GEOTECHNICAL AND MICRO-STRUCTURAL BEHAVIOUR OF CHEMICALLY STABILIZED TROPICAL RESIDUAL SOIL

NIMA LATIFI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2014

Specially dedicated to my beloved parents and my adorable wife

ACKNOWLEDGEMENT

Acknowledgments for the completion of this thesis must be extended to many people who provided me with precious time and invaluable advice. My gratitude to the Almighty God, due to all His blessings and grace, this thesis finally came to an end.

I wish to express my sincerest appreciations to Prof. Dr. Aminaton Marto for her invaluable comments, genuine encouragement, constructive advice, and professional guidance during the formulation of this thesis. Thank you for the opportunity you granted to me. I am also very thankful to my co-supervisor Dr. Amin Eisazadeh for his permanent support, continuing feedback, patient guidance, and motivation.

My sincere gratitude also goes to all laboratory technicians in the Geotechnical Engineering and Structures and Materials laboratories for their genuine help in carrying out the laboratory tests and physical modeling works throughout the study.

Last but not least, my utmost appreciations go to my beloved parents for their eternal support, unconditional love, sacrifice, and encouragement. I am nothing without you both. My special thanks go to my adorable wife, Nazanin for all her support and tolerance throughout this research journey. Words really fail to appreciate her for everything.

ABSTRACT

The stabilization of soils with additives is a chemically modified method that can be used to improve soils with weak engineering properties. Non-traditional additives such as ionic, enzymes, salts, polymers, and tree resins are widely used for treating problematic soils. The effects of non-traditional additives on the geotechnical properties of soils have been the issue of investigation in recent years. The publications on macro-structural, micro-structural, and molecular characteristics of tropical residual soil stabilized by non-traditional stabilizers are limited. This research aimed at determining the stabilization mechanism and performance of the tropical residual (laterite) soil mixed with two types of non-traditional stabilizer; namely the calcium based powder stabilizer (SH-85) and sodium silicate based liquid stabilizer (TX-85). Macro-structural study including the compaction, unconfined compression strength, direct shear, and consolidation tests were used to assess the engineering properties of the stabilized soil. The physico-chemical bonding mechanisms contributed to the stabilization process were discussed based on the results of micro-structural study from different spectroscopic and microscopic techniques such as X-ray Diffractometry, Energy-Dispersive X-ray Spectrometry, Field Emission Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, Surface Area Analysis and Thermal Gravimetric Analysis. In addition, the performance of treated laterite backfill stabilized with the selected additives was evaluated using series of physical model tests. The model tests consisted of strip footing placed on stabilized backfill behind sheet pile wall. The numerical simulation using PLAXIS finite element (FE) software was carried out to compare and evaluate the results obtained from the physical models. The laboratory tests showed that the addition of 9 % (as the optimum amount) of both additives increased more than 80% of compressive strength after 7 days of curing periods while the consolidation settlement had been effectively reduced. The micro-structural study revealed that the stabilization process modified the porous network of laterite soil. The pores of the soil had been filled by the newly formed compounds known as calcium aluminate hydrate cementitious material for SH-85 treated samples and sodium aluminosilicate hydrate gel-like product for TX-85 treated samples. Hence, the stabilization mechanism of two selected non-traditional additives was by cationic exchange and physical bonding. The numerical simulation and physical modelling showed identical trends. Therefore the finite element method using elasto-plastic Mohr-Coulomb model is suitable to be used in evaluating and predicting the behaviour of chemically stabilized backfill. The results from the physical model tests showed that the ultimate capacity of the footing placed on the stabilized backfill soil increased greatly while the settlement reduced compared to untreated backfill laterite soil, after just 7 days of curing. It can be concluded that the quick reaction of the selected stabilizers with laterite soils is very advantageous and cost-effective for geotechnical engineering projects.

ABSTRAK

Penstabilan tanah menggunakan bahan tambah merupakan suatu kaedah pengubahsuaian kimia yang boleh digunakan untuk memperbaiki sifat tanah yang mempunyai sifat-sifat kejuruteraan yang lemah. Bahan tambah bukan konvensional seperti ionik, enzim, garam, polimer dan resin pokok digunakan secara meluas untuk rawatan tanah bermasalah. Kesan bahan tambah bukan konvensional kepada sifat geoteknikal tanah telah menjadi isu penyelidikan dalam tahun-tahun kebelakangan ini. Penerbitan mengenai makrostruktur, mikrostruktur dan sifat-sifat molekul tanah baki tropika yang distabilkan dengan bahan penstabil bukan konvensional adalah terhad. Penyelidikan ini bertujuan untuk menentukan mekanisme penstabilan dan prestasi tanah baki (laterit) tropika yang dicampur dengan dua jenis penstabil bukan konvensional, iaitu penstabil serbuk berasaskan kalsium (SH-85) dan bahan penstabil cecair berasaskan sodium silikat (TX-85). Kajian makrostruktur termasuk ujian pemadatan, ujian kekuatan mampatan tak terkurung, ujian ricih, dan ujian pengukuhan telah dijalankan untuk menilai sifat kejuruteraan tanah laterit yang distabilkan. Mekanisme ikatan fizikokimia yang menyebabkan proses penstabilan dibincangkan berdasarkan hasil kajian mikrostruktur melalui kaedah spektroskopik seperti X-ray Diffractometry, dan mikroskopik Energy-Dispersive X-rav Spectrometry, Field Emission Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, Analisis Luas Permukaan dan Thermal Gravity Analysis. Prestasi tanah laterit yang distabilkan dengan bahan tambah yang digunakan sebagai tanah kambus balik telah dinilai melalui satu siri ujian model fizikal. Ujian model terdiri daripada asas jalur di atas kambus balik yang distabilkan dan terletak di belakang dinding cerucuk turap. Simulasi berangka dengan perisian unsur terhingga PLAXIS telah dijalankan untuk membandingkan dan menilai hasil ujian model fizikal. Ujian makmal menunjukkan bahawa penggunaan bahan tambah sebanyak 9% (nilai optimum) bagi kedua-dua bahan tambah meningkatkan kekuatan mampat tanah laterit sebanyak 80% selepas tempoh pengawetan selama 7 hari, dan mampu mengurangkan enapan pengukuhan secara efektif. Berdasarkan kajian mikrostruktur, didapati bahawa proses penstabilan telah mengubahsuai rangkaian liang tanah laterit. Liang-liang tanah diisi dengan kompaun yang baru terbentuk, iaitu kompaun bersimen kalsium aluminat hidrat bagi sampel yang distabilkan dengan SH-85, dan sodium aluminosilikat hidrat berbentuk gel bagi sampel yang distabilk dengan TX-85. Mekanisme penstabilan bagi kedua-dua bahan tambah bukan konvensional disebabkan oleh pertukaran kation dan ikatan fizikal. Simulasi berangka dan pemodelan fizikal menunjukkan tren yang serupa. Oleh itu, kaedah unsur terhingga yang menggunakan model elasto-plastik Mohr-Coulomb didapati sesuai digunakan untuk menilai dan meramal perilaku kambus balik yang distabilkan menggunakan bahan kimia. Hasil ujian model fizikal menunjukkan bahawa kapasiti muktamad asas di atas tanah kambus balik yang distabilkan mengalami peningkatan yang banyak dan mengurangkan enapan tanah selepas 7 hari tempoh pengawetan berbanding dengan tanah kambus balik yang tidak dirawat. Kesimpulannya, reaksi pantas bahan penstabil untuk menstabilkan tanah laterit adalah sangat berfaedah dan kos-berkesan bagi projek-projek kejuruteraan geoteknik.

