

aspect-oriented code that is more reusable and maintainable. The key outcomes of

this research are the elaboration of the conceptual mappings between elements of

visual design and constructs of the code, mapping of the visual models to

implementation-specific text-based models, and a technique for generation of aspect-

oriented code. The applicability of the proposed approach is shown by the use of case

studies, whereas the quality of the approach is measured using reusability and

maintainability metrics. A comparison of the proposed approach with existing

approaches substantiates its efficacy in terms of reusability and maintainability of

code, showing an outperformance of other approaches by the proposed approach

against 78% of the employed quality metrics.

vi

ABSTRAK

Pasukan pembangunan perisian sentiasa memerlukan kaedah yang boleh
membantu dalam menghasilkan perisian yang berkualiti tinggi dengan
mengurangkan usaha pembangunan dan masa penghantaran. Kejuruteraan
berpandukan model (MDE) dan teknik Pembangunan Perisian Berorientasikan
Aspek (AOSD) membantu dalam mengurangkan masa penghantaran dan juga
menyumbangkan kepada kualiti perisian yang dihasilkan. Dengan penggunaan
teknik-teknik AOSD yang digabungkan dengan MDE, gabungan ini dijangka boleh
memperbaiki kesan positif kedua-dua teknik dengan integrasi mekanisma
pengabstrakan MDE yang baik dan kemampuan AOSD dari segi kemodularan dan
komposisi yang boleh diamati. Untuk ini, pendekatan-pendekatan integrasi yang
berbeza telah muncul di dalam literatur, tetapi penjanaan kod berorientasikan aspek
mempunyai banyak kelebihan berbanding pendekatan yang lain. Walaupun, pelbagai
pendekatan penjanaan kod berorientasikan aspek telah ditawarkan, tetapi kesemua
pendekatan tersebut kurang dari segi ciri-ciri mandatori untuk membolehkan
integrasi teknologi aspek di dalam konteks MDE dilaksanakan. Bagi menyelesaikan
kekurangan ini, kajian ini telah dijalankan untuk menunjukkan satu pendekatan
penjanaan kod berorientasikan aspek dan berpandukan model, di mana ia fokus
kepada penghuraian hubungan konseptual di antara reka bentuk model dan
pelaksanaan kod, dan mengolah kedua-duanya untuk mencapai kod berorientasikan
aspek yang mempunyai kadar kebolehgunaan semula dan kebolehselenggaraan yang
lebih. Penghasilan utama kajian ini adalah penghuraian pemetaan elemen-elemen
reka bentuk visual dan pembinaan kod, pemetaan model visual untuk model
berasaskan teks dan perlaksanaan-spesifik dan teknik untuk penjanaan kod
berorientasikan aspek. Kebolehgunaan pendekatan yang dicadangkan ini telah
ditunjukkan melalui kajian kes, manakala kualiti pendekatan diukur menggunakan
metrik kebolehgunaan semula dan kebolehsenggaraan. Perbandingan di antara
pendekatan yang dicadangkan dengan pendekatan-pendekatan sedia ada berkaitan
keberkesanannya dari segi kebolehgunaan semula dan kebolehsenggaraan kod,
menunjukkan pendekatan yang dicadangkan mengatasi pendekatan-pendekatan lain
sebanyak 78% dengan menggunakan metrik pengukuran kualiti.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xvii

