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ABSTRACT 

 

 

 

 

Model predictive control (MPC) strategy is known to provide effective 

control of chemical processes including distillation. As illustration, when the control 

scheme was applied to three linear distillation columns, i.e., Wood-Berry (2x2), 

Ogunnaike-Lemaire-Morari-Ray (3x3) and Alatiqi (4x4), the results obtained proved 

the superiority of linear MPC over the conventional PI controller. This is however, 

not the case when nonlinear process dynamics are involved, and better controllers are 

needed. As an attempt to address this issue, a new multi model predictive control 

(MMPC) framework known as Representative Model Predictive Control (RMPC) is 

proposed. The control scheme selects the most suitable local linear model to be 

implemented in control computations. Simulation studies were conducted on a 

nonlinear distillation column commonly known as Column A using MATLAB® and 

SIMULINK® software. The controllers were compared in terms of their ability in 

tracking set points and rejecting disturbances. Using three local models, RMPC was 

proven to be more efficient in servo control. It was however, not able to cope with 

disturbance rejection requirement. This limitation was overcome by introducing two 

controller output configurations: Maximizing MMPC and PI controller output (called 

hybrid controller, HC), and a MMPC and PI controller output switching (called 

MMPCPIS). When compared to the PI controller, HC provided better control 

performances for disturbance changes of 1% and 20% with an average improvement 

of 12% and 20% of the integral square error (ISE), respectively. It was however, not 

able to handle large disturbance of + 50% in feed composition. This limitation was 

overcome by MMPCPIS, which provided improvements by 17% and 20% of the ISE 

for all of types and magnitudes of disturbance change. The application of MMPCPIS 

on a single model MPC strategy produced almost similar performance for both types 

of disturbances, while its application on MMPC yielded better results. Based on the 

results obtained, it can be concluded that the proposed HC and MMPCPIS deserve 

further detailed investigations to serve as linear control approaches for solving 

complex nonlinear control problems commonly found in chemical industry. 
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ABSTRAK 

 

 

 

 

Strategi kawalan ramalan model (MPC) telah diketahui efektif dalam 

mengawal proses-proses kimia termasuk penyulingan. Sebagai ilustrasi, apabila 

skema kawalan ini digunakan ke atas tiga turus penyulingan lelurus, i.e., Wood-Berry 

(2x2), Ogunnaike-Lemaire-Morari-Ray (3x3) dan Alatiqi (4x4), hasil yang diperoleh 

membuktikan keunggulan MPC lelurus berbanding pengawal PI. Namun ianya tidak 

sama bagi proses yang mempunyai dinamik tidak lelurus, dan pengawal lebih baik 

diperlukan. Sebagai usaha untuk mengatasi kelemahan ini, satu kerangka kawalan 

ramalan berbilang model (MMPC) baru yang dinamakan Kawalan Ramalan Model 

Perwakilan (RMPC) dicadangkan. Skema kawalan ini memilih model lelurus 

tempatan yang paling sesuai untuk digunakan dalam pengiraan-pengiraan kawalan. 

Kajian-kajian simulasi ke atas turus penyulingan tidak lelurus yang dikenali sebagai 

Turus A telah dilaksanakan dengan menggunakan perisian MATLAB® dan 

SIMULINK®. Pengawal-pengawal tersebut dibandingkan dari segi kebolehan 

mengikuti titik-set dan nyah-gangguan. Dengan menggunakan tiga model tempatan, 

RMPC terbukti lebih cekap bagi kawalan servo. Walau bagaimanapun, ia tidak dapat 

menangani keperluan nyah-gangguan. Kelemahan ini telah diatasi dengan 

memperkenalkan dua konfigurasi keluaran pengawal: memaksimumkan keluaran 

pengawal MMPC dan PI (dipanggil pengawal hibrid, HC), dan penukaran keluaran 

pengawal MMPC dan PI (dipanggil MMPCPIS). Jika dibandingkan dengan 

pengawal PI, HC telah berjaya menghasilkan prestasi kawalan yang lebih baik dalam 