TABLE OF CONTENTS

CHAPTER			TITLE	PAGE
	DECL	ARATIO	N	ii
	DEDIC	CATION		iii
	ACKN	OWLED	GEMENT	iv
	ABST	RACT		v
	ABST	RAK		vi
	TABL	E OF CO	NTENTS	vii
	LIST (OF TABI	LES	xiv
	LIST (OF FIGU	RES	xvi
	LIST (OF ABBF	REVIATIONS AND SYMBOLS	xxiii
	LIST (OF APPE	NDICES	xxvii
1	INTRO	ODUCTI	ON	1
	1.1	Backgro	ound	1
	1.2	Problen	n Statement	3
	1.3	Objectiv	ves of Study	4
	1.4	Scope a	nd Limitation of Study	5
	1.5	Signific	ance of Study	6
	1.6	Thesis (Organization	7
2	LITEF	RATURE	REVIEW	9
	2.1	Introdu	ction	9
	2.2	Soil Im	provement using Stabilizers	9
		2.2.1	Traditional Additives	12
		2.2.2	Non-Traditional Additives	15
	2.3	Tropica	l Residual Soils	30
		2.3.1	Origin and Chemical Composition	32

	2.3.2	Clay Minerals	35
	2.3.3	Engineering Properties	42
2.4	Macro-S	Structural Characterizations and Engineering	
	Analysis	s of Stabilized Soil	44
	2.4.1	Compaction Characteristics	45
	2.4.2	Compressive Strength	48
	2.4.3	Shear Strength	52
	2.4.4	Compressibility	56
2.5	Micro-S	tructural Characterization and Chemical	
	Analysis	s of Stabilized Soils	60
	2.5.1	X-ray Diffraction Studies	60
	2.5.2	Microscopic Studies	64
	2.5.3	Thermal Studies	69
	2.5.4	Surface Area, Pore Size and Particle Size	
		Distribution	72
	2.5.5	Molecular Characterization	77
2.6	Modelli	ng the Retaining Wall with Stabilized	
	Backfill		81
RESE	ARCH M	ETHODOLOGY	94
3.1	Introduc	tion	94
3.2	Selection	n, Collection and Preparation of Materials	97
	3.2.1	Soil Sample	97
	3.2.2	Additives	98
3.3	Determi	nation of Physical and Chemical Properties	
	of Later	ite Soil	99
	3.3.1	Soil Classification	99
	3.3.2	Specific Gravity	101
	3.3.3	Loss on Ignition	102
	3.3.4	Organic Content	102
	3.3.5	pH Measurement	103
3.4	Determi	nation of Chemical Component of Additives	104
3.5	Determi	nations of Engineering Properties	105
	3.5.1	Compaction	105

		3.5.2	Unconfined Compressive Strength	107
		3.5.3	Direct Shear	109
		3.5.4	Consolidation	110
3.0	6	Micro-Str	ructural and Molecular Characterization of	
		Samples		112
		3.6.1	X-ray Diffraction	113
		3.6.2	Scanning Electron Microscopy and X-ray	
			Spectrometry	115
		3.6.3	Fourier Transform Infrared Spectroscopy	117
		3.6.4	Thermal Gravimetric Analysis	119
		3.6.5	Surface Area Value	120
		3.6.6	Particle Size Analysis	121
3.1	7	Physical	Model Tests	123
		3.7.1	Introduction	123
		3.7.2	Materials	124
		3.7.3	Test box	124
		3.7.4	Wall and Footing	129
		3.7.5	Instruments	130
		3.7.6	Testing Programme	132
		3.7.7	Model Preparation and Test Procedure	132
3.8	8	Numerica	l Simulation	134
		3.8.1	Introduction	134
		3.8.2	Simulation Process	135
3.9	9	Summary	,	138
PI	HYSI	CO-CHE	MICAL, MACRO AND MICRO	
ST	FRUC	TURAL	STUDIES OF MATERIALS	139
4.	1	Introduct	on	139
4.2	2	Physical	Properties of Laterite Soil	140
4.3	3	Geochem	istry Characteristics of Materials	145
		4.3.1	Soil	145
		4.3.2	Additives	147
4.4	4	Macro-St	ructural Characterization	149
		4.4.1	Compaction	149
			-	

	4.4.2	Unconfined Compressive Strength	154
	4.4.3	Consolidation	160
	4.4.4	Shear Strength	165
4.5	Micro-S	Structural Characterization	171
	4.5.1	X-ray Diffraction	172
	4.5.2	X-ray Spectrometry	174
	4.5.3	Scanning Electron Microscopy (SEM) and	
		Field Emission Scanning Electron	
		Microscopy (FESEM)	180
	4.5.4	Molecular Characteristics	187
	4.5.5	Thermal Gravimetric Analysis	189
	4.5.6	Surface Area Analysis	192
	4.5.7	Particle Size Analysis	195
	4.5.8	pH	198
4.6	Summa	ry	200
PERI	TORMAN	CE OF TREATED SOILS THROUGH	
PHV	SICAL M	ODELLING AND NUMERICAL	
SIMI			203
5.1	Introdu	ction	203
5.2	Physica	l Model Tests	203
	5.2.1	Series 1 : Loading Placed at 5 cm	205
	5.2.2	Series 2 : Loading Placed at 10 cm	210
	5.2.3	Series 3 : Loading Placed at 15 cm	215
5.3	Summa	ry of Physical Modelling Tests	220
5.4	Numeri	cal Simulation	224
	5.4.1	Numerical Simulation of Series 1	225
	5.4.2	Numerical Simulation of Series 2	228
	5.4.3	Numerical Simulation of Series 3	231
5.5	Summa	ry of Numerical Simulation	234
CON			
61	CLUSION	AND RECOMMENDATIONS	237
0.1	CLUSION Introdue	AND RECOMMENDATIONS ction	237 237
6.2	CLUSION Introdue Conclus	AND RECOMMENDATIONS ction sion	237237237

6

	6.3.1	Micro-Structural Study	239
	6.3.2	Physical Modelling and Numerical	
		Simulation	240
	6.3.3	Recommendations for Further Research	241
REFERENCES			243
Appendices A-G			270-301

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Proposed stabilization mechanisms and suitability for stabilization	
	applications (Tingle et al., 2007)	24
2.2	Summary of compressive strength changes due to the soil-additive	
	reaction	51
2.3	Effect of soils mixed with different concentration of fly ash on	
	cohesion and angle of internal friction (Prabakar et al., 2004)	53
2.4	TGA, DTG, and DTA analysis for more commonly available clay	
	minerals (Guggenheim and van Groos, 2001)	71
2.5	IR bands of kaolinite (KGa) and montmorillonite (SWy) clay	
	along with their assignments (Madejova and Komadel, 2001)	78
3.1	Laboratory testing programme with standards or methods used	96
3.2	Testing programme in physical model tests	132
4.1	Values of physical indices of granitic residual soils from various	
	places in the Peninsular Malaysia	140
4.2	Percentages of soil components based on particle size	143
4.3	Amount of major elements (%), organic contents and pH in some	
	granitic residual soils	146
4.4	Oxides and chemical components of SH-85 and some of	
	traditional stabilizers	148
4.5	Chemical components of TX-85	149
4.6	Maximum dry density and optimum moisture content of some	
	granitic residual soil in the Peninsular of Malaysia	150
4.7	<i>p</i> _{dmax} and <i>w</i> _{opt} of treated and untreated soils obtained from	
	standard compaction tests	151