LIST OF FIGURES xx

LIST OF ABBREVIATIONS xxiv

LIST OF APPENDICES xxvi

1 INTRODUCTION 1

1.1 Overview 1

1.2 Research background 3

1.3 Motivation 9

1.4 Problem statement 11

1.5 Research objectives 13

1.6 Research scope 14

1.7 Thesis outline 14

2 LITERATURE REVIEW 16

2.1 Introduction 16

viii

2.2 Integration of Aspect Orientation and MDE 18

2.2.1 Aspect-Oriented Modeling (AOM)
notations 19

 2.2.1.1 UML Profiles to support AOM 20

 2.2.1.2 Meta-model extensions to
 support AOM 22

 2.2.1.3 Infrastructures for the
 extension process 23

2.2.2 Weave-Then-Generate (WTG)
 approaches 24

 2.2.2.1 Model weavers 24

 2.2.2.2 Model unweavers 26

 2.2.2.3 Base-aspect interaction
 enhancement techniques 27

2.2.2.4 Object-oriented code
 generation approaches 28

2.2.3 Generate-Then-Weave (GTW)
approaches 29

2.2.3.1 Transformation-based
 approaches 30

 2.2.3.2 Direct mapping approaches 31

 2.2.3.3 Code generation from
 specification of NFRs 33

2.2.4 Evaluation of object-oriented code

generation in WTG setting 34

 2.2.4.1 Models 35

 2.2.4.2 Design 35

 2.2.4.3 Implementation 39

 2.2.4.4 Validation 40

 2.2.4.5 Extent of Code 40

 2.2.4.6 Tools support 41

 2.2.4.7 Discussion of results and
 essential problems in WTG
 approach 42

ix

 2.2.4.8 Discussion of reusability and
 maintainability problems 44

2.3 Aspect-oriented model-driven code
 generation – a GTW approach 45

2.3.1 Benefits of aspect-oriented code
generation 45

2.3.2 Evaluation of existing aspect-oriented

code generation approaches 46

2.3.2.1 Transformation 50

 2.3.2.2 Models 51

 2.3.2.3 Validation 52

 2.3.2.4 Extent of code 53

 2.3.2.5 Tool-support 54

2.3.3 Limitations of approaches with
respect to integration with MDE 55

2.4 Important concepts in the integration
 through AO code generation 56

2.4.1 Selection of Aspect-Oriented Modeling

(AOM) approach 56

2.4.1.1 General assessment 58

2.4.1.2 A modeling example-driven

assessment 78

2.4.1.3 Reusable Aspect Models (RAM)
 for AO code generation 85

2.4.2 Conceptual mapping of models and

integration of behavioral models 87

2.4.2.1 Mapping of AO models 87

2.4.2.2 Implementation of behavioral

diagrams 89

2.4.3 Representation approach 92

2.4.3.1 XML as an intermediate
 representation 93

x

2.4.3.2 Techniques to transform
UML-based models into XML 94

2.5 Summary 95

3 RESEARCH METHODOLOGY 96

3.1 Introduction 96

3.2 Research design 97

3.3 Research phases 98

3.4 Research framework 100

3.5 Research process 102

3.5.1 Phase 1: Primary studies and data
collection 102

3.5.1.1 Literature analysis 102

3.5.1.2 Problem formulation 105

3.5.2 Selection of the AOM and
transformation approach 107

3.5.2.1 Determining AOM approach 107

3.5.2.2 Determining behavior
representation approach 108

3.5.2.3 Determining text-based model
representation approach 108

 3.5.3 Mapping method development 108

3.5.4 Text-based implementation model
development 110

3.5.5 Code generation technique development 111

3.5.6 Validation 112

3.5.6.1 Checking the applicability of
the proposed approach using
case studies 112

3.5.6.2 Evaluating the AOMDCG
relative to GTW approaches 113

3.5.6.3 Evaluating the reusability
and maintainability through
metrics 113

3.6 Quality metrics 114

xi

3.6.1 Separation of Concerns metrics 115

 3.6.1.1 Concern Diffusion over Components (CDC) 115

 3.6.1.2 Concern Diffusion over Operations (CDO) 116

3.6.2 Coupling metrics 116

 3.6.2.1 Coupling between Components (CBC) 116

 3.6.2.2 Depth of Inheritence Tree (DIT) 117

3.6.3 Cohesion metrics 117

 3.6.3.1 Lack of Cohesion in Operation (LCOO) 117

3.6.4 Size metrics 118

 3.6.4.1 Vocabulary Size (VS) 118

 3.6.4.2 Lines of Code (LOC) 118

 3.6.4.3 Number of Attributes (NOA) 118

 3.6.4.4 Weighted Operations per

 Component (WOC) 119

3.7 Case studies 119

3.7.1 Remote Service Caller case study 120

3.7.2 Online Book Store System case study 121

3.8 Summary 124

4 METHOD FOR MAPPING ASPECT-
 ORIENTED MODELS TO ASPECT-
 ORIENTED CODE 125

4.1 Introduction 125

4.2 Mapping Core properties and Structural
units to code 126

4.2.1 General structure, classes, attributes
and operations 127

4.2.2 Associations 128

4.2.3 Instantiation and binding directives 130

4.3 Mapping behavior 131

4.3.1Mapping the basic state diagram 131

4.3.2 Mapping composite states 135

xii

4.3.2.1 Composite states with sequential

substates 136

4.3.2.2 Composite states with concurrent

substates 137

4.4 Summary 140

5 A TEXT-BASED IMPLEMENTATION
 MODEL FOR RAM 141

5.1 Introduction 141

5.2 The Conceptual Reference Model for RAM 142

5.2.1 Core 142

5.2.2 StructuralView 144

5.2.3 StateView 145

5.3 The text-based implementation model 146

5.3.1 Text-based model for the Core part 147

5.3.1.1 RAM aspect 147

5.3.1.2 Mandatory instantiation parameters

and instantiation directives 149

5.3.2 Text-based model for the StructuralView part 151

 5.3.2.1 Interfaces and classes 151

 5.3.2.2 Fields 153

 5.3.2.3 Constructors and methods 153

 5.3.2.4 Relationships 156

5.3.3 Text-based model for the StateView part 158

5.3.3.1 Standard statechart 158

5.3.3.2 States 158

5.3.3.3 Substates 159

 5.3.3.4 Transitions 160

 5.3.3.5 Aspectual statechart 163

5.4 Summary 164

xiii

6 ASPECT-ORIENTED CODE GENERATION
 TECHNIQUE 165

6.1 Introduction 165

6.2 Overview of the code generation algorithm 166

6.3 Code generation for the core concepts 168

6.4 Code generation for the structural part 172

6.4.1 Classes 172

6.4.2 Interfaces 173

6.4.3 Constructors 174

6.4.4 Fields 175

6.4.5 Methods 176

6.4.6 Relationships 178

6.4.7 Instantiation and binding directives 178

6.5 Code generation for the behavioral part 179

6.5.1 Statechart 180

6.5.2 Aspectual statechart 181

6.6 Summary 188

7 IMPLEMENTATION OF APPROACH:
 DEVELOPING A REMOTE SERVICE
 CALLER WITH FAILURE HANDLING
 FUNCTIONALITY 189

7.1 Introduction 189

7.2 RAM models for Remote Service Caller 190

7.3 Text-based representation of RAM models 194

7.3.1 Network Failure Handler aspect 195

 7.3.1.1 Core properties 195

 7.3.1.2 Structural view 196

 7.3.1.3 State view 196

7.3.2 Service Controller aspect 197

7.3.2.1 Core properties 197

7.3.2.2 Structural view 198

xiv

7.3.2.3 State view 199

7.4 Code generation 201

7.4.1 NetworkFailureHandler aspect 202

7.4.1.1 Context Handler 202

7.4.1.2 State Controller 203

7.4.1.3 State classes 203

7.4.2 ServiceController aspect 207

7.4.2.1 Context Handler 207

7.4.2.2 State Controller 208

7.4.2.3 Context Handler for composite state 210

7.4.2.4 State Controller for composite state 211

7.4.2.5 State Classes 212

7.4.3 Instantiation Aspect 213

7.5 Discussion 214

7.6 Summary 216

8 IMPLEMENTATION OF APPROACH:
 ASPECT-ORIENTED DEVELOPMENT OF
 AN ONLINE BOOK STORE SYSTEM 217

8.1 Introduction 217

8.2 Reusable Aspect Models for Online Book Store System 218

8.3 Text-based representation of OBSS RAM models 224

8.3.1 Persistence, Currency Conversion and

Encryption aspects 225

8.3.2 Order base implementation as a RAM aspect 225

8.4 Code generation 227

8.4.1 Persistence, Currency Conversion and

Encryption aspects 228

8.4.2 Order base implementation as RAM aspect 236

 8.4.2.1 Order Context Handler 237

 8.4.2.2 Order State Controller and associated states 242

8.4.2.3 Composite state controller and associated

xv

 classes 243

 8.4.2.4 Other classes in the model 247

8.5 Discussion 249

8.6 Summary 250

9 QUALITY MEASUREMENT OF THE
 APPROACH 251

9.1 Introduction 251

9.2 Evaluation of AOMDCG relative to GTW approaches 252

9.2.1 Transformation 252

9.2.2 Models 254

9.2.3 Validation 254

9.2.4 Extent of code 254

9.2.5 Tool-support 255

9.3 Measurement of reusability and maintainability 256

9.3.1 Separation of Concerns (SOC) 257

9.3.1.1 Concern Diffusion over Components (CDC) 257

9.3.1.2 Concern Diffusion over Operations (CDO) 259

9.3.2 Coupling 260

9.3.2.1 Coupling Between Components (CBC) 260

 9.3.2.2 Depth of Inheritance Tree (DIT) 262

9.3.3 Cohesion 263

9.3.3.1 Lack of COhesion in Operations (LCOO) 263

9.3.4 Size 264

9.3.4.1 Vocabulary Size (VS) 264

9.3.4.2 Lines Of Code (LOC) 266

9.3.4.3 Number Of Attributes (NOA) 267

9.3.4.4 Weighted Operations per

Component (WOC) 268

9.4 Discussion of results 269

9.5 Summary 271

xvi

10 CONCLUSION 272

10.1 Summary 272

10.2 Achievement of research objectives 273

10.3 Research contributions 274

10.4 Future work 276

REFERENCES 278

Appendices A-E 300-344

xvii

LIST OF TABLES

TABLE NO. TITLE PAGE

 2.1 Evaluation criteria for OO code generation approaches 36

2.2 Evaluation on basis of Models criteria 39

 2.3 Evaluation on basis of Design and Implementation
criteria 40

 2.4 Evaluation on basis of Validation criteria 41

2.5 Evaluation on basis of Extent of Code criteria 42

2.6 Evaluation on basis of Tools Support criteria 43

 2.7 Evaluation criteria for AO code generation approaches 48

2.8 Comparison on basis of Transformation criteria 52

 2.9 Comparison on basis of Models &Validation criteria 53

 2.10 Comparison on basis of Extent of Code and
 Tool Support criteria 54

 2.11 Summary of notation-specific criteria with scores 59

 2.12 Summary of composition-specific criteria with scores 62

 2.13 Summary of maturity-specific criteria with scores 63

 2.14 Summary of tool-support-specific criteria with scores 64

 2.15 Comparison of AOM approaches on basis of
 notation-specific criteria 66

 2.16 Comparison of AOM approaches on basis of
 composition-specific criteria 70

2.17 Comparison of AOM approaches on basis of
 maturity-specific criteria 73

xviii

 2.18 Comparison of AOM approaches on basis of

 tool-support-criteria 74

 2.19 AOM notations scores against different criteria sets 76

 2.20 Assessment criteria 79

 2.21 Assessment results against Obliviousness and
 Familiarity criteria 83

 4.1 Summary of mapping from RAM’s Core properties
 and Structural units to Java/AspectJ 129

 4.2 Summary of mapping from RAM’s State view to
 Java/AspectJ 132

 5.1 Mapping of RAM aspect (encapsulating entity) to
 XML Schema 147

 5.2 Mapping of mandatory instantiation parameters 150

5.3 Mapping of instantiation and binding directives 150

 5.4 Mapping of RAM interfaces to XML Schema 152

 5.5 Mapping of RAM classes to XML Schema 152

 5.6 Mapping of fields in RAM classes to XML Schema 155

 5.7 Mapping of constructors to XML schema 155

 5.8 Mapping of methods to XML schema 155

 5.9 Mapping of relationships 157

 5.10 Mapping of standard statechart 158

 5.11 Mapping of states 159

 5.12 Mapping of substates 162

 5.13 Mapping of transitions 162

 5.14 Mapping of aspectual statechart to XML Schema 163

9.1 Transformation criteria applied to AOMDCG 253

9.2 Models and Validation criteria applied to
 AOMDCG 255

9.3 Extent of Code and Tool Support criteria applied 256
 to AOMDCG

 9.4 CDC for RSC case study 257

xix

 9.5 CDC for OBSS case study 258

 9.6 CDO for RSC case study 259

 9.7 CDO for OBSS case study 260

 9.8 CBC for RSC case study 261

 9.9 CBC for OBSS case study 261

 9.10 DIT for RSC case study 262

 9.11 DIT for OBSS case study 262

 9.12 LCOO for RSC case study 263

 9.13 LCOO for OBSS case study 264

 9.14 VS for RSC case study 265

 9.15 VS for OBSS case study 265

 9.16 LOC for RSC case study 266

 9.17 LOC for OBSS case study 266

 9.18 NOA for RSC case study 267

 9.19 NOA for OBSS case study 267

 9.20 WOC for RSC case study 268

 9.21 WOC for OBSS case study 268

xx

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Persistence aspect modeled using Kienzle approach 81

 2.2 Persistence aspect modeled using Cottenier approach 84

 2.3 Persistence aspect modeled using Fuentes approach 84

 2.4 Persistence aspect modeled using Clarke approach 85

 3.1 Research phases 98

 3.2 Research framework 101

 3.3 The proposed research methodology 104

 3.4 Transformation from RAM models to AspectJ code 110

 3.5 Excerpt of the high level architecture of OBS System 123

 3.6 High level communication of objects to handle a new

 order 123

 4.1 State view StateDemo1 133

 4.2 Implementation hierarchy for StateDemo1 134

 4.3 State view StateDemo2 with composite states 136

 4.4 Implementation hierarchy for StateDemo2 137

 5.1 The CRM developed for RAM models 144

 5.2 Schema for AspectType to represent a high level

RAM aspect 149

 5.3 An excerpt of XML schema for ClassType 154

 5.4 Schema definition of FunctionType 156

xxi

 5.5 Schema definition of Method 156

 5.6 XML schema representation of a State 161

 6.1 Code generation algorithm 170

 6.2 Code generated for a local context class (locInstClass) 181

 6.3 Code generated for a local state class (locStateClass) 182

 6.4 Code generated for a setState method (sSetStateMethod) 183

 6.5 Code generated for a stateInstAspect 186

 7.1 NetworkFailureHandler aspect 192

7.2 ServiceController instantiating NetworkFailureHandler 193

7.3 ServiceController aspect composed as an

independent aspect 194

7.4 XML representation of core properties of

NetworkFailureHandler 195

 7.5 XML representation of structural part of

NetworkFailureHandler 198

 7.6 XML representation of behavioral part of

NetworkFailureHandler 199

 7.7 XML representation of core properties of

ServiceController 200

 7.8 XML representation of structural part of

ServiceController 200

 7.9 XML representation of behavioral part of

ServiceController 201

 7.10 Source code generated for the Context Handler in

NetworkFailureHandler aspect 204

 7.11 Source code generated for State Controller in

NetworkFailureHandler aspect 206

 7.12 Source code generated for class representing

xxii

Triable State in NetworkFailureHandler aspect 206

7.13 Source code generated for class representing

Tried State in NetworkFailureHandler aspect 207

7.14 Source code generated for the Context Handler

in ServiceController aspect 208

7.15 Source code generated for State Controller in

ServiceController 210

 7.16 Source code generated for Context Handler for

composite state Working in ServiceController aspect 211

 7.17 Source code generated for State Controller for

composite state Working in ServiceController aspect 212

 7.18 Source code generated for classes representing Calling

state within Working state in ServiceController aspect 213

 7.19 Source code generated for classes representing Called

state within Working state in ServiceController aspect 213

 7.20 Source code generated for Instantiation Aspect 214

 8.1 RAM representation of Persistence 219

 8.2 RAM representation of CurrencyConversion 220

 8.3 RAM representation of Encryption 221

 8.4 RAM representation of Order instantiating Persistence,

CurrencyConversion and Encryption 222

 8.5 RAM representation of independent aspect Order

after instantiation of other aspects 224

 8.6 XML-based representation of Persistence aspect 226

 8.7 XML-based representation of CurrencyConversion

 aspect 227

 8.8 XML-based representation of Encryption aspect 229

 8.9 XML-based representation of Order aspect 230

xxiii

 8.10 Code generated for the Context Handler for Order

aspect 239

 8.11 Code generated for State Controller for Order aspect 243

 8.12 Code generated for independent State classes

(Uninitialized, Unsubmitted, Shipped and Delivered)

in Order aspect 245

 8.13 Code generated for Composite State class

 (Processing) in Order 246

 8.14 Code generated for Substates of Processing

(EurosPayment, DollarsPayment and

EncryptedPayment) in Order aspect 246

 8.15 Code generated for classes with no statecharts

(Customer, CreditCardCharge, Book and

ShoppingCart) in Order aspect 248

xxiv

LIST OF ABBREVIATIONS

AO - Aspect-Oriented

AOM - Aspect-Oriented Modeling

AOMDCG - Aspect-Oriented Model-Driven Code Generation

AOSD - Aspect-Oriented Software Development

CASE - Computer-Aided Software Engineering

CRM - Conceptual Reference Framework

FDAF - Formal Design Analysis Framework

GTW - Generate-Then-Weave

JPDD - Join Point Designation Diagram

MATA - Modeling Aspects using a Transformation Approach

MDA - Model-Driven Archiecture

MDE - Model-Driven Engineering

MOF - Meta-Object Facility

NFR - Non-Functional Requirement

OCL - Object Constraint Language

OO - Object-Oriented

OBSS - Online Book Store System

PIM - Platform-Independent Model

PSM - Platform-Specific Model

RAM - Reusable Aspect Models

RSC - Remote Service Caller

SDL - Specification and Description Language

SIG - Sequence Integration Graph

SOAP - Simple Object Access Protocol

UML - Unified Modeling Language

UMLAUT - Unified Modeling Language All pUrposes Transformer

WTG - Weave-Then-Generate

xxv

XMI - XML Metadata Interchange

XML - Extensible Markup Language

XSLT - EXtensible Stylesheet Language

xxvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A AOM approaches evaluated in the context

 of code generation 300

B Full XML schema representation of RAM models 308

C Code generated for OBSS RAM models 317

D Implementation of RSC and OBSS case studies

using JCode approach 330

E List of publications from thesis work 344

 CHAPTER 1

INTRODUCTION

1.1 Overview

Model-Driven Engineering (MDE) is an approach to software development that

stresses upon making models the primary development artifact, and using these models

as source in a process leading to automatic generation of the final application code. It

emphasizes on subjecting models to a refinement process, through automatic

transformations, until a running system is obtained. By doing so, MDE aims at providing

higher level of abstraction in development of systems which further results in an

improved understanding of complex systems. Moreover, it addresses problems in

software systems development that originate from existence of heterogeneous platforms.

It achieves this through keeping different levels of model abstractions; and by

transforming models from Platform Independent Models (PIMs) to Platform Specific

Models (PSMs). In this context, automatic generation of application code (i.e.,

automatic model-driven code generation) offers many advantages such as the rapid

development of high quality code, reduced number of accidental programming errors,

enhanced consistency between design and code, to name a few. In addition to these,

several other benefits have also been reported in (Afonso et al., 2006; Karakostas and

Zorgios, 2008).

Aspect orientation and the related paradigm, i.e., Aspect-Oriented Software

Development (AOSD) (Elrad et al., 2002; Rashid et al., 2006; Sánchez et al., 2010;

2

Hoffman and Eugster, 2013) provide an approach to software engineering which allows

explicit identification, separation, and encapsulation of concerns that cut across the

primary modularization of a system. These crosscutting concerns cannot be clearly

decomposed from primary functionality (core concerns) of the system, and thus cannot

be effectively modularized, when using well-known object-oriented development

techniques. Hence these concerns end up scattered throughout the system and tangled

with the core concerns of system. Even though the crosscutting concerns usually

originate from non-functional requirements such as logging, security, persistence, and

optimization, but the phenomenon encompasses the functional ones too, which often

have their behavioral logic spread out over several modules. Using aspect-orientation,

these concerns are identified, modeled and implemented independent of each other as

well as separate from the main functional concerns of the system. Once separated in this

way into modules, these concerns need some composition mechanism to control where

and when concern behavior is applied. This effectiveness of modularization is achieved

through applying aspect orientation at analysis phase using Early Aspects (Rashid et al.,

2006), during design using Aspect-oriented Modeling (Elrad et al., 2002), and using

Aspect-oriented Programming (Kiczales et al., 1997) for implementation. The separation

of crosscutting concerns from core functionality of the system achieved through aspect-

orientation eventually results in improving the reusability and maintainability qualities

of software, which in turn contribute positively to several quality factors such as

understandability, flexibility and extensibility (Hannemann and Kiczales, 2002; Garcia

et al., 2005; Hovsepyan et al., 2010; Piveta et al., 2012).

In order to combine the use of aspect orientation and MDE (Amaya et al., 2005;

Clemente et al., 2011; Pinto et al., 2012), aspect-oriented models developed using

Aspect-Oriented Modeling (AOM) approaches (cf. (beeck et al., 2006; Wimmer et al.,

2011)) can be integrated and used within the context of MDE in at least two different

ways. This eventually results in forming two distinct lines of research for the integration

of aspect orientation and MDE. Along the first line are approaches that propose using a

model weaver to compose the base model (one that models core concerns) and the

aspect model (model which represents crosscutting concerns) in such a way that a non-

aspect-oriented (object-oriented) model is obtained. Then, standard code generation

3

approaches can be used to generate code into one of the object-oriented programming

languages. In contrast, the second line of research comprises of approaches that explore

direct transformation of the source aspect-oriented model into code of a target aspect-

oriented language, and then rely on weaver provided by the target language to deal with

crosscutting aspects.

While transforming aspect models into object-oriented code may provide some

benefits such as using existing code generators, the technique is bound to lose the

aspectual features owing to lack of their support by object-oriented programming

languages. This means that the concerns that have been composed once at the model

level can no longer be reproduced in a separated form. As aspect orientation is used in

software development projects with the clear intention of separation of concerns (and

their reuse as needed), it is unreasonable to lose this separation during model to code

transformation. This is the main idea that inspires the current research to studying the

direct transformation of aspect-oriented models into aspect-oriented code.

1.2 Research background

When it comes to the use of aspect-oriented technologies in the context of MDE

(Amaya et al., 2005; Clemente et al., 2011; Pinto et al., 2012), early literature has paid

much attention to aspect-oriented modeling, whereas the issue of their transformation

into code, i.e., model-driven code generation, has been rarely investigated. However, in

order to discuss the existing research in the broader context of the integration of AOSD

and MDE, it may be classified into two major groups: AOM notations along with model

weavers, and mechanisms to transform AO models into AO code.

The core idea behind the use of model weavers with AO models is to provide

composition mechanism so that models can be simulated, tested and debugged prior to

execution. The Motorola experience (Baker et al., 2005) and the Motorola WEAVR

4

report (Cottenier et al., 2007b) have presented many benefits associated with

simulation, testing and debugging of models. In this context, significant work has been

accomplished in the domain of aspect-oriented modeling and composition approaches.

Majority of aspect-oriented modeling approaches extend UML by modeling either

structure or behavior, or both, using UML diagrams extended with aspect-oriented

concepts. However, there is comparatively little number of proposals that address

extending behavior diagrams. As far as the composition approaches for aspect-oriented

modeling are concerned, there are two broader categories: asymmetric and symmetric

composition approaches. An asymmetric composition refers to an approach which

models aspects separate from other components in the system. Aspects are used to

model crosscutting concerns, whereas components are used to model non-crosscutting

concerns (the base). In order to obtain a composed view of the system, aspects are

applied to (i.e., woven into) the base. On the other hand, symmetric composition

approach does not make any distinction between aspects and the base. In this approach,

a system is simply regarded as a set of concerns that are to be composed. Therefore,

these approaches separate all concerns that exist in a system, rather than separating

crosscutting concerns from non-crosscutting ones.

The initial work on aspect-oriented modeling was presented in (Grundy, 2000).

This initial proposal performed structure modeling using extended class and component

diagrams, whereas only the communication diagram was extended for behavior

modeling. It provided asymmetric composition mechanism. Some other works that have

provided asymmetric composition include Aspect-Oriented Design Modeling (Stein et

al., 2002b; Stein et al., 2002a), Aspect-Oriented Architecture Models (France et al.,

2004), UML for Aspect-Oriented Software Development (Pawlak et al., 2002),

Dynamic Component and Aspect-oriented Platform (Pinto et al., 2005), Aspect-oriented

Executable Modeling (Fuentes and Sanchez, 2007a), and Motorola WEAVR (Cottenier

et al., 2007b). For structure, all these approaches primarily rely on extension of class

diagram. In addition to class diagrams, only one approach (Aspect-oriented Architecture

Models) supports the package diagram, and one (Dynamic Component and Aspect-

5

Oriented Platform) supports component diagrams. Motorola WEAVR supports

composite structure diagram and deployment diagram.