menangani gangguan bersaiz 1% dan 20% dengan pembaikan purata 12% dan 20% 

dalam ralat kamiran kuasa dua (ISE). Namun ianya tidak dapat mengendalikan 

gangguan sebesar +50% pada komposisi masukan. Kelemahan ini telah diatasi oleh 

MMPCPIS yang telah menghasilkan pembaikan ISE 17% dan 20% bagi semua jenis 

dan saiz gangguan. Penggunaan MMPCPIS pada model mpc tunggal menghasilkan 

prestasi hampir sama bagi kedua–dua jenis gangguan, manakala penggunaannya 

pada MMPC menghasilkan keputusan yang lebih baik. Berdasarkan keputusan yang 

diperoleh dalam kajian ini, dapat disimpulkan bahawa HC dan MMPCPIS yang 

dicadangkan ini sesuai untuk dikaji dengan lebih lanjut sebagai kaedah kawalan 

lelurus untuk menyelesaikan masalah kawalan tidak lelurus kompleks yang selalu 

ditemui dalam industri kimia.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Motivation of Study 

 

Chemical plants involve many different process units with variety of 

characteristics. The processes are typically nonlinear, multivariable, and involving 

high degree of process interactions, giving rise to variety of operational complexities 

(Bachnas et al., 2014). These issues impact the performance of the plant operation 

system, the heart of which is process control. Since process controllers are generally 

developed based on linear theories, nonlinearities in process behaviors often cause 

substandard control performances in some control loops. When coupled with strong 

interactions between control loops that are oftentimes unavoidable, the control 

problems become more intricate. This is also exacerbated by the fact that process 

controllers typically used in the industry are based on linear single-input single-

output (SISO) design (Halvarsson, 2010). As such, the desired plant performance 

cannot be established without human interventions, a requirement which in practice 

is alerted by the alarm systems. Although this approach is in principle workable and 

has been in practice for many years since the old days, the needs for better plant 

performances demand better control strategies. 

In some specific plants such as petroleum refinery and various petrochemical 

processes, model predictive controller (MPC) has been introduced and is now 

receiving wide acceptance (Potts et al., 2014). In these cases, linear models are used 
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generally used for ease of implementation and the fact that linear models are easier to 

be developed and interpreted. Since process characteristics are in general nonlinear, 

which can be highly nonlinear depending on the operating zones, the use of such 

controllers are limited to quite a narrow operating window. This limits the potential 

of the plant to be operated in more optimal manner. When the operation drifted away 

from the operating window within which the linear models were developed, the 

control performances begin to degrade, which may even lead to failure, and again 

requiring human interventions, which in principle defeated the philosophy of MPC in 

the first place.  

MPC aims at providing accurate automatic control to enable efforts such as 

real time optimization (RTO), or production of high purity products (Martínez et al., 

2014). These initiatives often require the plant to operate near process constraints, 

which in turn demands more accurate nonlinear models to be used within control 

framework such as MPC to provide accurate prediction of process behavior and 

explicit consideration of state and input constraints (Liu et al., 2015). When this is 

realized, better control is established, especially when the model is comprehensive 

and accurate. 

Despite these clear advantages, the application of NMPC in the process 

industry is still limited. One of the key reasons is the fact that the model is more 

difficult to be fitted and is difficult to be understood by plant operators compared to 

the linear counterparts. It also requires intensive on-line computations to produce 

control moves by solving large-scale nonlinear models at each sampling period, and 

consequently, it is less popular in the industry (Cao, 2005; Magni et al., 2009; Ellis 

and Christofides, 2014). 

A promising solution to overcome this issue is to employ a multi-model MPC 

or Multiple MPC (MMPC). In this case, the models are basically consisting of an 

array of linear models in MIMO configuration at each certain range of controlled 

variables (CVs) or output variables. Some of the advantages of this strategy include 

its simplicity in modeling, better predictability, and ease of maintenance. However, 

since it is essentially a linear MPC (LMPC), it is still subjected to all limitations of 

the typical LMPC. The hope is that, if sufficient number of models is used, and each 

model in an accurate representation of the process within their region operation, 

accurate control can be established. This is of course subject to a condition of 
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availability of an effective switching algorithm such that the changes in process 

models to be used for control computations are managed effectively and efficiently. 