4.8	Unconfined compressive strength of untreated and treated laterite	
	soils with SH-85 and TX-85 at various curing time	154
4.9	Unconfined compressive strength of granitic residual soils from	
	various places in the Peninsular Malaysia mixed with different	
	type of stabilizers	156
4.10	Shear values for the granitic residual soil in Malaysia	166
4.11	Al:Si, and Ca:Si ratios of untreated and treated soil with 9% SH-	
	85 obtained from EDAX analysis	178
4.12	Al:Si, and Na:Si ratios of untreated and treated soil with of 9%	
	TX-85 obtained from EDAX analysis	180
4.13	Surface area obtained from N2-BET for the untreated and treated	
	laterite soils at various curing time	193
4.14	Particle Size Distribution of Untreated and Treated samples with	
	SH-85	197
4.15	Particle Size Distribution of Untreated and Treated samples with	
	TX-85	197
4.16	pH obtained for the untreated and treated laterite soils at various	
	curing time	199
5.1	Summary results of physical model tests at failure	204
5.2	Parameters for backfill, sheet pile wall and footing in PLAXIS	
	modelling	224
5.3	Summary results obtained from numerical simulation at failure	225

LIST OF FIGURES

FIG	URE	NO.
		- · · · ·

TITLE

PAGE

2.1	Process of surface stabilization by liquid additive	10
2.2	Deep mixing process in field	11
2.3	Proposed stabilization mechanisms for ionic additives	
	(Tingle <i>et al.</i> , 2007)	17
2.4	Proposed stabilization mechanisms for enzymes additives	
	(Tingle <i>et al.</i> , 2007)	19
2.5	Proposed stabilization mechanisms for Lignosulfonate additives	
	(Tingle <i>et al.</i> , 2007)	20
2.6	Typical profile of residual soil (Little, 1969)	31
2.7	Basic sheet arrangements of silica tetrahedral and aluminum	
	octahedral and synthesis pattern of clay minerals (Mitchell and	
	Soga, 2005)	36
2.8	Morphology of kaolinite (McBride, 1994)	37
2.9	Morphology of montmorillonite (McBride, 1994)	38
2.10	Structure and morphology of illite (McBride, 1994)	39
2.11	Some possible mechanisms of water adsorption by clay surfaces:	
	(a) hydrogen bonding, (b) ion hydration, (c) attraction by	
	osmosis, and (d) dipole attraction (Mitchell and Soga, 2005)	40
2.12	General distribution of cations held as exchangeable ions at	
	different pH values (Brady and Weil, 1996)	41
2.13	Typical moisture-density curve (Ahmad, 2004)	45
2.14	Variation of dry density with moisture content (Hossain et al.,	
	2007)	46

2.15	Plots of dry unit weight versus molding moisture content of clay	
	and clay–FA geopolymer for FA/clay ratios of 0.3, 0.5, and 0.7	
	(Sukmak <i>et al.</i> , 2013)	47
2.16	Relation between maximum dry density and optimum moisture	
	content at different SBR%-MH soil (Ahmad et al., 2013)	48
2.17	Unconfined compressive strengths values for one day of curing	
	(Newman and Tingle, 2004)	49
2.18	Strength gain for lime and phosphoric acid-treated laterite clay	
	with different stabilizer content and curing time (Eisazadeh et	
	<i>al.</i> , 2011)	50
2.19	Effect of the fibre content on cohesion and angle of internal	
	friction of fibre-lime treated soil specimens after 28-day curing	
	(Cai <i>et al.</i> , 2006)	54
2.20	Effect of soil stabilizer concentration on cohesion of samples of	
	stabilized soil (Liu et al., 2011)	54
2.21	Effect of soil stabilizer concentration on friction angle of	
	samples of stabilized soil (Liu et al., 2011)	55
2.22	Effect of fly ash, lime – fly ash, and curing time on the	
	compression and rebound indices Cc and Cr (Nalbantoglu and	
	Tuncer, 2001)	57
2.23	Strain versus pressure for Soil 1 and 2, treated with lime (de	
	Brito Galvão et al., 2004)	58
2.24	Compressibility and SEM image of 30% cement-treated clay	
	(Chew et al., 2004)	59
2.25	X-ray diffraction patterns for composite clay samples treated	
	with the ionic stabilizer at different application mass ratios	
	(Katz <i>et al.</i> , 2001)	61
2.26	XRD of Arizona Montmorillonite before (red) and after (blue)	
	treatment with EcSS 3000^{TM} soil stabilizer (Malek, 2006)	62
2.27	Comparison between X-ray diffraction patterns of natural,	
	phosphoric acid, and lime treated Laterite Clay after 8 months	
	curing period (Eisazadeh et al., 2011)	63

xv

2.28	SEM of untreated and 6% lime treated Tapah Kaolin after one	
	year of curing (Kassim et al., 2005)	64
2.29	Scanning electron micrograph of cementation compounds	
	formed in lime-soil reactions (Cai et al., 2006)	65
2.30	Cluster of elongated particles found in CKD-treated Na-m clay	
	cured for 90 days (Peethamparan et al., 2009)	66
2.31	SEM image of untreated laterite clay from Malaysia (Eisazadeh	
	<i>et al.</i> , 2011)	67
2.32	SEM image of lime laterite clay from Malaysia (Eisazadeh et al.,	
	2011)	67
2.33	SEM images (a) the FA geopolymer and (b) the clay-FA	
	geopolymer specimens at L/FA ratio of 0.7 (Sukmak et al., 2013)	68
2.34	Various pores observed in micro-fabric of Tucson silty clay	
	(Mitchell and Soga, 2005)	72
2.35	Adsorption of gas molecules on solid particles (Quantachrome	
	manual, 2007)	74
2.36	Laser diffraction technique used in CILAS equipment	76
2.37	IR spectra of montmorillonite (SWy-2) and kaolinite (KGa-2)	
	using (Potassium Bromide) KBr pellet (Madejova and Komadel,	
	2001)	79
2.38	FTIR of Arizona Montmorillonite before and after treatment with	
	Ecss 3000 TM soil stabilizer (Malek, 2006)	80
2.39	FTIR spectrums for untreated and phosphoric acid and lime-	
	treated lateritic soils at 8 months time interval (Eisazadeh <i>et al.</i> ,	
	2011)	81
2.40	Horizontal distribution of geogrid strain (a) fill height = 4 m ; (b)	
	fill height = 6.5 m (Jie <i>et al.</i> , 2012)	83
2.41	Vertical distribution of geogrid strain 2 m inside the wall (Jie et	
	<i>al.</i> , 2012)	83
2.42	Schematic view of the experimental model (All dimensions are	
	in mm) (Ahmadi and Hajialilue-Bonab, 2012)	84
2.43	Monitoring general scheme (Bourgeois et al., 2011)	86