Theme/UML (Clarke and Walker, 2001; Clarke, 2002; Clarke and Walker, 2002;

Baniassad and Clarke, 2004) was the first approach to aspect-oriented modeling which

used symmetric composition. It provides support for extended class and package

diagrams for structure modeling, and sequence diagrams for behavior modeling. It can

be regarded as a leading aspect-oriented approach among symmetric ones, since it

provides complete mapping of the design to implementation (Clarke and Baniassad,

2005), and initial results on its integration with model-driven engineering have been

presented in literature (Carton et al., 2009). Other significant work that provides

symmetric composition includes the State Charts UML Profile (Aldawud et al., 2002;

Aldawud, 2003), Architectural Views of Aspects (Katara and Katz, 2003), and Aspect

Modeling Language (Groher and Baumgarth, 2004). All these aspect-oriented extensions

use the class diagrams for structure modeling, while latter two extend the package

diagram as well. The former two approaches contribute mainly to behavior modeling in

a sense that they have provided support for state chart diagram and sequence diagram. A

combination of state charts and sequence diagrams in this way can be extended to

represent complete behavior of a system in aspect-oriented way. Another recent and a

prominent approach to aspect-oriented modeling is Reusable Aspect Models (RAM)

(Klein and Kienzle, 2007; Abed and Kienzle, 2009; Kienzle et al., 2009; Kienzle, 2013).

RAM is a multi-view aspect modeling approach which is unique in the sense that it

provides one coherent approach to aspect-oriented modeling by integrating existing class

diagram, state chart diagram, and sequence diagram approaches. Moreover, reuse of

aspects is the core idea of RAM.

Regardless of the specific features supported by each of the AOM notations

discussed above, the respective weaving mechanisms provided by all these approaches

result in a woven (object-oriented) model. Therefore, these approaches may be extended

to work in integration with existing object-oriented code generation techniques (e.g.,

(Chauvel and Jézéquel, 2005; Niaz and Tanaka, 2005; Pilitowski and Dereziñska, 2007;

6

Stavrou and Papadopoulos, 2009; Badreddin et al., 2014)) in order to obtain code from

the woven model. Nevertheless, even though the modeling approaches may work

effectively in combination with their associated weaving mechanisms (integrated with

OO code generators) for the purpose of model analysis and execution, they are not

expected to provide effective support with regards to the development of software. This

is for the reason that: (1) the generated code is object-oriented, and hence, lacks the

support for aspectual features envisioned at the model level and (2) the code is usually

generated with the intention of model analysis and execution only, and therefore, results

in maintenance and other related problems if it was to be maintained manually

(Simmonds and Reddy, 2009; Hovsepyan et al., 2010; Papotti et al., 2013). It has to be

emphasized here that one would expect the need for manual code maintenance and

evolution until MDE becomes an extremely mature discipline. These problems arise

owing to the ineffective handling of crosscutting concerns by these approaches. As they

do not retain the separation of concerns after a model has been woven (and further

transformed into code), they result in implementation code that is difficult to reuse and

maintain.

The approaches that propose transformation of an aspect-oriented model directly

into aspect-oriented code essentially do not suffer from problems mentioned above, as

they tend to maintain the separation of concerns from model to code. Moreover, these

approaches are mainly inspired by benefits resulting from existence of a direct mapping

between constructs of design model and the programming language. In this regard, a

number of empirical studies, for example (Hannemann and Kiczales, 2002; Garcia et al.,

2005; Cacho et al., 2006; Fuentes and Sánchez, 2007; Greenwood et al., 2007) have

reported potential benefits of using aspect-oriented techniques in software development.

Another study (Hovsepyan et al., 2010) has discovered that approaches pursuing aspect-

oriented programming languages result in compact, smaller, less complex and more

modular implementations. Beside academia, the use of aspect technologies at the

implementation level is now well-established in industrial circles, as the designers of

mainstream implementation frameworks (e.g., JBoss, Spring) are increasingly adopting

it.

7

The initial work on mapping of aspect-oriented design to aspect-oriented

programming language was initially presented in 2002 by mapping Theme/UML models

to AspectJ (Kiczales et al., 2001) code (Clarke and Walker, 2002). Besides providing

traceability between constructs of both languages, this work majorly contributed to

providing means for assessing the two languages and their incompatibilities. However,

some decisions in the mapping process resulted in code that imposed stronger

restrictions on reusing the modules. A similar but enhanced mapping has been provided

for Reusable Aspect Models (RAM) recently (Kramer, 2010; Kramer and Kienzle,

2011). This mapping has provided several improvements to approach of Theme/UML

mapping by using AspectJ’s recent support for annotations. Enhanced flexibility and

better support for reuse are major distinctive features of RAM’s mapping approach as

compared to Theme/UML. Mapping of Theme/UML to CaesarJ code has also been

explored by Jackson et al. (2008). The mapping of Theme/UML to CaesarJ, is very

similar to the mapping done for AspectJ, but this work does not address various

problems that arise from specific properties of CaesarJ in the context of mapping from

model to code. Recently, in (Loukil et al., 2013), architectural aspects described in

AO4AADL have been mapped to AspectJ aspects with the help of transformation rules

based on Real-Time Separation for Java (RTSJ) (Autret, 2009) rules. However, all these

works mainly focus on highlighting the conceptual relationship between constructs of

design and code, and make use of sequence diagrams for behavior implementation.

Therefore, details related to implementation of the code generation such as an

implementation savvy representation of visual models, or details of code generation

process have not been addressed by these approaches. Moreover, the use of only

sequence diagrams limits the extent of code to be generated. This is for the reason that

sequence diagrams are considered suitable for modeling behavior of controller objects

that involve sequence of method calls. They cannot effectively model the detailed object

behavior.

Some other work focuses on generating the aspect-oriented code from extended

UML models and addresses some other concerns as well. All work that follows in this

category, however, lacks in at least two aspects: (1) they have not discussed the detailed

8

mapping as to how the artifacts at model level are translated to code level constructs,

and (2) they have not addressed behavior diagrams at all. In this regard, the work of

Bennett et al. (2010) has provided an approach that uses graph-based transformation

algorithms to transform aspect design into AspectJ code. For implementation, they have

used XML schemas to textually represent their architectural design models. However,

they address only the class diagrams for this purpose. Groher and Schulze (2003)

propose an experimental design notation based on the standard UML. This notation

enhances reuse of aspect code by clearly separating the reusable programming-language-

independent design from language-dependent crosscutting one. In (Evermann, 2007;

Evermann et al., 2011), a template-based approach to generating AspectJ code has been

proposed. This is different from previous work in the sense that it generates code from a

comprehensive specification of the AspectJ meta-model. It defines a meta-model for the

AspectJ language in the form of a UML profile which utilizes the built-in features of

UML by using stereotypes and tags to specify the meta-model of AspectJ. By

implementing specific constructs of AspectJ instead of defining new element types into

UML meta-model, this AspectJ meta-model specification becomes compatible for use

with any of the existing CASE tools that support XMI interface. Hecht et al. (2005) have

proposed an approach to generating code from Theme/UML models in AspectJ. They

develop XML representation of Theme/UML models and use the Theme approach to

mapping from model to code. Furthermore, these approaches do not provide sufficient

details with regards to the comparison of the generated code with that obtained using

other mechanisms such as object-oriented implementation of the same concept.

To conclude, aspect-oriented modeling and model-driven code generation are

extensive study fields and much effort has been put to improving the mechanisms of

exploiting aspect-orientation in the context of MDE. Despite several existing proposals,

the efforts need furtherance with respect to the specific case in which the integration is

carried out using aspect-oriented code generation.

9

1.3 Motivation

Software development projects are aimed at producing high-quality software

within allocated time. However, as the projects grow in size and complexity, achieving

the goals of quality and on-time delivery become more challenging. For this reason,

software projects often end up running over schedule, as found in software project

management studies such as (Brooks, 1995). Moreover, these off-schedule projects often

relinquish quality in order to meet the project deadlines, further leading to software

products which are less reliable, less maintainable, and less adaptable. Therefore, to

prevent them ending up running over schedule, or even worse, relinquishing quality in

order to meet the deadlines, software teams are always in need of techniques that can

help reducing delivery time, and also lend to raising the quality of the product.

MDE techniques not only help in reducing the delivery time but also positively

contribute to overall quality of the produced software (Fleurey et al., 2007; Aranda et

al., 2012). In this context, at the design level, visual modeling languages such as

(Rumbaugh et al., 1991; Jacobson, 1992; Booch, 1993; Group, 2007) support by

providing modeling and model-checking capabilities (Fuentes and Sánchez, 2009). On

the other hand, during the implementation and maintenance phases, the same effect is

achieved by applying automatic code generation (Sánchez et al., 2010; Rahmouni and

Mbarki, 2013). Automatically generated code, if correctly obtained, enhances the

benefits of high-level modeling and analysis (Carton et al., 2009). Hence, in the past, it

has been deemed ideal to develop approaches that generate or help to generate

executable code from high level design models. So far as the benefits of automatic

model-driven code generation are concerned, the most significant advantages include

reduction in development time, and improvement in quality (Hovsepyan et al., 2006;

Alonso et al., 2007; Papotti et al., 2013). The majority of automatic code generation

approaches have addressed automatic code generation for object-oriented analysis and

design models. Moreover, code generation has been presented using formal notations.

Examples of code generation using formal notations include Petri Nets (Philippi, 2006),

Software Cost Reduction (SCR) (Rauchwerger et al., 2005), and Cinderella SLIPPER

10

(Rauchwerger et al., 2005). These approaches have achieved complete code generation

and they have proposed techniques for optimized code generation. In some other works

such as (Chauvel and Jézéquel, 2005; Niaz and Tanaka, 2005; Pilitowski and

Dereziñska, 2007; Stavrou and Papadopoulos, 2009), models represented in UML have

been used to generate fully executable object-oriented code. UML models have also

been used to generate code for web applications (Rahmouni and Mbarki, 2013).

Advanced issues such as handling of class associations with the help of model-oriented

languages have been explored in the perspective of code generation (Badreddin et al.,

2014). Further, many of currently available commercial (e.g., IBM Rational Software

Architect (Leroux et al., 2006), AjileJ StructureViews (AjileJ, 2011), MagicDraw UML

(NoMagic, 2011)) as well as open source (e.g., ArgoUML (Tigris.org, 2012), Eclipse

UML2 Tools (Eclipse.org, 2012)) object-oriented CASE tools support the generation of

code stubs. However, all this work has been carried out in object-oriented paradigm, and

thus eventually results in scattered and tangled code.

Aspect oriented techniques too, just like the MDE, aim to positively affect the

delivery time and quality of the software products. Specifically, they achieve this goal

by providing better modularization of components leading to improving their reuse and

enhancing other quality factors such as maintainability (Burrows et al., 2010b; Giunta et

al., 2012). Thus, MDE and aspect orientation possess some complementary properties

(Pinto et al., 2012). While modeling increases the level of abstraction, it suffers from

difficulties when it comes to the refinement and integration of system perspectives.

Aspect orientation, on the other hand, allows better modularization and composition of

concerns, but lacks appropriate abstraction mechanisms (Cottenier et al., 2007b).

Therefore, an integration of these two technologies can increase the benefits of both

(Pinto et al., 2012). This is because, on one hand, excellent abstraction mechanisms of

MDE will become available to aspect-oriented techniques and on the other hand, MDE

will be augmented by the capabilities of aspect-oriented techniques with regards to

modularity and composition of concerns. Such an integration can be realized by

subjecting aspect-oriented models to a transformation process that leads to generation of

application code into a target AO programming language. Therefore, owing to the

11

benefits associated with direct transformation of aspect-oriented models into aspect-

oriented code (Hannemann and Kiczales, 2002; Garcia et al., 2005; Cacho et al., 2006;

Fuentes and Sánchez, 2007; Greenwood et al., 2007), a few efforts have been made to

achieve the same and initial results have been reported in the literature, for example,

(Whittle et al., 2009; Bennett et al., 2010; Evermann et al., 2011; Kramer and Kienzle,

2011; Loukil et al., 2013). All such approaches are naturally based on model-driven

architecture, meaning that they use a source model developed in some notation extended

from UML as input and generate the target aspect-oriented code according to some

transformation definition. However, each of these approaches generates code in a way

that it supports certain specific features of aspect-oriented code generation (e.g., limited

structure), while eliminating others (e.g., behavioral part, reuse of functionality at code

level, implementation details etc.). Therefore, the use of aspect orientation in integration

with MDE cannot be exploited to an extent that it actually results in aspect-oriented

code, which is more maintainable and reusable for developers, and possesses both the

structure as well as behavior. Consequently, there is a need for an approach that bases

upon a mature AOM design notation and eventually produces executable aspect code, to

realize a practicable integration of aspect orientation in the larger context of MDE.

1.4 Problem statement

The software development process can be significantly improved, and the effort

involved in writing and maintaining software can be reduced by employing aspect

orientation in integration with MDE techniques. The past research has mostly focused on

applying aspect orientation in the context of MDE by providing only the model

composition facilities for AO models, which results in a common object-oriented model

and leads to object-oriented code. However, this approach of integrating aspect

orientation and MDE does not effectively solve the problem of supporting software

development teams in reducing their effort for writing and maintaining code. The main

reason for the ineffectiveness of this approach is that it results in the loss of clear

relationship between the elements of AO design and the generated code (consequently

12

making the reuse and maintenance of code more difficult) on one hand, and elimination

of numerous benefits of applying aspect-orientation on the other hand. As far as the

possibility of generating AO code is concerned, it has not been given much attention.

Therefore, the approaches that consider aspect-oriented model-driven code generation

either do not elaborate the relationship between constructs of model and code, or do not

effectively address the issues involved in actual generation of code such as elaboration

of implementation models and code generation process. Furthermore, all current

approaches suffer from at least one common problem, which is their inability to generate

comprehensive object behavior. Hence a practicable integration of aspect orientation and

MDE cannot be provided.