 

 

 

1.2 Problem Statements 

 

The potential of MPC in managing control problems in chemical industry has 

been reported in academia as well as industry. However, despite the rapid 

development in nonlinear control, its application has been hampered by the needs for 

highly skilled process control engineers to deal with nonlinear modelling problems 

(Praprost et al., 2004). As such, linear models are preferred. A good compromise 

strategy is to go along the idea of multi-model MPC where multiple linear models 

are used. To enable effective and efficient implementation of this strategy, the 

following issues should be answered: 

 How to implement LMPC in several variations of linear multivariable models? 

Are its controlling performances better than those of conventional controller? 

 How to control a nonlinear dynamic model using MMPC? 

 If the MMPC is confronted with problems in controlling nonlinear dynamic 

model, what is the suitable approach to improve it? 

 

 

 

1.3 Objective and Scope of Work 

 

The aim of this research is to investigate the use of multi model predictive 

control approach in controlling distillation process. Distillation process is chosen as 

the case study because of its widespread use in the chemical process industry and the 

fact that it is nonlinear, interactive and often require high purity product requirement. 

As such, it is a good testbed to study the issue mentioned in the above. In particular, 

the work is limited to following key objectives: 

(i) Evaluation of linear MPC on linear multivariable distillation control 

problems. 
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(ii) Control of nonlinear distillation process using MMPC approach. 

(iii) Investigation and analysis of the effects of MMPC parameters tuning. 

(iv) Investigation and analysis of effects of controller output configurations.  

 

To facilitate the study, the study employs four distillation models, i.e. Wood-Berry 

(linear 2x2 system), Ogunnaike-Lemaire-Morari-Ray (linear 3x3 system), Al-Atiqi 

(linear 4x4 system) and Skogestad’s nonlinear distillation model (Column A). 

 

 

 

 

1.4 Contribution of Work 

 

This work illustrates the developmental and implementation issues of MMPC 

in addressing nonlinear distillation control problems. The findings have illustrated 

that an MMPC strategy employing linear models, referred to as linear MPC (LMPC), 

has provided better control performance compared to conventional control when 

tested on multivariable linear distillation control problems (Ahmad and Wahid, 

2007a,b; Wahid and Ahmad, 2008). The strategy adopted was to select the best 

LPMC as a candidate to build MMPC, and is called representative model predictive 

control (RMPC). In this control scheme, the substitution between one model to 

another is specified by the CV value changes from one condition to another. 

Although, RMPC was able to outperform the conventional control for 

setpoint tracking (Wahid and Ahmad, 2009; Wahid et al., 2013), it still has a 

limitation on large disturbance rejections.  This is improved by introducing a strategy 

called hybrid controller (Wahid and Ahmad, 2015). However, the hybrid controller 

fails when the system was subjected to large disturbance change in the form of 

changes in the feed composition (50%). Although in practice, disturbances are 

expected to be smaller, large disturbances were used in this study to evaluate the 

ability of the controller at extreme conditions. This limitation was successfully 

overcome by controller output switching strategy involving both MMPC and PI 

controller. This control scheme was able to deal with both setpoint tracking and 

disturbance rejection problems. 
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1.5 Thesis Organization 

 

Following this introductory chapter, the literature review is presented in 

chapter 2, which lays the theoretical basis of research as well as the review of closely 

related literatures. Important issues in MPC and NMPC, evaluation of their 

advantages and disadvantages along with potentials of MMPC for solving nonlinear 

processes problem are discussed. The research gap is subsequently identified and 

addressed as well in this chapter. This is followed by simulation studies on 

application of linear MPC to three well-known distillation test-beds, i.e. Wood-Berry 

(2x2 system), Ogunnaike-Lemaire-Morari-Ray (3x3 system), and Al-Atiqi (4x4 

system). 

The advantages of linear MPC are assessed in comparison with conventional 

controller for the setpoint tracking and disturbance rejection. Next, the thesis 

explores the control of nonlinear distillation process based on Column A in chapter 

4. This chapter focuses on the usage of linear MPC in the MMPC configuration to 

solve nonlinear problems.  

As an extension to available MMPC approach, in chapter 5 a control strategy 

called controller output configurations. This is followed by the conclusion and 

recommendation for future works, presented in chapter 6. 
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