xvi

2.44	Horizontal displacement of the wall under the effect of the	
	applied load of 90 kN (comparison measurements/simulations)	
	(Bourgeois et al., 2011)	86
2.45	Setup of instrumentation (Chen and Chiu, 2008)	88
2.46	Comparison of test results for various facing inclinations (a)	
	horizontal displacement of the facing (Chen and Chiu, 2008)	88
2.47	FLAC model of reinforced wall (Hatami and Bathurst, 2006)	89
2.48	Model test instrumentation (Georgiadis and Anagnostopoulos,	
	1998)	91
2.49	Effect of surcharge distance on bending moments ($H=250$ mm;	
	q=12 kN/m ²) (Georgiadis and Anagnostopoulos, 1998)	91
2.50	Physical modelling instrumentation schematic (Shinde and	
	Mandal, 2007)	92
2.51	Deformed mesh of backfill materials and wall (Shinde and	
	Mandal, 2007)	93
3.1	Flowchart of research methodology	95
3.2	Collection of soil samples from UTM campus	97
3.3	Laterite soil samples under air-drying process	98
3.4	Non-traditional soil additives used in this study	99
3.5	pH measurement equipment	104
3.6	Equipment used in compaction tests	106
3.7	Samples under curing condition	108
3.8	Unconfined compressive strength test machine	109
3.9	Direct shear test machine	110
3.10	One dimensional consolidation test equipment	112
3.11	Diffraction from crystal planes according to Bragg's Law	
	(Mitchell and Soga, 2005)	113
3.12	Sample preparation for XRD test	114
3.13	Bruker D8 X-ray Diffractometer	115
3.14	Field Emission Scanning Electron Microscope	116
3.15	Scanning Electron Microscope	117
3.16	Vacuum sputter coater	117
3.17	Sample preparation for fourier transform infrared test	118
3.18	Fourier transform infrared device connected to the computer	119

	٠	٠	٠
XV	1	1	1

3.19	Thermal Gravimetric device	120
3.20	Surface area measurement device	121
3.21	Particle size analysis device (CILAS 1180)	122
3.22	Failure mechanism from general shear failure of foundation	
	(Sutjiono and Najoan, 2005)	125
3.23	Schematic picture of test box	127
3.24	Loading frame used for physical model tests	128
3.25	Test box transfer to the loading frame	129
3.26	Wall and footing used in physical model tests	130
3.27	Schematic view of experimental model	131
3.28	Test box showing prepared soil, wall, footing, LVDT, strain	
	gauges and load cell before test	134
3.29	Finite element model and mesh for various footing distance from	
	the wall, (a) 5 cm from wall; (b) 10 cm from wall; (c) 15 cm	
	from wall	137
4.1	Particle size distribution of laterite soil	142
4.2	Plasticity chart in accordance with USCS	144
4.3	Diffragtogram of untreated granitic residual soil	147
4.4	Particle size distribution of SH-85	148
4.5	Compaction curve of natural laterite soil	150
4.6	Relationship between maximum dry density and optimum	
	moisture content with percentage of added SH-85 on laterite soil	152
4.7	Relationship between maximum dry density and optimum	
	moisture content with percentage of added TX-85 on laterite soil	153
4.8	Strength gained for SH-85 treated laterite soil with different	
	stabilizer content and curing time	155
4.9	Strength gained for TX-85 treated laterite soil with different	
	stabilizer content and curing time	157
4.10	Comparison between SH-85 and TX-85 strength developments	
	for 7 days cured samples	159
4.11	Consolidation curve of natural laterite soil	160
4.12	Compression curves of untreated and SH-85 treated soils at	
	different curing time	162

4.13	Variation of compression index and swelling index at different	
	curing time	162
4.14	Compression curves of untreated and TX-85 treated soils at	
	different curing time	163
4.15	Variation of compression index and swelling index at different	
	curing time	163
4.16	Direct shear test result on untreated laterite soil	165
4.17	Variation of cohesion of treated samples with SH-85 at different	
	time intervals	167
4.18	Variation of friction angle of treated samples with SH-85 at	
	different time intervals	168
4.19	Variation of cohesion of treated samples with TX-85 at different	
	time intervals	169
4.20	Variation of friction angle of treated samples with TX-85 at	
	different time intervals	169
4.21	Comparison between SH-85 and TX-85 treated samples'	
	cohesion in different time intervals	170
4.22	XRD patterns of untreated and treated laterite soil with SH-85 at	
	different time intervals	172
4.23	XRD patterns of untreated and treated laterite soil with TX-85 at	
	different time intervals	173
4.24	EDAX spectrums of untreated laterite soil	175
4.25	EDAX spectrums of SH-85 additive	175
4.26	EDAX spectrums of SH-85 treated laterite soil at different curing	
	times	177
4.27	EDAX spectrums of TX-85 treated laterite soil at different time	
	intervals	179
4.28	Micrographs of natural laterite soil	181
4.29	Micrographs of SH-85 additive	182
4.30	FESEM images of SH-85 treated laterite soil at different time	
	intervals	184
4.31	FESEM micrographs of TX-85 treated laterite soil at different	
	curing time	186

xix

4.32	FTIR spectrums for untreated and SH-85-treated laterite soil with	
	various curing time	188
4.33	FTIR spectrums for untreated and TX-85-treated laterite soil at	
	various time intervals	188
4.34	TGA spectrums for untreated laterite soil	189
4.35	TGA spectrums for SH-85 treated laterite soil at 7, 28 and 90	
	days curing time	190
4.36	TGA spectrums of TX-85 treated laterite soil at 7, 28 and 90	
	days curing time	191
4.37	BET surface area for untreated and SH-85 treated samples at	
	various curing periods	194
4.38	BET results for untreated and TX-85 treated samples at various	
	curing periods	194
4.39	Particle size distribution of untreated and treated samples with	
	SH-85 at various curing periods	196
4.40	Particle size distribution of untreated and treated samples with	
	TX-85 at various curing periods	196
4.41	Variation of pH for SH-85 and TX-85 treated laterite soil	199
4.42	Stabilization mechanisms of SH-85 and TX-85 additives on	
	laterite soil	201
5.1	Variation of pressure-settlement of footing when the footing was	
	placed at 5 cm from the wall	206
5.2	Variation of pressure-footing settlement at 366 kPa, when the	
	footing was placed at 5 cm from the wall	207
5.3	Variation of pressure-horizontal displacement of wall when the	
	footing was placed at 5 cm from the wall	208
5.4	Variation of pressure-wall horizontal displacement at 366 kpa,	
	when the footing was placed at 5 cm from the wall	209
5.5	Effect of backfill stabilization on the wall strain distribution at	
	366 kPa pressure, placed at 5 cm from the wall	210
5.6	Variation of pressure-settlement of footing when the footing was	
	placed at 10 cm from the wall	211
5.7	Variation of pressure-footing settlement at 470 kPa, when the	
	footing was placed at 10 cm from the wall	212