In this study, we intend to propose an approach for the integration of aspect

orientation and MDE that solves the problems mentioned above. The main problem to

be addressed can be specified as:

“How can we apply aspect orientation in combination with MDE, by generating

aspect-oriented code that is more reusable and maintainable than its object-oriented

counterpart, for both structure and behavior specified in the input aspect-oriented

models?”

In order to address the main research problem given above, we need to provide

answers to the following research questions as a pre-requisite.

1) What is an effective AOM approach that possesses the ability to model a system

in a comprehensive manner, makes the reuse of modeled functionality

straightforward, and lends itself to code generation?

2) What are the elements of an aspect-oriented design that are vital to generation of

behavioral code, in order to maximize the amount of generated code, and thus

produce a workable combination of aspect orientation with MDE?

13

3) How can the coherence between the aspect-oriented design and the target aspect-

oriented programming language be considered, and how can the elements of the

former be mapped to the constructs of the latter?

4) How can the common problems in aspect code generation benefit from existing

solutions in other disciplines like object-oriented?

5) What are different options to transforming the visual model into a computer-

understandable text-based model?

6) How can the aspect-oriented code be actually obtained?

7) What is the effect of proposed integration approach on the quality of final code

in terms of its reusability and maintainability?

1.5 Research objectives

The final goal of this research is to propose an approach for the integration of

aspect orientation and MDE through aspect-oriented code generation. The approach, to

be referred to as the aspect-oriented model-driven code generation approach throughout

this thesis, has to take a source AO model and generate AO code that contains

implementation of both structure as well as behavior represented in the design.

Moreover, the approach has to support the code generation for aspectual as well as non-

aspectual parts of the model. The specific objectives aimed at achieving this goal are:

1) To elaborate a method for mapping AO models representing the system structure

and object behavior to AO code.

2) To define a text-based implementation model that transforms the visual AO

design model into a formal and equivalent textual representation, and supports its

systematic translation into code.

3) To develop an aspect-oriented code generation technique that applies the

mapping method to the textual representation of design models, and generates

structural as well as behavioral code for both aspectual and non-aspectual parts.

14

4) To evaluate the proposed approach of integration against the other approach in

terms of reusability and maintainability of the generated code.

1.6 Research scope

The scope of this research study is limited to:

1) This research is related to supporting the software application development

through AO design and code generation. Therefore, other issues that may have

impact on the development such as requirements engineering are not dealt with

in this study.

2) For the purpose of AO design, this research is intended to determine an effective

AOM notation from the whole corpus of existing ones. Thus, proposing a new

design notation is not part of the scope of this research.

3) This research focuses on generating aspect-oriented code for Java/ AspectJ

languages only.

4) The proposed integration approach has been validated for small to medium-sized

general-purpose software applications.

5) Metrics-based measurement of performance of the integration approach against

other approach has been conducted by applying reusability and maintainability

metrics only.

1.7 Thesis outline

This thesis is organized as follows: Chapter 2 provides the basic background for

this study and sets the research in context. Specifically, it reviews different approaches

for the use of aspect technologies in MDE context, and determines the prerequisites for

the current research. This chapter also evaluates the corpus of existing AOM notations in

15

the context of their integration in MDE process through code generation and makes

selection of the approach to be employed in this work. Research methodology employed

to conducting this research is presented in Chapter 3. The conceptual mapping method

for implementation of various elements of design model at the code level is discussed in

Chapter 4. A prerequisite to the systematic code generation, the text-based

representation of the aspect models is presented in Chapter 5. Chapter 6 provides the

details of the code generation technique, by introducing the code generation algorithm

and describing application of the same on the textual representation of aspect models.

The applicability of the proposed integration approach is demonstrated with the help of

two case studies in Chapter 7 and Chapter 8. Chapter 9 discusses the results by

explaining the measurement process used to validate the results and by comparing the

proposed integration approach with the other existing approach. Chapter 10 concludes

the thesis while highlighting the findings, resolved issues and future work.

REFERENCES

Abed, W. A. and Kienzle, J. (2009). Information Hiding and Aspect-Oriented Modeling.

Proceedings of the 14th Aspect-Oriented Modeling Workshop, Denver, CO,

USA, 1–6.

Afonso, M., Vogel, R. and Teixeira, J. (2006). From code centric to model centric

software engineering: practical case study of MDD infusion in a systems

integration company. Model-Based Development of Computer-Based Systems

and Model-Based Methodologies for Pervasive and Embedded Software, 2006.

MBD/MOMPES 2006. Fourth and Third International Workshop on, 10 pp.-134.

AjileJ (2011). AjileJ StructureViews www.ajilej.com. Accessed January 2013.

Al Abed, W., Bonnet, V., Schöttle, M., Yildirim, E., Alam, O. and Kienzle, J. (2013).

TouchRAM: A Multitouch-Enabled Tool for Aspect-Oriented Software Design. In

Czarnecki, K. and Hedin, G. (Ed.) Software Language Engineering. (275-285).

Springer Berlin Heidelberg.

Al Abed, W. and Kienzle, J. (2011). Aspect-Oriented Modelling for Distributed Systems.

In Whittle, J., Clark, T. and Kühne, T. (Ed.) Model Driven Engineering

Languages and Systems. (123-137). Springer Berlin / Heidelberg.

Aldawud, O., Bader, A. and Elrad, T. (2002). Weaving With Statecharts. Proceedings of

the Aspect-Oriented Modeling with UML workshop (at AOSD), The Netherlands,

41-47.

Aldawud, T., Bader, A.,Tzilla Elrad (2003). UML profile for aspect-oriented software

development. The Third International Workshop on Aspect Oriented Modeling.

Alhalabi, F., Vienne, P., Maranzana, M. and Sourrouille, J. L. (2006). Code Generation

from the Description of QoS-Aware Applications. Information and

Communication Technologies, 2006. ICTTA '06. 2nd, 3216-3221.

http://www.ajilej.com/

279

Ali, J. (2010a). Implementing statecharts using Java enums. 2010 2nd International

Conference on Education Technology and Computer (ICETC), 413-417.

Ali, J. (2010b). Using Java Enums to implement concurrent–hierarchical state machines.

Journal of Software Engineering 4(3), 215–230.

Ali, J. and Tanaka, J. (1998). An Object Oriented Approach to Generate Executable

Code from OMT-Based Dynamic Model. Journal of Integrated Design and

Process Science 2(4), 65-77.

Ali, J. and Tanaka, J. (2000). Converting Statecharts into Java Code. Fourth World

Conf. on Integrated Design and Process Technology (IDPT’99), Dallas, Texas,

USA,

Ali, J. and Tanaka, J. (2001). Implementing the dynamic behavior represented as

multiple state diagrams and activity diagrams. ACIS Int. J Comp. Inf. Sci. 2(1),

24-36.

Alonso, D., Vicente-Chicote, C., Sánchez, P., Álvarez, B. and Losilla, F. (2007).

Automatic Ada code generation using a model-driven engineering approach.

Proceedings of the 12th international conference on Reliable software

technologies, Geneva, Switzerland, 168-179.

Amálio, N., Kelsen, P., Ma, Q. and Glodt, C. (2010). Using VCL as an Aspect-Oriented

Approach to Requirements Modelling. In Katz, S., Mezini, M. and Kienzle, J.

(Ed.) Transactions on Aspect-Oriented Software Development VII. (151-199).

Springer Berlin / Heidelberg.

Amaya, P., González, C. and Murillo, J. (2005). MDA and Separation of Aspects - An

Approach based on Multiple Views and Subject Oriented Design. Proceedings of

the 6th International Workshop on Aspect-Oriented Modeling held in

conjunction with the 4th International Conference on Aspect-Oriented Software

Development (AOSD'05), Chicago, Illinois, USA,

Aranda, J., Damian, D. and Borici, A. (2012). Transition to model-driven engineering:

what is revolutionary, what remains the same? Proceedings of the 15th

international conference on Model Driven Engineering Languages and Systems,

692-708. Springer-Verlag.

280

Araújo, J. and Whittle, J. (2013). Aspect-Oriented Compositions for Dynamic Behavior

Models. In Moreira, A., Chitchyan, R., Araújo, J. and Rashid, A. (Ed.) Aspect-

Oriented Requirements Engineering. (45-60). Springer Berlin Heidelberg.

Autret, T. (2009). Code Generation of Real-Time Java for Real-time Systems. Masters

Thesis, Pierre & Marie Curie University, Paris.

Badreddin, O., Forward, A. and Lethbridge, T. C. (2014). Improving code generation for

associations: Enforcing multiplicity constraints and ensuring referential integrity.

496, 129-149.

Baker, P., Loh, S. and Weil, F. (2005). Model-Driven Engineering in a Large Industrial

Context — Motorola Case Study. In Briand, L. and Williams, C. (Ed.) Model

Driven Engineering Languages and Systems. (476-491). Springer Berlin /

Heidelberg.

Ballal, R. and Hoffman, M. A. (2009). Extending UML for Aspect Oriented Software

Modeling. Computer Science and Information Engineering, 2009 WRI World

Congress on, 488-492.

Baniassad, E. and Clarke, S. (2004). Theme: an approach for aspect-oriented analysis

and design. Software Engineering, 2004. ICSE 2004. Proceedings. 26th

International Conference on, 158-167.

Barais, O., Klein, J., Baudry, B., Jackson, A. and Clarke, S. (2008). Composing Multi-

view Aspect Models. Proceedings of the Seventh International Conference on

Composition-Based Software Systems (ICCBSS 2008), 43-52. IEEE Computer

Society.

Bartolomei, T. T., Garcia, A., Sant'Anna, C. and Figueiredo, E. (2006). Towards a

unified coupling framework for measuring aspect-oriented programs.

Proceedings of the 3rd international workshop on Software quality assurance,

46-53. ACM.

Basili, V., Briand, L. and Melo, W. (1996). A Validation of Object-Oriented Design

Metrics as Quality Indicators. Software Engineering 22(10), 751-761.

beeck, S. O. d., Truyen, E., Bouck'e, N., Sanen, F., Bynens, M. and Joosen, W. (2006).

A Study of Aspect-Oriented Design Approaches. Department of Computer

Science K.U. Leuven.

281

Bennett, J., Cooper, K. and Dai, L. (2010). Aspect-oriented model-driven skeleton code

generation: A graph-based transformation approach. Science of Computer

Programming 75(8), 689-725.

Bennett, J. D. (2007). An approach to aspect-oriented model-driven code generation

using graph transformation. MS Thesis. MS, The University of Texas at Dallas.

Booch, G. (1993). Object-Oriented Analysis and Design with Applications (2nd

Edition): Addison-Wesley Professional.

Brooks, F. (1995). The mythical man-month : essays on software engineering: Addison-

Wesley Pub. Co.

Buckl, C., Regensburger, M., Knoll, A. and Schrott, G. (2007). Models for automatic

generation of safety-critical real-time systems. Second International Conference

on Availability, Reliability and Security '07, 580-587.

Burrows, R., Ferrari, F. C., Garcia, A. and Taiani, F. (2010a). An empirical evaluation of

coupling metrics on aspect-oriented programs. Proceedings of the 2010 ICSE

Workshop on Emerging Trends in Software Metrics, 53-58. ACM.

Burrows, R., Garcia, A. and Taïani, F. (2010b). Coupling Metrics for Aspect-Oriented

Programming: A Systematic Review of Maintainability Studies. In Maciaszek, L.

A., González-Pérez, C. and Jablonski, S. (Ed.) Evaluation of Novel Approaches

to Software Engineering. (277-290). Springer Berlin Heidelberg.

Cacho, N., Sant'Anna, C., Figueiredo, E., Garcia, A., Batista, T. and Lucena, C. (2006).

Composing design patterns: a scalability study of aspect-oriented programming.

Proceedings of the 5th international conference on Aspect-oriented software

development, 109-121. ACM.

Carlson, D. (2001). Modeling Xml Applications With Uml: Practical E-Business

Applications: Addison Wesley Publishing Company Incorporated.

Carton, A., Driver, C., Jackson, A. and Clarke, S. (2009). Model-Driven Theme/UML. In

Katz, S., Ossher, H., France, R. and Jézéquel, J.-M. (Ed.) Transactions on

Aspect-Oriented Software Development VI. (238-266). Springer Berlin /

Heidelberg.

Cetina, C., Serral, E., Muñoz, J. and Pelechano, V. (2007). Tool Support for Model

Driven Development of Pervasive Systems. Fourth International Workshop on

282

Model-Based Methodologies for Pervasive and Embedded Software (MOMPES

'07), Portugal, 33-44.

Chauvel, F. and Jézéquel, J.-M. (2005). Code Generation from UML Models with

Semantic Variation Points. In Briand, L. and Williams, C. (Ed.) Model Driven

Engineering Languages and Systems. (54-68). Springer Berlin / Heidelberg.

Chavez, V. F. G. (2004). A model-driven approach for aspect-oriented design. Ph.D.

dissertation, Pontif´ıcia Universidade Cat´olica do Rio de Janeiro.

Chidamber, S. R. and Kemerer, C. F. (1994). A Metrics Suite for Object Oriented

Design. IEEE Trans. Softw. Eng. 20(6), 476-493.

Chitchyan, R. (2013). Semantics-Based Composition for Textual Requirements. In

Moreira, A., Chitchyan, R., Araújo, J. and Rashid, A. (Ed.) Aspect-Oriented

Requirements Engineering. (61-75). Springer Berlin Heidelberg.

Chitchyan, R., Rashid, A., Sawyer, P., Garcia, A., Alarcon, M. P., Bakker, J.,

Tekinerdogan, B., Clarke, S. and Jackson, A. (May 2005). Survey of Aspect-

Oriented Analysis and Design Approaches. Technical Report AOSD. Europe

Deliverable D11, AOSD-Europe-ULANC-9. Lancaster University.

Ciraci, S., Havinga, W., Aksit, M., Bockisch, C. and van den Broek, P. (2010). A Graph-

Based Aspect Interference Detection Approach for UML-Based Aspect-Oriented

Models. In Katz, S., Mezini, M. and Kienzle, J. (Ed.) Transactions on Aspect-

Oriented Software Development VII. (321-374). Springer Berlin / Heidelberg.

Clarke, S. (2002). Extending standard UML with model composition semantics. Sci.

Comput. Program. 44(1), 71-100.

Clarke, S. and Baniassad, E. (2005). Aspect-Oriented Analysis and Design: The Theme

Approach: Addison Wesley Object Technology.

Clarke, S., Harrison, W., Ossher, H. and Tarr, P. (1999). Subject-oriented design:

towards improved alignment of requirements, design, and code. SIGPLAN Not.

34(10), 325-339.

Clarke, S. and Walker, R. J. (2001). Composition patterns: an approach to designing

reusable aspects. Proceedings of the 23rd International Conference on Software

Engineering, 5-14. IEEE Computer Society.

283

Clarke, S. and Walker, R. J. (2002). Towards a standard design language for AOSD.

Proceedings of the 1st international conference on Aspect-oriented software

development, 113-119. ACM.

Clemente, P. J., Hernandez, J., Conejero, J. M. and Ortiz, G. (2011). Managing

crosscutting concerns in component based systems using a model driven

development approach. J. Syst. Softw. 84(6), 1032-1053.

Clifton, C. and Leavens, G. (2005). A Design Discipline and Language Features for

Formal Modular Reasoning in Aspect-Oriented Programs. Technical Report 05-

23.

Cohen, J. (1990). Constraint logic programming languages. Communications of the

ACM 33(7), 52-68.

Conrad, R., Scheffner, D. and Freytag, J. C. (2000). XML conceptual modeling using

UML. Proceedings of the 19th international conference on Conceptual

modeling, 558-574. Springer-Verlag.

Cottenier, T., Berg, A. v. d. and Elrad, T. (2007a). Joinpoint Inference from Behavioral

Specification to Implementation. In Ernst, E. (Ed.) ECOOP 2007 – Object-

Oriented Programming. (476-500). Springer Berlin / Heidelberg.

Cottenier, T., Berg, A. v. d. and Elrad, T. (2007b). Motorola WEAVR: Aspect

Orientation and Model-Driven Engineering. Journal of Object Technology 6(7),

51–88.

Cottenier, T., Berg, A. v. d. and Elrad, T. (2007c). The Motorola WEAVR: Model

Weaving in a Large Industrial Context. Proceedings of the 6th International

Conference on Aspect-oriented Software Development (AOSD '07),

Cottenier, T., Berg, A. v. d. and Elrad, T. (2007d). Stateful Aspects: The Case for

Aspect-Oriented Modeling. 10th AOM Workshop.

Creswell, J. W. (2003). Research Design: Qualitative, Quantitative, and Mixed Methods

Approaches: SAGE Publications.

Culwin, F. (2004). The statechart design of a novel date input mechanism. Innovation in

Teaching and Learning in Information and Computer Sciences 3(1).

Dai, L. (2005a). (Defense) Formal design analysis framework: an aspect-oriented

architectural framework, University of Texas at Dallas, Ph.D. Dissertation.

284

Dai, L. (2005b). Formal design analysis framework: An aspect-oriented architectural

framework. Ph.D. 3224352, The University of Texas at Dallas.

Debnath, N., Baigorria, L., Riesco, D. and Montejano, G. (2008). Metrics applied to

Aspect Oriented Design using UML profiles. Computers and Communications,

2008. ISCC 2008. IEEE Symposium on, 654-657.

Demchak, B., Ermagan, V., Farcas, E., Huang, T.-J., Kruger, I. H. and Menarini, M.

(2008). A Rich Services Approach to CoCoME. In Andreas, R., Ralf, R.,

Raffaela, M.et al (Ed.) The Common Component Modeling Example. (85-115).

Springer-Verlag.

Derezinska, A. and Pilitowski, R. (2008). Correctness issues of UML class and state

machine models in the C# code generation and execution framework. Computer

Science and Information Technology, 2008. IMCSIT 2008. International

Multiconference on, 517-524.

Domı´nguez, E., Pérez, B., Rubio, Á. L. and Zapata, M. a. A. (2012). A systematic

review of code generation proposals from state machine specifications.

Information and Software Technology 54(10), 1045-1066.

Domínguez, E., Lloret, J., Pérez, B., Rodrı´guez, Á., Rubio, Á. L. and Zapata, M. a. A.

(2011). Evolution of XML schemas and documents from stereotyped UML class

models: A traceable approach. Information and Software Technology 53(1), 34-

50.

Easterbrook, S., Singer, J., Storey, M.-A. and Damian, D. (2008). Selecting Empirical

Methods for Software Engineering Research. In Shull, F., Singer, J. and Sjøberg,

D. K. (Ed.) Guide to Advanced Empirical Software Engineering. (285-311).

Springer London.

Eclipse.org (2012). Open Source Software Engineering Tools, Eclipse UML2 Tools.

Elrad, T., Aldawud, O. and Bader, A. (2002). Aspect-Oriented Modeling: Bridging the

Gap between Implementation and Design In Batory, D., Consel, C. and Taha,

W. (Ed.) Generative Programming and Component Engineering. (189-201).

Springer Berlin / Heidelberg.

285

Evermann, J. (2007). A meta-level specification and profile for AspectJ in UML.

Proceedings of the 10th international workshop on Aspect-oriented modeling,

21-27. ACM.

Evermann, J., Fiech, A. and Alam, F. E. (2011). A platform-independent UML profile

for aspect-oriented development. Proceedings of The Fourth International C*

Conference on Computer Science and Software Engineering, 25-34. ACM.

Fenton, N. and Pfleeger, S. (1998). Software Metrics: A Rigorous and Practical

Approach: PWS Publishing Co.

Fleurey, F., Baudry, B., France, R. and Ghosh, S. (2008). A Generic Approach For

Automatic Model Composition. 11th AOM Workshop.

Fleurey, F., Breton, E., Baudry, B., Nicolas, A. and J´ez´equel, J.-M. (2007). Model-

driven engineering for software migration in a large industrial context.

Proceedings of the 10th international conference on Model Driven Engineering

Languages and Systems, 482-497. Springer-Verlag.

France, R., Ray, I., Georg, G. and Ghosh, S. (2004). Aspect-oriented approach to early

design modelling. Software, IEE Proceedings - 151(4), 173-185.

Fuentes, L. and S´anchez, P. (2006). Elaborating UML 2.0 Profiles for AO Design. 8th

Workshop on AOM, 5th Int. Conference on AOSD.

Fuentes, L. and Sanchez, P. (2006). A generic MOF metamodel for aspect-oriented

modelling. Model-Based Development of Computer-Based Systems and Model-

Based Methodologies for Pervasive and Embedded Software, 2006.

MBD/MOMPES 2006. Fourth and Third International Workshop on, 10 pp.-124.

Fuentes, L. and Sanchez, P. (2007a). Designing and Weaving Aspect-Oriented

Executable UML models. Journal of Object Technology 6(7), 109-136.

Fuentes, L. and Sanchez, P. (2007b). Towards executable aspect-oriented UML models.

Proceedings of the 10th international workshop on Aspect-oriented modeling,

28-34. ACM.

Fuentes, L. and Sánchez, P. (2007). Execution of Aspect Oriented UML Models. In

Akehurst, D., Vogel, R. and Paige, R. (Ed.) Model Driven Architecture-

Foundations and Applications. (83-98). Springer Berlin / Heidelberg.

286

Fuentes, L. and Sánchez, P. (2009). Dynamic Weaving of Aspect-Oriented Executable

UML Models. In Katz, S., Ossher, H., France, R. and Jézéquel, J.-M. (Ed.)

Transactions on Aspect-Oriented Software Development VI. (1-38). Springer

Berlin / Heidelberg.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design patterns: elements of

reusable object-oriented software: Addison-Wesley.

Garcia, A. (2004). From Objects to Agents: An Aspect-Oriented Approach. Ph.D.

Thesis, PUC-Rio, Rio de Janeiro, Brazil.

Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U., Lucena, C. and Staa, A. v.

(2005). Modularizing design patterns with aspects: a quantitative study.

Proceedings of the 4th international conference on Aspect-oriented software

development, 3-14. ACM.

Garcia, A., Sant’Anna, C., Chavez, C., Silva, V., Lucena, C. P. and Staa, A. (2004).

Separation of Concerns in Multi-agent Systems: An Empirical Study. In Lucena,

C., Garcia, A., Romanovsky, A., Castro, J. and Alencar, P. C. (Ed.) Software

Engineering for Multi-Agent Systems II. (49-72). Springer Berlin Heidelberg.

Giunta, R., Pappalardo, G. and Tramontana, E. (2012). AODP: refactoring code to

provide advanced aspect-oriented modularization of design patterns. Proceedings

of the 27th Annual ACM Symposium on Applied Computing, 1243-1250. ACM.

Grace, P., Truyen, E., Lagaisse, B. and Joosen, W. (2007). The case for aspect-oriented

reflective middleware. Proceedings of the 6th international workshop on

Adaptive and reflective middleware: held at the ACM/IFIP/USENIX

International Middleware Conference, 1-6. ACM.

Greenwood, P., Bartolomei, T., Figueiredo, E., Dosea, M., Garcia, A., Cacho, N.,

Sant’Anna, C., Soares, S., Borba, P., Kulesza, U. and Rashid, A. (2007). On the

Impact of Aspectual Decompositions on Design Stability: An Empirical Study. In

Ernst, E. (Ed.) ECOOP 2007 – Object-Oriented Programming. (176-200).

Springer Berlin / Heidelberg.

Groher, I. and Baumgarth, T. (2004). Aspect-Orientation from Design to Code. Early

Aspects: Aspect-Oriented Requirements Engineering and Architecture Design,

62-68.

287

Groher, I. and Schulze, S. (2003). Generating aspect code from UML models. The Third

International Workshop on Aspect-Oriented Modeling,

Groher, I. and Voelter, M. (2007). XWeave: models and aspects in concert. Proceedings

of the 10th international workshop on Aspect-oriented modeling, 35-40. ACM.

Grønmo, R., Sørensen, F., Møller-Pedersen, B. and Krogdahl, S. (2008). Semantics-

Based Weaving of UML Sequence Diagrams. In Vallecillo, A., Gray, J. and

Pierantonio, A. (Ed.) Theory and Practice of Model Transformations. (122-136).

Springer Berlin / Heidelberg.

Grose, T. J., Doney, G. C. and Brodsky, S. A. (2002). Mastering XMI: Java

Programming with XMI, XML and UML: Wiley.

Group, O. (2007). OMG Unified Modeling Language (OMG UML), Infrastructure,

V2.1.2.

Grundy, J. (2000). Multi-perspective specification, design and implementation of

software components using aspects. International Journal of Software

Engineering and Knowledge Engineering 10(6).

Haitao, S., Zhumei, S. and Shixiong, Z. (2006). Mapping Aspect-Oriented Domain-

Specific Model to Code for Real Time System. Intelligent Control and

Automation, 2006. WCICA 2006. The Sixth World Congress on, 6426-6431.

Hanenberg, S., Hirschfeld, R. and Unland, R. (2004). Morphing aspects: incompletely

woven aspects and continuous weaving. Proceedings of the 3rd international

conference on Aspect-oriented software development, 46-55. ACM.

Hanenberg, S., Stein, D. and Unland, R. (2007). From aspect-oriented design to aspect-

oriented programs: tool-supported translation of JPDDs into code. Proceedings

of the 6th international conference on Aspect-oriented software development,

49-62. ACM.

Hannemann, J. and Kiczales, G. (2002). Design pattern implementation in Java and

aspectJ. SIGPLAN Not. 37(11), 161-173.

Harada, M., Fujisawa, T., Teradaira, M., Yamamoto, K. and Hamada, S. (1996).

Refinement of Dynamic Modeling of Some Automatic Layouting of Object

Oriented Design Schema and Reverse Engineering of Design Schema from C++

Program. IPSJ Object-Oriented Symposium, Tokyo, Japan, 111-118.

288

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Sci. Comput.

Program. 8(3), 231-274.

Harrison, W., Ossher, H. and Tarr, P. (2002). Asymmetrically vs. symmetrically

organized paradigms for software composition.

Hecht, M. V., Piveta, E. K., Pimenta, M. S. and Price, R. T. (2005). Aspect-oriented

Code Generation. XX Brazilian Conference on Software Engineering.

Ho, W.-M., Jezequel, J.-M., Pennaneac'h, F. and Plouzeau, N. (2002). A toolkit for

weaving aspect oriented UML designs. Proceedings of the 1st international

conference on Aspect-oriented software development, 99-105. ACM.

Hoffman, K. and Eugster, P. (2013). Trading obliviousness for modularity with

cooperative aspect-oriented programming. ACM Trans. Softw. Eng. Methodol.

22(3), 1-46.

Hohenstein, U. D. and Gleim, U. (2011). Using aspect-orientation to simplify concurrent

programming. Proceedings of the tenth international conference on Aspect-

oriented software development companion, 29-40. ACM.

Hohenstein, U. D. C. and Jager, M. C. (2009). Using aspect-orientation in industrial

projects: appreciated or damned? Proceedings of the 8th ACM international

conference on Aspect-oriented software development, 213-222. ACM.

Hovsepyan, A., Scandariato, R., Baelen, S. V., Berbers, Y. and Joosen, W. (2010). From

aspect-oriented models to aspect-oriented code?: the maintenance perspective.

Proceedings of the 9th International Conference on Aspect-Oriented Software

Development, 85-96. ACM.

Hovsepyan, A., Van Baelen, S., Vanhooff, B., Joosen, W. and Berbers, Y. (2006). Key

Research Challenges for Successfully Applying MDD Within Real-Time

Embedded Software Development

Embedded Computer Systems: Architectures, Modeling, and Simulation. In Vassiliadis,

S., Wong, S. and Hämäläinen, T. (Ed.). (49-58). Springer Berlin / Heidelberg.

Jackson, A., Casey, N. and Clarke, S. (2008). Mapping design to implementation.

AOSD-Europe TDC-D111. http://www.aosd-europe.net/deliverables/d111.pdf.

http://www.aosd-europe.net/deliverables/d111.pdf

289

Jackson, A., Klein, J., Baudry, B. and Clarke, S. (2006). KerTheme: Testing Aspect

Oriented Models. Workshop on Integration of Model Driven Development and

Model Driven Testing (ECMDA’06), Bilbao, Spain,

Jacobson, I. (1992). Object-Oriented Software Engineering: A Use Case Driven

Approach: Addison-Wesley Professional.