XX

5.8	Variation of pressure-horizontal displacement of wall when the	
	footing was placed at 10 cm from the wall	213
5.9	Variation of pressure-wall horizontal displacement at 470 kPa,	
	when the footing was placed at 10 cm from the wall	214
5.10	Effect of backfill stabilization on the wall strain distribution at	
	470 kPa pressure, placed at 10 cm from the wall	215
5.11	Variation of pressure-settlement of footing when the footing was	
	placed at 15 cm from the wall	216
5.12	Variation of pressure-footing settlement at 572 kPa, when the	
	footing was placed at 15 cm from the wall	217
5.13	Variation of pressure-horizontal displacement of wall when the	
	footing was placed at 15 cm from the wall	218
5.14	Variation of pressure-wall horizontal displacement at 572 kPa,	
	when the footing was placed at 15 cm from the wall	219
5.15	Effect of backfill stabilization on the wall strain distribution at	
	572 kPa pressure, placed at 15 cm from the wall	220
5.16	Ultimate pressure of footing on untreated and treated backfill	
	with SH-85 and TX-85, placed at various distance from the wall	221
5.17	Horizontal wall displacement of untreated and treated backfills at	
	ultimate pressure of footing placed at various distance from the	
	wall	222
5.18	Comparison graphs of footing settlement when the load was	
	placed at 5 cm from the wall	226
5.19	Comparison graphs of wall horizontal displacement when the	
	load was placed at 5 cm from the wall	227
5.20	Comparison graphs of strain distribution when the load was	
	placed at 5 cm from the wall	228
5.21	Comparison graphs of footing settlement when the load was	
	placed at 10 cm from the wall	229
5.22	Comparison graphs of wall horizontal displacement when the	
	load was placed at 10 cm from the wall	230
5.23	Comparison graphs of strain distribution when the load was	
	placed at 10 cm from the wall	231

5.24	Comparison graphs of footing settlement when the load was	
	placed at 15 cm from the wall	232
5.25	Comparison graphs of wall horizontal displacement when the	
	load was placed at 15 cm from the wall	233
5.26	Comparison graphs of strain distribution when the load was	
	placed at 15 cm from the wall	234
5.27	Comparison between qult obtained from numerical and physical	
	modelling for footing placed behind the wall, with untreated and	
	treated backfill	235

xxii

LIST OF ABBREVIATIONS AND SYMBOLS

А	-	Activity
ADU	-	Acquisition data unit
AEC	-	Anion exchange capacity
Al	-	Aluminum
Al^{3+}	-	Aluminum cation
ASTM	-	American society of testing material
BET	-	Brunauer emmett and teller
BS	-	British standard
c	-	Constant
С	-	Cohesion
Ca	-	Calcium
Ca ²⁺	-	Calcium cation
САН	-	Calcium aluminate hydrate
CaO	-	Calcium oxide
Ca(OH) ₂	-	Calcium hydroxide
CASH	-	Calcium aluminate silicate hydrate
CaSO4	-	Calcium sulphate
CEC	-	Cation exchange capacity
C_c	-	Compression index
C_s	-	Swelling index
C_V	-	Coefficient of consolidation
CO_2	-	Carbon dioxide
cps	-	Counts per second
Cu	-	Copper
d	-	Distance of interplanar spacing as function of θ
D	-	Day
D_{f}	-	Depth of the foundation

xxiv

DTA	-	Differential thermal analysis
DTG	-	Derivative thermal gravimetric
е	-	electronic charge
EDAX	-	Energy dispersive x-ray analysis
F	-	Fluoride
Fe	-	Iron
Fe ²⁺	-	Iron (II) cation
Fe ³⁺	-	Iron (III) cation
Fe ₂ O ₃	-	Ferric Oxide
FESEM	-	Field emission scanning electron microscopy
FTIR	-	Fourier transform infrared
Н	-	Hydrogen
H^{+}	-	Hydrogen cation
HCL	-	Hydrochoric acid
H ₂ O	-	Water
Hs	-	Depth of failure zone
ICP	-	Inductively coupled plasma
Κ	-	Potassium
K^+	-	Potassium cation
KBr	-	Potassium bromide
LC	-	Laterite Clay
LL	-	Liquid limit
LOI	-	Loss on ignition
LST	-	Liquid Stabilizer Treated
LVDT	-	Linear variable displacement transducer
L_{sh}	-	Length of horizontal failure line
MDD	-	Maximum dry density
Mg	-	Magnesium
MgO	-	Magnesium oxide
MM	-	Mercury microporosimetry
mv	-	Coefficient of volume change
n	-	Order of diffraction
n ₀	-	electrolyte concentration
Na	-	Sodium

Na ⁺	-	Sodium cation
Na ₂ O	-	Sodium oxide
NASH	-	Sodium AluminoSilicate Hydrate
NO ₃	-	Nitrate
NUM	-	Numerical Modelling
0	-	Oxygen
OC	-	Organic content
(OH) ⁻	-	Hydroxide ion
OMC	-	Optimum moisture content
Р	-	Phosphorous
PHM	-	Physical Modelling
PI	-	Plasticity index
PL	-	Plastic limit
ppm	-	Parts per million
PST	-	Powder Stabilizer Treated
Pt	-	Platinum
Qult	-	Ultimate pressure
qa	-	Allowable pressure
S	-	Sulfur
Sec	-	Seconds
SEM	-	Scanning electron microscope
Si	-	Silicon
SiO ₂	-	Silica
SO_4	-	Sulphate
SSA	-	Specific surface area
Т	-	Temperature
TEM	-	Transmission electron microscopy
TG	-	Thermal gravimetric
TGA	-	Thermal gravimetric analysis
UCS	-	Unconfined compressive strength
UNT	-	Untreated
ν	-	Volume of gas adsorbed per unit weight of clay at a ressure
ν_{m}	-	Volume of gas adsorbed for monolayer coverage
XRD	-	X-ray diffraction

XRF	-	X-ray fluorescene
Zn	-	Zinc
1/k	-	The effective thickness of the diffuse layer
3	-	Strain
μ	-	Micro
λ	-	Wave-length
θ	-	Critical angle of incidence of the x-ray beam on the crystal plane
ϕ	-	Internal friction angle

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	Samples of data obtained from EDAX	270
В	Samples of data obtained from CILAS	278
С	Data obtained from ICP-MS test	292
D	Calibration of pH meter	294
Е	Data obtained from BET	297
F	Strain gauge calibration	299
G	XRD patterns of SH-85 and laterite soil	300

CHAPTER 1

INTRODUCTION

1.1 Background

High quality soil as materials for geotechnical engineering construction are rare in many parts of the world, and most often than not, engineers are forced to seek alternatives to reach the stipulated requirements. In addition, the gradual increase in population as well as rapid development in the construction industry in recent years have make it more urgent than ever to gain the sufficient knowledge and information needed to improve existing soil for geotechnical engineering purposes.

Soil stabilization is the process of improving the physical and engineering properties of soil to obtain some predetermined targets. It operates in various ways such as mechanical, biological, physical, chemical and electrical. Nowadays, among the different methods of soil improvement, using chemical additives for soil stabilization in order to increase soil strength parameters and loading capacity is catching more attention. Engineers in construction industry particularly in the geotechnical sector use chemically soil stabilization techniques in many ways such as road construction, slope stabilization and erosion control, foundation and embankment treatment, and improving the coastal line for construction. This popularity is due to their low cost and convenience, particularly in the geotechnical projects that require a high volume of soil.

Each type of chemical additives has different mechanism and influence on soil properties. For instance, there have been noticeable important dissimilarities

between tropical soils from the more ordinary soils of moderate climates. Rock weathering in these areas is very rigorous that can be described by fast disintegration of feldspars as well as ferromagnesian raw materials, the displacement of bases including Na₂O, K₂O, and MgO and silica, and the absorption of aluminum and iron oxides (Eisazadeh *et al.*, 2011). This procedure which includes leakage of silica and decomposition of iron and aluminum oxides is called laterization (Gidigasu, 1972).