Jacobson, I. and Ng, P.-W. (2004). Aspect-Oriented Software Development with Use

Cases: Addison-Wesley Professional.

Jakimi, A. and Elkoutbi, M. (2009). An object-oriented approach to UML scenarios

engineering and code generation. International Journal of Computer Theory and

Engineering (IJCTE) 1(1), 35-41.

Jalali, A., Wohed, P., Ouyang, C. and Johannesson, P. (2013). Dynamic Weaving in

Aspect Oriented Business Process Management. In Meersman, R., Panetto, H.,

Dillon, T.et al (Ed.) On the Move to Meaningful Internet Systems: OTM 2013

Conferences. (2-20). Springer Berlin Heidelberg.

Jézéquel, J.-M. (2008). Model driven design and aspect weaving. Software and Systems

Modeling 7(2), 209-218.

Jingjun, Z., Yuejuan, C. and Guangyuan, L. (2009). Modeling Aspect-Oriented

Programming with UML Profile. Education Technology and Computer Science,

2009. ETCS '09. First International Workshop on, 242-245.

Kagdi, H., Collard, M. L. and Maletic, J. I. (2007). A survey and taxonomy of

approaches for mining software repositories in the context of software evolution.

J. Softw. Maint. Evol. 19(2), 77-131.

Karakostas, B. and Zorgios, Y. (2008). Engineering Service Oriented Systems: A Model

Driven Approach: IGI Global.

Katara, M. and Katz, S. (2003). Architectural views of aspects. Proceedings of the 2nd

international conference on Aspect-oriented software development, 1-10. ACM.

Katara, M. and Katz, S. (2007). A concern architecture view for aspect-oriented software

design. Software and Systems Modeling 6(3), 247-265.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W. G.

(2001). An Overview of AspectJ. Proceedings of the 15th European Conference

on Object-Oriented Programming, 327-353. Springer-Verlag.

290

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. and

Irwin, J. (1997). Aspect-oriented programming. In Aksit, M. and Matsuoka, S.

(Ed.) ECOOP'97 — Object-Oriented Programming. (220-242). Springer Berlin /

Heidelberg.

Kiczales, G. and Mezini, M. (2005). Aspect-oriented programming and modular

reasoning. Proceedings of the 27th international conference on Software

engineering, 49-58. ACM.

Kienzle, J. (2013). Reusing software design models with TouchRAM. Proceedings of

the 12th annual international conference companion on Aspect-oriented software

development, 23-26. ACM.

Kienzle, J., Abed, W. A. and Klein, J. (2009). Aspect-oriented multi-view modeling.

Proceedings of the 8th ACM international conference on Aspect-oriented

software development, 87-98. ACM.

Kienzle, J., Al Abed, W., Fleurey, F., Jézéquel, J.-M. and Klein, J. (2010). Aspect-

Oriented Design with Reusable Aspect Models. In Katz, S., Mezini, M. and

Kienzle, J. (Ed.) Transactions on Aspect-Oriented Software Development VII.

(272-320). Springer Berlin / Heidelberg.

Klein, J., Fleurey, F. and Jézéquel, J.-M. (2007). Weaving Multiple Aspects in Sequence

Diagrams. In Rashid, A. and Aksit, M. (Ed.) Transactions on Aspect-Oriented

Software Development III. (167-199). Springer Berlin / Heidelberg.

Klein, J., Helouet, L. and Jezequel, J.-M. (2006). Semantic-based weaving of scenarios.

Proceedings of the 5th international conference on Aspect-oriented software

development, 27-38. ACM.

Klein, J. and Kienzle, J. (2007). Reusable Aspect Models. 11th Workshop on Aspect-

Oriented Modeling.

Klein, J., Kienzle, J., Morin, B. and Jézéquel, J.-M. (2009). Aspect Model Unweaving. In

Schürr, A. and Selic, B. (Ed.) Model Driven Engineering Languages and

Systems. (514-530). Springer Berlin / Heidelberg.

Knapp, A. and Merz, S. (2002). Model checking and code generation for UML state

machines and collaborations. Proceedings of 5th Workshop on Tools for System

Design and Verification, Technical Report 11, 59-64.

291

Knapp, A., Merz, S. and Rauh, C. (2002). Model Checking - Timed UML State

Machines and Collaborations. Proceedings of the 7th International Symposium

on Formal Techniques in Real-Time and Fault-Tolerant Systems: Co-sponsored

by IFIP WG 2.2, 395-416. Springer-Verlag.

Kon, F., Costa, F., Blair, G. and Campbell, R. H. (2002). The case for reflective

middleware. Commun. ACM 45(6), 33-38.

Kramer, M. and Kienzle, J. (2011). Mapping Aspect-Oriented Models to Aspect-

Oriented Code. In Dingel, J. and Solberg, A. (Ed.) Models in Software

Engineering. (125-139). Springer Berlin / Heidelberg.

Kramer, M. E. (2010). Mapping Reusable Aspect Models to aspect-oriented code,

Karlsruhe Institute of Technology, Germany.

Kundu, D., Samanta, D. and Mall, R. (2013). Automatic code generation from unified

modelling language sequence diagrams. Software, IET 7(1), 12-28.

Lamancha, B., Reales, P., Polo, M. and Caivano, D. (2013). Model-Driven Test Code

Generation. In Maciaszek, L. and Zhang, K. (Ed.) Evaluation of Novel

Approaches to Software Engineering. (155-168). Springer Berlin Heidelberg.

Leroux, D., Nally, M. and Hussey, K. (2006). Rational Software Architect: A tool for

domain-specific modeling. IBM Systems Journal 45(3), 555-568.

Long, E., Misra, A. and Sztipanovits, J. (1998). Increasing productivity at Saturn.

Computer 31(8), 35-43.

Lopes, C. and Kiczales, G. (1997). D: A Language Framework for Distributed

Programming. (SPL97-010, P9710047).

Losavio, F., Matteo, A. and Morantes, P. (2009). UML Extensions for Aspect Oriented

Software Development. Journal of Object Technology 8(5), 105-132.

Loukil, S., Kallel, S., Zalila, B. and Jmaiel, M. (2013). AO4AADL: Aspect oriented

extension for AADL. Central European Journal of Computer Science 3(2), 43-

68.

Mandić, V., Markkula, J. and Oivo, M. (2009). Towards Multi-Method Research

Approach in Empirical Software Engineering. In Bomarius, F., Oivo, M., Jaring,

P. and Abrahamsson, P. (Ed.) Product-Focused Software Process Improvement.

(96-110). Springer Berlin Heidelberg.

292

Maoz, S. and Harel, D. (2006). From multi-modal scenarios to code: compiling LSCs

into aspectJ. Proceedings of the 14th ACM SIGSOFT international symposium

on Foundations of software engineering, 219-230. ACM.

Mehner, K., Monga, M. and Taentzer, G. (2009). Analysis of Aspect-Oriented Model

Weaving. In Rashid, A. and Ossher, H. (Ed.) Transactions on Aspect-Oriented

Software Development V. (235-263). Springer Berlin / Heidelberg.

Mellor, S. J. and Balcer, M. (2002). Executable UML: A Foundation for Model-Driven

Architectures: Addison-Wesley Longman Publishing Co., Inc.

Morin, B., Vanwormhoudt, G., Lahire, P., Gaignard, A., Barais, O. and Jézéquel, J.-M.

(2008). Managing Variability Complexity in Aspect-Oriented Modeling. In

Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A. and Völter, M. (Ed.) Model Driven

Engineering Languages and Systems. (797-812). Springer Berlin / Heidelberg.

Mosconi, M., Charfi, A., Svacina, J. and Wloka, J. (2008). Applying and evaluating

AOM for platform independent behavioral UML models. Proceedings of the

12th workshop on Aspect-oriented modeling, 19-24. ACM.

Mouheb, D., Talhi, C., Nouh, M., Lima, V., Debbabi, M., Wang, L. and Pourzandi, M.

(2010). Aspect-Oriented Modeling for Representing and Integrating Security

Concerns in UML. In Lee, R., Ormandjieva, O., Abran, A. and Constantinides,

C. (Ed.) Software Engineering Research, Management and Applications 2010.

(197-213). Springer Berlin / Heidelberg.

Mussbacher, G., Amyot, D., Whittle, J. and Weiss, M. (2007). Flexible and Expressive

Composition Rules with Aspect-oriented Use Case Maps (AoUCM). In Moreira,

A. and Grundy, J. (Ed.) Early Aspects: Current Challenges and Future

Directions. (19-38). Springer Berlin Heidelberg.

Neto, P. A. d. M. S., Machado, I. d. C., McGregor, J. D., Almeida, E. S. d. and Meira, S.

R. d. L. (2011). A systematic mapping study of software product lines testing.

Information and Software Technology 53(5), 407-423.

Niaz, I. A. (2005). Automatic Code Generation From UML Class and Statechart

Diagrams. PhD PhD Thesis, University of Tsukuba, Ph.D. Thesis.

293

Niaz, I. A. and Tanaka, J. (2003). Code Generation from UML Statecharts. 7th IASTED

International Conf. on Software Engineering and Application (SEA 2003),

Marina Del Rey, USA, 315-321.

Niaz, I. A. and Tanaka, J. (2004). Mapping UML Statecharts to Java Code. IASTED

International Conf. on Software Engineering (SE 2004), Innsbruck, Austria, 111-

116.

Niaz, I. A. and Tanaka, J. (2005). An Object-Oriented Approach to Generate Java Code

from UML Statecharts. International Journal of Computer & Information

Science 6(2).

NoMagic (2011). MagicDraw UML. www.magicdraw.com/.

Oldevik, J., Menarini, M. and Krüger, I. (2009). Model Composition Contracts. In

Schürr, A. and Selic, B. (Ed.) Model Driven Engineering Languages and

Systems. (531-545). Springer Berlin / Heidelberg.

OMG (2007). MOF 2.0/XMI Mapping, Version 2.1.1.

OMG (2009). Unified Modelling Language Specification: Superstructure v2.2

OMG (2010). UML 2.3 Superstructure Specification Document Formal/2010-05-05.

http://www.omg.org/. (Accessed May 2013).

Papotti, P., Prado, A., Souza, W., Cirilo, C. and Pires, L. (2013). A Quantitative Analysis

of Model-Driven Code Generation through Software Experimentation. In

Salinesi, C., Norrie, M. and Pastor, Ó. (Ed.) Advanced Information Systems

Engineering. (321-337). Springer Berlin Heidelberg.

Pawlak, R., Duchien, L., Florin, G., Legond-Aubry, F., Seinturier, L. and Martelli, L.

(2002). A UML Notation for Aspect-Oriented Software Design. AO modeling

with UML workshop at the AOSD'02.

Pawlak, R., Seinturier, L., Duchien, L., Martelli, L., Legond-Aubry, F. and Florin, G.

(2005). Aspect-Oriented Software Development with Java Aspect Components.

In Filman, R., Elrad, T., Clarke, S. and Aksit, M. (Ed.) Aspect-oriented software

development. (343-369). Addison-Wesley.

Petter, S. C. and Gallivan, M. J. (2004). Toward a framework for classifying and guiding

mixed method research in information systems. System Sciences, 2004.

Proceedings of the 37th Annual Hawaii International Conference on, 10 pp.

http://www.magicdraw.com/
http://www.omg.org/

294

Philippi, S. (2006). Automatic code generation from high-level Petri-Nets for model

driven systems engineering. Journal of Systems and Software 79(10), 1444-

1455.

Pilitowski, R. and Dereziñska, A. (2007). Code Generation and Execution Framework

for UML 2.0 Classes and State Machines. In Sobh, T. (Ed.) Innovations and

Advanced Techniques in Computer and Information Sciences and Engineering.

(421-427). Springer Netherlands.

Pintér, G. and IstvánMajzik (2003). Program Code Generation Based On UML

Statechart Models. Periodica Polytechnica 47(3), 187-204.

Pinto, M., Fuentes, L. and Fernández, L. (2012). Deriving detailed design models from

an aspect-oriented ADL using MDD. Journal of Systems and Software 85(3),

525-545.

Pinto, M., Fuentes, L. and Troya, J. M. (2005). A Dynamic Component and Aspect-

Oriented Platform. The Computer Journal 48(4), 401-420.

Pitkänen, R. and Selonen, P. (2004). A UML Profile for Executable and Incremental

Specification-Level Modeling. In Baar, T., Strohmeier, A., Moreira, A. and

Mellor, S. J. (Ed.) UML 2004 - The Unified Modelling Language. (158-172).

Springer Berlin / Heidelberg.

Piveta, E. K., Moreira, A., Pimenta, M. S., Araújo, J., Guerreiro, P. and Price, R. T.

(2012). An empirical study of aspect-oriented metrics. Science of Computer

Programming 78(1), 117-144.

Pleuss, A., Wollny, S. and Botterweck, G. (2013). Model-driven development and

evolution of customized user interfaces. Proceedings of the 5th ACM SIGCHI

symposium on Engineering interactive computing systems, 13-22. ACM.

Rahmouni, M. and Mbarki, S. (2013). An end-to-end code generation from UML

diagrams to MVC2 web applications. International Review on Computers and

Software 8(9), 2123-2135.

Rasche, A., Schult, W. and Polze, A. (2005). Self-adaptive multithreaded applications: a

case for dynamic aspect weaving. Proceedings of the 4th workshop on Reflective

and adaptive middleware systems. ACM.

295

Rashid, A., Moreira, A., Araujo, J., Clements, P., Baniassad, E. and Tekinerdogan, B.

(2006). Early aspects: Aspect-oriented requirements engineering and architecture

design. Electronic Document. http://www.early-aspects.net/.

Rauchwerger, Y., Kristoffersen, F. and Lahav, Y. (2005). Cinderella SLIPPER: An SDL

to C-Code Generator. In Prinz, A., Reed, R. and Reed, J. (Ed.) SDL 2005:

Model Driven. (1159-1165). Springer Berlin / Heidelberg.

Reddy, Y., Ghosh, S., France, R., Straw, G., Bieman, J., McEachen, N., Song, E. and

Georg, G. (2006). Directives for Composing Aspect-Oriented Design Class

Models. In Rashid, A. and Aksit, M. (Ed.) Transactions on Aspect-Oriented

Software Development I. (75-105). Springer Berlin / Heidelberg.

Reina, A. M., Torres, J. and Toro, M. (2004). Separating concerns by means of UML-

profiles and metamodels in PIMs. The 5th Aspect-Oriented Modeling Workshop

In Conjunction with UML 2004,

Routledge, N., Bird, L. and Goodchild, A. (2002). UML and XML schema. Aust.

Comput. Sci. Commun. 24(2), 157-166.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenson, W. (1991). Object-

Oriented Modeling and Design: {Prentice Hall, Inc.}.

Samek, M. and Montgomery, P. (2000). State-oriented programming. International

Journal of Embedded Systems 13(8), 22-43.

Sánchez, P., Fuentes, L., Stein, D., Hanenberg, S. and Unland, R. (2008). Aspect-

Oriented Model Weaving Beyond Model Composition and Model

Transformation. In Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A. and Völter, M.

(Ed.) Model Driven Engineering Languages and Systems. (766-781). Springer

Berlin / Heidelberg.

Sánchez, P., Moreira, A., Fuentes, L., Araújo, J. and Magno, J. (2010). Model-driven

development for early aspects. Information and Software Technology 52(3),

249-273.

Sant'anna, C., Garcia, A., Chavez, C., Lucena, C. and von Staa, A. (2003). On the Reuse

and Maintenance of Aspect-Oriented Software: An Assessment Framework.

Proceedings XVII Brazilian Symposium on Software Engineering,

http://www.early-aspects.net/

296

Saraiva, J., Barreiros, E., Almeida, A., Lima, F., Alencar, A., Lima, G., Soares, S. and

Castor, F. (2012). Aspect-oriented software maintenance metrics: A systematic

mapping study, 253-262.

Saurabh, A., Dahiya, D. and Mohana, R. (2012). Maximizing Automatic Code

Generation: Using XML Based MDA. In Parashar, M., Kaushik, D., Rana, O.et

al (Ed.) Contemporary Computing. (283-293). Springer Berlin Heidelberg.

Simmonds, D. M. (2008). Aspect-oriented Approaches to Model Driven Engineering.

International Conference on Software Engineering Research and Practice, Las

Vegas, Nevada, USA,

Simmonds, D. M. and Reddy, Y. R. (2009). A Comparison of Aspect-Oriented

Approaches to Model Driven Engineering. Conference on Software Engineering

Research and Practice, 327–333

Sommerville, I. (2010). Software Engineering: Pearson.

Stavrou, A. and Papadopoulos, G. A. (2009). Automatic Generation of Executable Code

from Software Architecture Models. In (Ed.) Information Systems Development.

(447-458). Springer US.

Stein, D., Hanenberg, S. and Unland, R. (2002a). Designing Aspect-Oriented

Crosscutting in UML. AOSD-UML Workshop at AOSD ’02.

Stein, D., Hanenberg, S. and Unland, R. (2002b). An UML-based aspect-oriented design

notation for AspectJ. Proceedings of the 1st international conference on Aspect-

oriented software development, 106-112. ACM.

Stein, D., Hanenberg, S. and Unland, R. (2006). Expressing different conceptual models

of join point selections in aspect-oriented design. Proceedings of the 5th

international conference on Aspect-oriented software development, 15-26.

ACM.

Tarr, P., Ossher, H., Harrison, W. and Stanley M. Sutton, J. (1999). N degrees of

separation: multi-dimensional separation of concerns. Proceedings of the 21st

international conference on Software engineering, 107-119. ACM.

Thongmak, M. and Muenchaisri, P. (2002). Design of Rules for Transforming UML

Sequence Diagrams into Java code. Proceedings of the Ninth Asia-Pacific

Software Engineering Conference, 485. IEEE Computer Society.

297

Thongmak, M. and Muenchaisri, P. (2011). Measuring Understandability of Aspect-

Oriented Code. In Cherifi, H., Zain, J. and El-Qawasmeh, E. (Ed.) Digital

Information and Communication Technology and Its Applications. (43-54).

Springer Berlin Heidelberg.

Tigris.org (2012). Open Source Software Engineering Tools, ArgoUML Modeling Tool.

http://argouml.tigris.org.

Tun, T., Yu, Y., Jackson, M., Laney, R. and Nuseibeh, B. (2013). Aspect Interactions: A

Requirements Engineering Perspective. In Moreira, A., Chitchyan, R., Araújo, J.

and Rashid, A. (Ed.) Aspect-Oriented Requirements Engineering. (271-286).

Springer Berlin Heidelberg.

Usman, M. and Nadeem, A. (2009). Automatic Generation of Java Code from UML

Diagrams using UJECTOR. International Journal of Software Engineering and

Its Applications 3(2), 21-37.

Vanderperren, W., Suvée, D., Cibrán, M. and Fraine, B. (2005). Stateful Aspects in

JAsCo. In Gschwind, T., Aßmann, U. and Nierstrasz, O. (Ed.) Software

Composition. (167-181). Springer Berlin Heidelberg.

W3C (2013). Extensible Markup Language (XML) 1.0 (Fifth Edition). World Wide

World Consortium. Available at: http://www.w3.org/TR/xml/.

Wang, R., Mao, X.-G., Dai, Z.-Y. and Wang, Y.-N. (2009). Extending UML for Aspect-

Oriented Architecture Modeling. Computer Science and Engineering, 2009.

WCSE '09. Second International Workshop on, 362-366.

Wehrmeister, M. A., Freitas, E. P., Pereira, C. E. and Rammig, F. (2008). GenERTiCA:

A Tool for Code Generation and Aspects Weaving. Object Oriented Real-Time

Distributed Computing (ISORC), 2008 11th IEEE International Symposium on,

234-238.

White, J., Gray, J. and Schmidt, D. (2009). Constraint-Based Model Weaving. In Katz,

S., Ossher, H., France, R. and Jézéquel, J.-M. (Ed.) Transactions on Aspect-

Oriented Software Development VI. (153-190). Springer Berlin / Heidelberg.

Whittle, J. and Jayaraman, P. (2008). MATA: A Tool for Aspect-Oriented Modeling

based on Graph Transformation. 11th AOM Workshop.

http://argouml.tigris.org/
http://www.w3.org/TR/xml/

298

Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A. and Araújo, J. (2009). MATA: A

Unified Approach for Composing UML Aspect Models Based on Graph

Transformation. In Katz, S., Ossher, H., France, R. and Jézéquel, J.-M. (Ed.)

Transactions on Aspect-Oriented Software Development VI. (191-237). Springer

Berlin / Heidelberg.

Whittle, J., Moreira, A., Arajo, J., Jayaraman, P., Elkhodary, A. and Rabbi, R. (2007).

An Expressive Aspect Composition Language for UML State Diagrams.

MoDELS, 514-528.

Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W., Schwinger, W. and

Kapsammer, E. (2011). A survey on UML-based aspect-oriented design

modeling. ACM Comput. Surv. 43(4), 1-33.

Wu, I.-C. and Hsieh, S.-H. (2002). An UML-XML-RDB Model Mapping Solution for

Facilitating Information Standardization and Sharing in Construction Industry.

Proceeding of the 19th International Symposium on Automation and Robotics in

Construction (ISARC) Maryland, 317-321.

Xu, D. and Xu, W. (2006). State-based incremental testing of aspect-oriented programs.

Proceedings of the 5th international conference on Aspect-oriented software

development, 180-189. ACM.

Zakaria, A. A., H. Hosny, A. Zeid (2002). A UML Extension for Modeling Aspect-

Oriented Systems. Fifth International Conference on the Unified Modeling

Language - the Language and its Applications

Zhang, G. (2005). Towards aspect-oriented class diagrams. Software Engineering

Conference, 2005. APSEC '05. 12th Asia-Pacific, 6 pp.

Zhang, G. (2012). Aspect-Oriented Modeling of Mutual Exclusion in UML State

Machines. In Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H. and

Kolovos, D. (Ed.) Modelling Foundations and Applications. (162-177). Springer

Berlin Heidelberg.

Zhang, G., Hölzl, M. and Knapp, A. (2007). Enhancing UML State Machines with

Aspects. In Engels, G., Opdyke, B., Schmidt, D. and Weil, F. (Ed.) Model

Driven Engineering Languages and Systems. (529-543). Springer Berlin /

Heidelberg.

299

Zhou, X., Liu, C., Niu, Y. and Lai, T. (2008). Towards a Framework of Aspect-Oriented

Modeling with UML. Computer Science and Computational Technology, 2008.

ISCSCT '08. International Symposium on, 738-741.

APPENDIX A

AOM APPROACHES EVALUATED IN THE CONTEXT OF CODE

GENERATION

A.1) The Aspect-Oriented Design Model Notation for AspectJ

Aspect-Oriented Design Model (AODM) notation of Stein et al. (2002b)

provides a design technique specific to AspectJ. Therefore, it extends UML with the

only intention to support AspectJ's concepts at the design level. To exploit the huge

resemblance between the core concepts of AspectJ and UML, it provides UML

representation for basic constructs of AspectJ, namely join points, pointcuts,

introductions, and aspects. Mainly the class, statechart and sequence diagrams are used

for structure and behavior modeling. They represent join points using UML links, and

apply the concept of adopted links to different diagrams in a way specific to each

diagram. Similarly, an advice in AspectJ is viewed as analogous to an operation in

UML. Aspects are represented as classes of a special stereotype named <<aspect>>.

In principle, AODM has been specified using the UML's standard extension mechanism,

but for certain specifications meta-model has also been extended. For example, the UML

extend relationship, from which the <<crosscut>> stereotype has been derived

originally, can be specified between use cases only.

301

A.2) The UMLAUT Framework

UML All pUrpose Transformer (UMLAUT) is an open framework proposed by

Ho et al. (2002) for developing application-specific weavers that can generate detailed

aspect-oriented design from a high level design modeled using UML. The UML model

elements can be input using various formats such as XMI and Java source. Extensions to

UML are done through the UML Profile mechanism. The weaving process is

implemented as a model transformation applied to the UML model. Specifically, the

weave operation is defined as a transformation rule from an initial model to a final one.

A.3) The UML Profile for AOSD

The UML Profile for Aspect-Oriented Software development has been presented

by Aldawud (2003). It extends the standard UML package structure to define an AOSD

package, which is used to encapsulate all elements defined by the AOSD profile.

Crosscutting concerns are modeled using aspects, which are extensions to UML core

classes. A new stereotype <<aspect>> is used to model aspects, which are further

classified into synchronous or asynchronous aspects. In this profile, synchronous aspects

are distinguished from asynchronous ones in that they usually control the behavior of the

core classes. The <<crosscut>> stereotype is used to model crosscutting

relationships. For behavior modeling, this profile does not dictate any specific

behavioral package; however, currently only the use of Collaboration and State machine

packages has been outlined for this profile.

A.4) aSideML Notation

The aSideML's Notation of Chavez (2004) is a meta-model extension of UML to

support aspect-oriented concepts. Aspects are defined by parameterizing different model

elements, and one or more crosscutting interface is defined to organize join point

description and the crosscutting behavior of the aspect. Crosscutting features are defined

302

as an extension to the original features of the class. Specifically, to model structure, a

new construct called aspect diagram is introduced which extends features of a UML

class diagram. Collaboration and sequence diagrams are extended for modeling behavior

of the aspect. The join points are defined by means of an enhanced sequence diagram.

Weaving of models is also provided which supports the same set of diagrams and

generates woven class diagrams, woven collaboration diagrams and woven sequence

diagrams.

A.5) Theme/UML

Theme/UML (Clarke and Walker, 2002; Baniassad and Clarke, 2004; Clarke and

Baniassad, 2005) has basically evolved from work on composition patterns (Clarke and

Walker, 2001; Clarke and Walker, 2002), and is considered one of the early approaches

to aspect-oriented modeling. In this approach, a new declaratively complete unit named

“Theme” is proposed at the design level to represent system concerns, which are

essentially collections of structures and behaviors inferred from requirements. A

distinction has been made between the “base” themes and the “aspect” themes, where

aspect themes refer to crosscutting behavior. In Theme/UML approach, an aspect theme

is differentiated from a base theme in the sense that in addition to other behavior, it may

define some behavior that is triggered by behavior in some other theme. As far as

modeling is process is concerned, first the triggered behavior needs to be identified and

captured in the form of templates and then the crosscutting behavior related to those

templates is modeled. Later, the base themes which are not affected by the crosscutting

themes are modeled using the standard UML design process. A different approach is

used to modeling of aspect themes by representing them using a new complete unit of

modularization similar to a package in standard UML, with stereotype <<theme>>.

This theme may comprise of any of the standard UML diagrams to model different

views of the structure and behavior required for a concern to execute. Essentially, the

aspect theme design is similar to a standard UML package that contains structural and

behavioral diagrams. The only difference is the specification of templates listed inside

the theme package notation and a sequence diagram for each of the templates grouping

303

in the theme package. Even though Theme/UML allows any kind of UML diagrams to

be used for aspect-theme design, package and class diagrams are currently used for

structure modeling, whereas sequence diagrams are used for behavior modeling.

A.6) Aspect-Oriented Software Development with Use Cases

Jacobson and Ng (2004) have proposed an approach which is based on the idea

of using a development process where concerns are kept separated from requirements

specification to the implementation phase. For this purpose, they define use case slices

to specify high-level design and then refine this design to obtain detailed design. At

detailed design level, they represent structure by means of class diagrams and behavior

by means of sequence diagrams. Model weaving is not supported. One distinguishing

characteristic of this approach is its support for traceability of models pertaining to a

specific concern along different phases of software development.

A.7) Aspect-Oriented Architecture Models

The Aspect-Oriented Architecture Model approach of France et al. (2004) is

based on composing model elements that present a single concept using different views.

The model elements that are composed using this approach are needed to be of the same

type. Aspects may specify concepts that are not present in a target model. Templates

are used in conjunction with package diagrams, class diagrams, communication

diagrams and sequence diagram to represent aspects. In this respect, this approach is

similar to Theme/UML approach described previously. The compositor composition

mechanism is used to provide the concern composition. Just like Theme/UML, primary

models and aspect models are distinguished, where the latter represent crosscutting

behavior. Later, a tool called Kompose (Fleurey et al., 2008) has also been developed

which uses the composition technique proposed by Aspect-Oriented Architecture

Models approach.