There are six areas of the globe that laterite soil is found and they are; Africa, India, South- East Asia, Australia, Central and South America. However, there is an emphasis that, due to the movement of climatic zone in the geological past, relevant regions of laterite can be located in places that are not within the tropics (Zilalem, 2005). This soil category is affluent in aluminum, iron, and kaolinite clays (Townsend, 1985). This soil group usually exists at hillside and offers brilliant borrow areas for wide adoption in many different construction operations. The optimum utilization is determined by the quantity of issues encountered in construction connected to their workability, field compaction, and strength. Studies shows that the laterite soil forms a large part of Malaysia's soil, and it has been used in different areas and projects as natural soil (Salih, 2012; Eisazadeh, 2013).

The stabilization of soils with additives is a chemical method that can be used to improve soils with poor engineering properties. However, sometimes it is necessary to add some additives to the soil in order to improve certain properties of the soil to be used for specific purpose of the project. The soil stabilizers are categorized as traditional and non-traditional (Eisazadeh, 2010). Traditional additives include cement, lime, fly ash, and bituminous materials, while non-traditional additives consist of various combinations such as enzymes, liquid polymers, resins, acids, silicates, ions, and lignin derivatives (Tingle *et al.*, 2007; Hafez *et al.*, 2008).

The non-traditional additives can be produced using different kinds of chemical agent that give different reactions while added to soil. Nevertheless, published reports on such additives are still scarce compared to traditional additives, either in terms of their geotechnical performance or basic stabilization mechanisms. Moreover, their exact chemical components are mostly kept confidential by their respective owners. In recent years studies have been done by some researchers on the mixtures of different types of soil and calcium-based powder type of non-traditional stabilizers. The results of their assessment indicated that these additives has potential to improve soil parameters, in particular the soil strength (Peethamparan *et al.*, 2008; Obuzor *et al.*, 2012; Manso *et al.*, 2013; Agapitus, 2013).

Non-calcium-based liquid soil stabilizers are actively marketed by a number of companies. In addition to being cheaper to transport than traditional bulk stabilizer materials, these products are a potentially attractive alternative for soil treatment. The exact chemical composition of these stabilizers has not been released due to their commercially registered brand. These are mostly sold as concentrated liquids, which are diluted with water at site. Some are directly applied to the soil before compaction while other is pressure injected into deeper layers. It should be noted that the result of previous study indicated that the non-traditional liquid additives can help to increase soil strength with curing time (Zhu and Liu, 2008; Fon, 2010; Liu *et al.*, 2011; Ahmad *et al.*, 2013).

Unfortunately, millions of dollars are lost in some occasions due to improper use of chemical stabilizers (Eisazadeh, 2010). Therefore, proper knowledge on soiladditive reactions is an essential part of this technique. In this research the mechanisms responsible for improving the soil properties of Malaysian laterite soil using domestic non-traditional additives has been studied. In addition, the changes on physicochemical and engineering characteristics of stabilized soil and its performance as a field material has been discussed.

1.2 Problem Statement

Traditional stabilizers such as cement, lime, fly ash, and bituminous products have been intensely researched, and their fundamental stabilization mechanisms have been identified (Obuzor *et al.*, 2012). Nowadays, various types of non-traditional additives in liquid and powder form are actively marketed by a number of companies. The stabilizing mechanisms of these products are not fully understood,

and their confidential chemical composition makes it hard to evaluate the stabilizing mechanisms and predict their performance. In addition, laboratory experimentation had focused only on evaluating the effects of stabilized materials on engineering properties.

During recent years, many studies have been done on traditionally stabilized laterite soil, which forms a large part of Malaysia's soil and their relevant mechanism is well understood (Eisazadeh *et al.*, 2011). Nevertheless, no research on the macroand micro- structural study and efficiency of the tropical residual soil, in particular the laterite soil, mixed with domestically produced chemical additives known as SH-85 and TX-85 has been carried out. It is therefore important to fully understand the physicochemical behaviour of this soil stabilized with those stabilizers and its performance in field applications.

1.3 Objectives of Study

In view of the current understanding and the incomplete research to date, this study was conducted to determine the stabilization mechanism and performance of the laterite soil mixed with non-traditional additives. Hence, the following objectives had been established to achieve the aim of the research:

- To assess the changes of soil engineering properties due to treatment with selected chemical stabilizers through "macro-characterization" study.
- To determine the changes induced on the mineralogy, morphology, molecular structure, and elemental composition of soil-stabilizer matrix at the particle level through "micro-characterization" study of untreated (laterite) and treated soil (laterite treated with optimum percentage of additives).
- 3. To verify and complement the data obtained in the macro and microcharacterization studies by performing pH test, thermal gravimetric, particle size and surface area analysis on the cured samples.

- 4. To determine the performance of untreated and selected additives treated laterite soil as the backfill materials retained by sheet pile wall through laboratory physical model tests.
- To determine the suitability of elasto-plastic Mohr-Coulomb model in numerical simulation of the laterite soil as the backfill materials treated with selected additives, through comparison with laboratory physical model tests.

1.4 Scope and Limitation of Study

The scope and limitation of the research are as follows:

- The soil used in this study was granitic residual soil obtained from the campus of Universiti Teknologi Malaysia, Johor Bahru, Johor. Results from the ratio of Silica oxide (SiO₂) and Alumina oxide (Al₂O₃) showed that this soil was categorized as laterite soil.
- 2. The chemical used, considered as non-traditional additives, were obtained from a company called Probase Sdn. Bhd., located in Johor.
- 3. The percentages of the chemical used in the mixture of lateriteadditives were 3%, 6%, 9%, 12% and 15% cured at 3, 7, 14, 28 and 90 days curing periods. The 9% optimum value was determined through the analysis of the results obtained. Then the soil treated with 9% additives (later used as "treated" soil) had been subjected to various tests after being cured at 7, 28 and 90 days curing period to determine the stabilization mechanism of the treated soil.
- 4. The macro-structural study involved compaction test, unconfined compression test, direct shear test and consolidation test while the micro-structural study involved X-ray Diffraction, Field Emission Scanning Electron Microscopy and X-ray Spectrometry, Fourier Transform Infrared Spectroscopy, Thermal Gravimetric Analysis, Surface Area Value, Particle Size Analysis and pH measurement.

- 5. Nine laboratory physical model tests had been conducted on the untreated and treated soil (cured at 7 days) as materials, retained 30 cm by sheet pile. The sheet pile was embedded 15 cm into compacted untreated laterite soil. The model tests were carried out by applying loads to the strip footing placed on the retained soil until failure occurred to the footing. The footing was placed at 5, 10 and 15 cm behind the wall. The settlement of the footing, horizontal displacement of the wall and strain distribution through the depth of the wall had been monitored during loading tests to ascertain the performance of the treated soil as backfill material.
- 6. The commercial 2D finite element software called "PLAXIS" Version 2010 was used in numerical simulation to evaluate and compare the results obtained from laboratory physical model tests. The Mohr-Coulomb soil model under undrained condition was used in the simulation work.

1.5 Significance of Study

From this study, the mechanism of the stabilization of laterite soil treated with locally produced additives had been established. The significant of the study includes:

- Results of the study could contribute to existing knowledge, in particular regarding the behaviour of laterite soil treated with these selected non-traditional additives. It can close the gap in understanding the mechanism of the stabilization through the results from macro and micro-structural study, verified by physico-chemical tests.
- The mineralogical changes, morphological changes, molecular changes and physical changes of the laterite soil treated with the selected non-traditional additives are new findings and can be used for further and other research on laterite soils.