304

A.8) The UML Notation for AOSD

The notation of (Pawlak et al. (2002); Pawlak et al. (2005)) is a UML profile

based on UML 1.x to model a design using JAC Framework, which is a middleware to

support concerns such as persistence, security, fault tolerance etc. in J2EE applications.

Currently, the profile does not support behavior modeling, whereas the support for

structure modeling is provided by means of class diagrams. <<aspect>> stereotype is

used to represent aspects, and they are linked with a target class using <<pointcut>>

stereotypes. The association between the operations of base and aspect classes (i.e., the

join point) is specified with the help of a proprietary language. This approach is similar

to that of Jacobson et al. described previously in that it does not support model weaving.

A.9) The Motorola WEAVR Approach

The Motorola WEAVR approach (Cottenier et al., 2007a; Cottenier et al., 2007c)

has been developed in an industrial setting, specifically in context of telecommunication

industry. It uses Specification and Description Language (SDL) to specify models,

which has partly been adopted in UML 2.x. The WEAVR approach is thus based on

UML 2.x. The approach uses class diagrams and composite structure diagrams to

represent structure. State machines, action language of SDL and sequence diagrams are

used to model behavior. Individual aspects are represented using <<aspect>>

stereotype and a pointcut-advice mechanism is used for composition of aspects and

target models. Model execution and code generation are also supported.

A.10) The Aspect-Oriented Executable Models Notation

Aspect-Oriented Executable UML Models (AOEM) (Fuentes and Sanchez,

2007a; Fuentes and Sanchez, 2007b) is a UML profile that extends the UML and its

action semantics to construct aspect-oriented executable models. In AOEM, an aspect is

represented by a UML class stereotyped as <<aspect>>, and comprises special

305

operations to model advices. Specifically, advices are modeled using activity diagrams

without input objects and any number of output pins to modify values of intercepted

objects. In (Fuentes and Sánchez, 2009), a dynamic weaving mechanism has also been

provided by authors of the AOEM to enhance its models.

A.11) The Concern Architecture View Approach

Katara and Katz (2007) have provided a conceptual model for design of aspects

by designing a concern architecture model. The approach can handle the specification of

aspects both in symmetric as well as asymmetric manner. The conceptual model has

been implemented as a UML Profile. Aspects are defined as augmentations to target

model, and the composed model is obtained by mapping a non-aspect model to a new

model containing aspect descriptions. The aspects are parametric in nature and thus can

be bound or instantiated several times. To make them generic in this way, they are

explicitly split into two parts: required (which defines the join point) and provided

(which defines the augmentation to original model). To compose an aspect into a target

model, a special operation called superimposition is used, which allows an aspect to

augment another one.

A.12) The Behavioral Aspect Weaving Approach

The approach of Klein et al. (2007) is based on the concept of scenarios which

are basically sequence diagrams or Message Sequence Charts. A pair of scenarios is

used to define an aspect, one scenario representing the pointcut, and the other

representing the advice. Just like AspectJ, the advice in this behavioral aspect weaving

approach can be inserted “around”, “before”, or “after” a join point. In order to

weave an aspect model into a target model, first a generic detection strategy is used

which identifies all the join points in the target model, then a generic composition

mechanism is applied to compose advice model with the target model at the identified

join points.

306

A.13) Reusable Aspect Models

Reusable Aspect Models (RAM) (Klein and Kienzle, 2007; Kienzle et al., 2009;

Kienzle et al., 2010) is a multi-view modeling approach that combines existing AO

approaches to model class, sequence and state diagrams into a single approach. Multi-

view modeling, in its essence, provides means to describing a system from multiple

points of view, using different modeling notations, and thus allowing the use of the most

appropriate modeling notation to describe facets different views of a system. RAM is

different from all other AOM approaches in a sense that it views aspects as concerns that

are reused many times in an application or across several applications. Therefore, this

approach models any functionality that is reusable by means of an aspect. Hence,

different views (i.e., structure, message, and state views) of a reusable concern are

encapsulated in the form of an aspect model which is essentially a special UML

package. This aspect model comprises of three different compartments representing the

structural view, state view and message view. These views are expressed using a UML

class diagram, state diagram and sequence diagrams respectively.

A.14) MATA notation

Modeling Aspects using a Transformation Approach (MATA) (Whittle et al.,

2007; Whittle and Jayaraman, 2008; Whittle et al., 2009) is a graph transformation

based approach to modeling and composing aspects. Both the base and aspect models

are represented in the form of well-formed graphs. Since the idea of using graph rules is

broadly applicable, MATA is seen as an approach which can be extended to any

modeling diagrams, and even to other modeling languages. The only condition in this

regard is that the modeling language to be represented using MATA must have a well-

defined meta-model. UML meta-model can be represented in the form of a graph by

making each meta-class a node in the type graph, and making each meta-association an

edge in the type graph. In this way, any UML model can be represented as an instance of

this type graph. Aspects are defined using graph transformation rules, where the left-

hand-side (LHS) of a transformation rule is a pattern that defines the pointcuts which are

307

to be matched, whereas the right-hand-side (RHS) defines new elements to be added (or

removed) at these pointcuts. MATA provides a convenient way of writing the graph

rules by proposing that the rule be given on one diagram only, rather than writing graph

rules using both LHS and RHS, since this needs repetition of unchanged elements on

both sides of the rule. To this purpose, it defines three new stereotypes namely: (1)

<<create>> to specify that a new element must be created by the graph rule, (2)

<<delete>> to identify deletion of an element by a graph rule, and (3)

<<context>> to avoid effect of (1) and (2) on elements.

	Thesis Status Declaration Without Sign
	UNIVERSITI TEKNOLOGI MALAYSIA

	Form C (Declaration on Cooperation & Certificate of Examination)
	Abid Thesis 13 th May 2014
	CHAPTER 1
	1.1 Overview
	1.2 Research background
	1.3 Motivation
	1.4 Problem statement
	1.5 Research objectives
	1.6 Research scope
	1.7 Thesis outline

	CHAPTER 2
	2.1 Introduction
	2.2 Integration of Aspect Orientation and MDE
	2.2.1 Aspect-Oriented Modeling (AOM) notations
	2.2.1.1 UML Profiles to support AOM
	2.2.1.2 Meta-model extensions to support AOM
	2.2.1.3 Infrastructures for the extension process

	2.2.2 Weave-Then-Generate (WTG) approaches
	2.2.2.1 Model weavers
	2.2.2.2 Model unweavers
	2.2.2.3 Base-aspect interaction enhancement techniques
	2.2.2.4 Object-oriented code generation approaches

	2.2.3 Generate-Then-Weave (GTW) approaches
	2.2.3.1 Transformation-based approaches
	2.2.3.2 Direct mapping approaches
	2.2.3.3 Code generation from specification of NFRs

	2.2.4 Evaluation of object-oriented code generation in WTG setting
	2.2.4.1 Models
	2.2.4.2 Design
	2.2.4.3 Implementation
	2.2.4.4 Validation
	2.2.4.5 Extent of Code
	2.2.4.6 Tools support
	2.2.4.7 Discussion of results and essentatial problems in WTG approach
	2.2.4.8 Discussion of reusability and maintainability problems

	2.3 Aspect-oriented model-driven code generation – a GTW approach
	2.3.1 Benefits of aspect-oriented code generation
	2.3.2 Evaluation of existing aspect-oriented code generation approaches
	2.3.2.1 Transformation
	2.3.2.2 Models
	2.3.2.3 Validation
	2.3.2.4 Extent of code
	2.3.2.5 Tool-support

	2.3.3 Limitations of approaches with respect to integration with MDE

	2.4 Important concepts in the integration through AO code generation
	2.4.1 Selection of Aspect-Oriented Modeling (AOM) approach
	2.4.1.1 General assessment
	2.4.1.2 A modeling example-driven assessment
	2.4.1.3 Reusable Aspect Models (RAM) for AO code generation

	2.4.2 Conceptual mapping of models and integration of behavioral models
	2.4.2.1 Mapping of AO models
	2.4.2.2 Implementation of behavioral diagrams

	2.4.3 Representation approach
	2.4.3.1 XML as an intermediate representation
	2.4.3.2 Techniques to transform UML-based models into XML

	2.5 Summary

	CHAPTER 3
	3.1 Introduction
	3.2 Research design
	3.3 Research phases
	3.4 Research framework
	3.5 Research process
	3.5.1 Phase 1: Primary studies and data collection
	3.5.1.1 Literature analysis
	3.5.1.2 Problem formulation

	3.5.2 Selection of the AOM and transformation approach
	3.5.2.1 Determining AOM approach
	3.5.2.2 Determining behavior representation approach
	3.5.2.3 Determining text-based model representation approach

	3.5.3 Mapping method development
	3.5.4 Text-based implementation model development
	3.5.5 Code generation technique development
	3.5.6 Validation
	3.5.6.1 Checking the applicability of the proposed approach using case studies
	3.5.6.2 Evaluating the AOMDCG relative to GTW approaches
	3.5.6.3 Evaluating the reusability and maintainability through metrics

	3.6 Quality metrics
	3.6.1 Separation of Concerns metrics
	3.6.1.1 Concern Diffusion over Components (CDC)
	3.6.1.2 Concern Diffusion over Operations (CDO)

	3.6.2 Coupling metrics
	3.6.2.1 Coupling Between Components (CBC)
	3.6.2.2 Depth of Inheritance Tree (DIT)

	3.6.3 Cohesion metrics
	3.6.3.1 Lack of Cohesion in Operations (LCOO)

	3.6.4 Size metrics
	3.6.4.1 Vocabulary Size (VS)
	3.6.4.2 Lines of Code (LOC)
	3.6.4.3 Number of Attributes (NOA)
	3.6.4.4 Weighted Operations per Component (WOC)

	3.7 Case studies
	3.7.1 Remote Service Caller case study
	3.7.2 Online Book Store System case study

	3.8 Summary

	CHAPTER 4
	4.1 Introduction
	4.2 Mapping Core properties and Structural units to code
	4.2.1 General structure, classes, attributes and operations
	4.2.2 Associations
	4.2.3 Instantiation and binding directives

	4.3 Mapping behavior
	4.3.1 Mapping the basic state diagram
	4.3.2 Mapping composite states
	4.3.2.1 Composite states with sequential substates
	4.3.2.2 Composite states with concurrent substates

	4.4 Summary

	CHAPTER 5
	5.1 Introduction
	5.2 The Conceptual Reference Model for RAM
	5.2.1 Core
	5.2.2 StructuralView
	5.2.3 StateView

	5.3 The text-based implementation model
	5.3.1 Text-based model for the Core part
	5.3.1.1 RAM aspect
	5.3.1.2 Mandatory instantiation parameters and instantiation directives

	5.3.2 Text-based model for the StructuralView part
	5.3.2.1 Interfaces and classes
	5.3.2.2 Fields
	5.3.2.3 Constructors and methods
	5.3.2.4 Relationships

	5.3.3 Text-based model for the StateView part
	5.3.3.1 Standard statechart
	5.3.3.2 States
	5.3.3.3 Substates
	5.3.3.4 Transitions
	5.3.3.5 Aspectual statechart

	5.4 Summary

	CHAPTER 6
	6.1 Introduction
	6.2 Overview of the code generation algorithm
	6.3 Code generation for the core concepts
	6.4 Code generation for the structural part
	6.4.1 Classes
	6.4.2 Interfaces
	6.4.3 Constructors
	6.4.4 Fields
	6.4.5 Methods
	6.4.6 Relationships
	6.4.7 Instantiation and binding directives

	6.5 Code generation for the behavioral part
	6.5.1 Statechart
	6.5.2 Aspectual statechart

	6.6 Summary

	CHAPTER 7
	7.1 Introduction
	7.2 RAM models for Remote Service Caller
	7.3 Text-based representation of RAM models
	7.3.1 Network Failure Handler aspect
	7.3.1.1 Core properties
	7.3.1.2 Structural view
	7.3.1.3 State view

	7.3.2 Service Controller aspect
	7.3.2.1 Core properties
	7.3.2.2 Structural view
	7.3.2.3 State view

	7.4 Code generation
	7.4.1 NetworkFailureHandler aspect
	7.4.1.1 Context Handler
	7.4.1.2 State Controller
	7.4.1.3 State classes

	7.4.2 ServiceController aspect
	7.4.2.1 Context Handler
	7.4.2.2 State Controller
	7.4.2.3 Context Handler for composite state
	7.4.2.4 State Controller for composite state
	7.4.2.5 State Classes

	7.4.3 Instantiation Aspect

	7.5 Discussion
	7.6 Summary

	CHAPTER 8
	8.1 Introduction
	8.2 Reusable Aspect Models for Online Book Store System
	8.3 Text-based representation of OBSS RAM models
	8.3.1 Persistence, Currency Conversion and Encryption aspects
	8.3.2 Order base implementation as a RAM aspect

	8.4 Code generation
	8.4.1 Persistence, Currency Conversion and Encryption aspects
	8.4.2 Order base implementation as RAM aspect
	8.4.2.1 Order Context Handler
	8.4.2.2 Order State Controller and associated states
	8.4.2.3 Composite state controller and associated classes
	8.4.2.4 Other classes in the model

	8.5 Discussion
	8.6 Summary

	CHAPTER 9
	9.1 Introduction
	9.2 Evaluation of AOMDCG relative to GTW approaches
	9.2.1 Transformation
	9.2.2 Models
	9.2.3 Validation
	9.2.4 Extent of code
	9.2.5 Tool-support

	9.3 Measurement of reusability and maintainability
	9.3.1 Separation of Concerns (SOC)
	9.3.1.1 Concern Diffusion over Components (CDC)
	9.3.1.2 Concern Diffusion over Operations (CDO)

	9.3.2 Coupling
	9.3.2.1 Coupling Between Components (CBC)
	9.3.2.2 Depth of Inheritance Tree (DIT)

	9.3.3 Cohesion
	9.3.3.1 Lack of COhesion in Operations (LCOO)

	9.3.4 Size
	9.3.4.1 Vocabulary Size (VS)
	9.3.4.2 Lines Of Code (LOC)
	9.3.4.3 Number Of Attributes (NOA)
	9.3.4.4 Weighted Operations per Component (WOC)

	9.4 Discussion of results
	9.5 Summary

	CHAPTER 10
	10.1 Summary
	10.2 Achievement of research objectives
	10.3 Research contributions
	10.4 Future work