- 3. Treating of soils using the chosen additives could be an economical alternative method in soil stabilization. This is due to the time taken to obtain increment up to 70% strength of the treated soil could be achieved only after 7 days curing periods. Besides that, stabilizing the soil with these non-traditional additives is easy and quick at the level of implementation compared to other methods of soil reinforcement.
- 4. Good performance shown by the treated laterite soil as backfill materials could give the confident to the practicing engineers in using these non-traditional additives for treating soils to be used in Geotechnical Engineering project especially in regions with laterite clay as foundation soils. This could also be supported by the results of macro-structural tests from UCT, direct shear tests and consolidation tests which shows the increased resistant of treated soil to settlement and shear failure.

1.6 Thesis Organization

This thesis consists of six chapters. The first chapter has presented a brief introduction on the role of chemical additives in soil stabilization practices and the need to understand its underlying mechanisms. The research philosophy including 'problem statement', 'objectives of study', 'scope of study', and 'significance of study' have also been discussed.

Chapter 2 lays out the fundamentals of clay mineralogy to understand more sophisticated soil-chemical reactions. Different chemical stabilization techniques as well as traditional and non-traditional soil additives are discussed, followed by some hypotheses on the formatting mechanisms of reaction products. Previous researches on the physical and numerical simulation of backfills and retaining walls had also been discussed briefly. Based on the current scientific knowledge on soil stabilization, a research framework was established taking into consideration the gap in the current research. Chapter 3 presents the research methodology of the study by elucidating the chemical analyses and methods used in depth. Laboratory experiments were done to determine the soil's geotechnical properties according to British Standard. Furthermore, the characterization study of stabilized soil was done using spectroscopic and microscopic techniques previously published in papers and standards. This chapter ends with an elaborated description on the physical and numerical simulation tests procedures. The results obtained from these tests are presented and discussed comprehensively in Chapter 4 and 5.

Finally, Chapter 6 gives the conclusion of this study and highlights the contributions of the work. Besides that, recommendations for future studies are also specified.

REFERENCES

- Abd El-Aziz, M. A., and Abo-Hashema, M. A. (2013). Measured Effects on Engineering Properties of Clayey Subgrade Using Lime–Homra Stabiliser. *International Journal of Pavement Engineering*.14(4): 321-332.
- Ahmad, F., Yahaya, A. S., and Farooqi, M. A. (2006). Characterization and Geotechnical Properties of Penang Residual Soils with Emphasis on Landslides. *American Journal of Environmental Sciences*. 2(4): 121.
- Ahmad, F., Atemimi, Y. K., and Ismail, M. A. M. (2013). Evaluation the Effects of Styrene Butadiene Rubber Addition as a New Soil Stabilizer on Geotechnical Properties. *Electronic Journal of Geotechnical Engineering*. 18: 735-748.
- Ahmad, K. B., Taha, M. R., and Kassim, K. A. (2010). Electrokinetic Treatment on a Tropical Residual Soil. *Proceedings of the ICE-Ground Improvement*. 164(1): 3-13.
- Amadi, A. A. (2013). Swelling Characteristics of Compacted Lateritic Soil– Bentonite Mixtur Subjected to Municipal Waste Leachate Contamination. *Environmental Earth Sciences*. 70: 2437–2442.
- Amadi, A. (2010). Evaluation of Changes in Index Properties of Lateritic Soil Stabilized with Fly Ash. Leonardo Electronic Journal of Practices and Technologies. 9(17): 69-78.
- Ahmad, K. (2004). Improvement of a Tropical Residual Soil by Electrokinetic Process. Doctoral Dissertation, Universiti Teknologi Malaysia, Faculty of Civil Engineering.
- Ahmadi, H., and Hajialilue-Bonab, M. (2012). Experimental and Analytical Investigations on Bearing Capacity of Strip Footing in Reinforced Sand Backfills and Flexible Retaining Wall. *Acta Geotechnica*. 7(4): 357-373.

- Ahmed, A., and Khalid, H. A. (2011). Quantification of the Properties of Enzyme Treated and Untreated Incinerator Bottom Ash Waste Used as Road Foundation. *International Journal of Pavement Engineering*. 12(03): 253-261.
- Aiban, S., Al-Ahmadi, H., Asi, I., Siddique, Z., and Al-Amoudi, O. S. B. (2006). Effect of Geotextile and Cement on the Performance of Sabkha Subgrade. *Building and environment*. 41(6): 807-820.
- Ajayi-Majebi, W. A., Grissom, L. S., and Jones, E. E. (1995). Epoxyresin-Based Chemical Stabilization of a Fine, Poorly Graded Soil system. *Transportation Research Record, TRB, National ResearchCouncil*, Washington, D.C.
- Alhassan, M., and Mustapha, A. M. (2007). Effect of Rice Husk Ash on Cement Stabilized Laterite. *Leonardo Electronic Journal of Practices and Technologies*. 11: 47-58.
- Alhassan, H. M., and Chukwuma, M. O. (2013). The Efficacy of Sulphonated Petroleum Products in the Stabilization of Marginal Lateritic Soils. *International Journal of Emerging Technology and Advanced Engineering*. 3: 14-23.
- Al-Rawas, A. A., Hago, A. W., and Al-Sarmi, H. (2005). Effect of Lime, Cement and Sarooj (artificial pozzolan) on the Swelling Potential of an Expansive Soil from Oman. *Building and Environment*. 40(5): 681-687.
- Al-Rawas, A. A. (2002). Microfabric and Mineralogical sStudies on the Stabilization of an Expansive Soil Using Cement By-Bass Dust and Some Types of Slags. *Canadian geotechnical journal*. 39(5): 1150-1167.
- Al-Khanbashi, A., and Abdalla, S. W. (2006). Evaluation of Three Waterborne Polymers as Stabilizers for Sandy Soil. *Geotechnical & Geological Engineering*. 24(6): 1603-1625.
- Al-Khafaji, A. W. and Andersland, O. B. (1992). Geotechnical Engineering and Soil Testing. New York: Saunders College Publishing.

- Ali, F. (2012). Stabilization of Residual Soils Using Liquid Chemical. *Electronic Journal of Geotechnical Engineering*. 17: 115-126.
- Altun, S., Sezer, A., and Erol, A. (2009). The Effects of Additives and Curing Conditions on the Mechanical Behavior of a Silty Soil. *Cold Regions Science* and Technology. 56(2): 135-140.
- Amiralian, S., Chegenizadeh, A., and Nikraz, H. (2012). Laboratory Investigation on the Effect of Lime on Compressibility of Soil. *International Conference on Civil and Architectural applications. Thailand.* 89-93.
- Arabi, M. and Wild, S. (1986). Microstructural Development in Cured Soil-Lime Composites. *Journal of Materials Science*. 21: 497-503.
- Azadegan, O., Jafari, S. H., and Li, J. (2012). Compaction Characteristics and Mechanical Properties of Lime/Cement Treated Granular Soils. *Electronic Journal of Geotechnical Engineering*. 17: 2275-2284.
- Balasubramaniam, A. S., Bergado, D. T., Buensucoso Jr., B. R., and Yang, W. C. (1989). Strength and Deformation Characteristics of Lime Treated Soft Clay. *Journal of Geotechnical Engineering*. 20: 49–65.
- Bahar, R., Benazzoug, M., and Kenai, S. (2004). Performance of Compacted Cement-Stabilised Soil. *Cement and concrete composites*. 26(7): 811-820.
- Basha, E. A., Hashim, R., Mahmud, H. B., and Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. *Construction and Building Materials*. 19(6): 448-453.
- Bathurst, R. J., Walters, D., Vlachopoulos, N., Burgess, P., and Allen, T. M. (2000). Full Scale Testing of Geosynthetic Reinforced Walls. *Keynote paper, ASCE Special Publication*. (103): 201-217.
- Bell, F. G. (1996). Lime Stabilization of Clay Minerals and Soils. *Engineering Geology*. 42 (4): 223–237.
- Berube, M. A., Choquette, M. and Locat, J. (1990). Effects of Lime on Common Soil and Rock Forming Minerals. *Applied Clay Science*. 5: 145-163.

- Bhattacharjee, A., and Krishna, A. M. (2013). Strain Behavior of Backfill Soil of Wrap Faced Reinforced Soil Walls: A Numerical Study. Advances in Geotechnical Infrastructure. 1-6.
- Billong, N., Melo, U. C., Louvet, F., and Njopwouo, D. (2009). Properties of Compressed Lateritic Soil Stabilized With a Burnt Clay–Lime Binder: Effect of Mixture Components. *Construction and Building Materials*. 23(6): 2457-2460.
- Blight, B. (1997). Origin and Formation of Residual Soils. In: Mechanics of Residual Soil. Rotterdam: Balkema. 1-15.
- Blanck, G., Cuisinier, O., and Masrouri, F. (2013). Soil Treatment with Organic Non-Traditional Additives for the Improvement of Earthworks. *Acta Geotechnica*. 1-12.
- Bourgeois, E., Soyez, L., and Le Kouby, A. (2011). Experimental and Numerical Study of the Behavior of a Reinforced-Earth Wall Subjected to a Local Load. *Computers and Geotechnics*. 38(4): 515-525.
- Bobet, A., Hwang, J., Johnston, C. T., and Santagata, M. (2011). One-Dimensional Consolidation Behavior of Cement-Treated Organic Soil. *Canadian Geotechnical Journal*. 48(7): 1100-1115.
- Brady, N. C. and Weil, R. R. (1996). *The Nature and Properties of Soils*. (11thedition). New Jersey: Prentice Hall.
- Brinkgreve, R. B. (2005). Selection of Soil Models and Parameters for Geotechnical Engineering *Application*. ASCE.
- Brunauer, S., Emmett, P. H., and Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. *Journal of American Chemical Society*. 60: 309–319.
- Brandon, T. L., Brown, J. J., Daniels, W. L., DeFazio, T. L., Filz, G. M., Mitchell, J. K., and Forsha, C. (2009). *Rapid Stabilization/Polymerization of Wet Clay Soils; Literature Review*. Virginia Polytechnic Inst and State Univ Blacksburg Dept of Civil and Environmental Engineering.

- Brough, A. R., and Atkinson, A. (2002). Sodium Silicate-Based, Alkali-Activated Slag Mortars: Part I. Strength, hydration and microstructure. *Cement and Concrete Research*. 32(6): 865-879.
- British Standards Institution (1990). British Standard methods of test for soils for civil engineering purposes: Part 2, Classification tests. London, BS1377.
- British Standards Institution (1990). British Standard methods of test for soils for civil engineering purposes: Part4, Compaction-related tests. London, BS1377.
- British Standards Institution (1990). British Standard methods of test for civil engineering purposes: part 5, compressibility, permeability and durability tests. London, BS1377.
- British Standards Institution (1990). British Standard methods of test for civil engineering purposes: part 7, shear strength tests (total stress). London, BS1377.
- British Standards Institution (1990). British Standard methods of test for civil engineering purposes: part 3, chemical and electro-chemical tests. London, BS1377.
- British Standards Institution (1990). Stabilized Materials for Civil Engineering Purposes: Part 2, Methods of Test for Cement-Stabilized and Lime-Stabilized Materials. London, BS 1924.
- Bueno, B. S., Benjamim, C. V. S., and Zornberg, J. G. (2005). Field Performance of a Full-Scale Retaining Wall Reinforced with Non-Woven Geotextiles. *Slopes* and Retaining Structures Under Seismic and Static Conditions, 1-9.
- Carroll, D. and Starkey, H. C. (1971). Reactivity of Clay Minerals with Acids and Alkalies. *Clays and Clay Minerals*. 19: 321-333.
- Cai, Y., Shi, B., Ng, C. W., and Tang, C. S. (2006). Effect of Polypropylene Fibre and Lime Admixture on Engineering Properties of Clayey Soil. *Engineering Geology*. 87(3): 230-240.

- Ceylan, H., Gopalakrishnan, K., and Kim, S. (2009). Use of Bio-Oil for Pavement Subgrade Soil Stabilization. In Proceedings of Mid-Continent Transportation Research Symposium. CD-ROM. Iowa State University, Ames, IA.
- Chan, C. M., and Mokhtar, M. (2012). Settlement Control of Soft Ground using Cement-Rice husk Stabilization. *Civil Engineering Dimension*. 14(2): 69-76.
- Chang, I., and Cho, G. C. (2012). Strengthening of Korean residual soil with β-1,3/1,6-Glucan Biopolymer. *Construction and Building Materials*. 30: 30-35.
- Chew, S. H., Kamruzzaman, A. H. M., and Lee, F. H. (2004). Physicochemical and Engineering Behavior of Cement Treated Clays. *Journal of geotechnical and* geoenvironmental engineering. 130(7): 696-706.
- Chen, R. H., and Chiu, Y. M. (2008). Model Tests of Geocell Retaining Structures. *Geotextiles and Geomembranes*. 26(1): 56-70.
- Chin, F.k. (1988). Construction of Dams, Roads, Air Fields, Land Reclamation in or on Tropical Soils-General Report. Proc. of the 2nd int conference on geomechanics in tropical soils (supplementary documentations). 12-14 Dec1988. Singapore: 92-102.
- Choquette, M., Berube, M. A. and Locat, J. (1987). Mineralogicaland Microtextural Changes Associated with Lime Stabilization of Marine Clays from Eastern Canada. *Applied Clay Science*. 2: 215-232.
- Choobbasti, A. J., Zahmatkesh, A., and Noorzad, R. (2011). Performance of Stone Columns in Soft Clay: Numerical Evaluation. *Geotechnical and Geological Engineering*.29(5): 675-684.
- Chern, K, K. (2000). Physical, Geochemistry and Mineralogical Studies on the Strength Development of Lime Stability Cohesive Soils; *MSc Thesis, Universiti Teknologi Malaysia* (UTM).
- Damians, I. P., Bathurst, R. J., Josa, A., and Lloret, A. (2014). Numerical Analysis of an Instrumented Steel Reinforced Soil Wall. *International Journal of Geomechanics*. 10.1061/(ASCE)GM.1943-5622.0000394 (Feb. 20, 2014).

Das, B. (2007). Fundamentals of geotechnical engineering. Cengage Learning.

- Degirmenci, N., Okucu, A., and Turabi, A. (2007). Application of Phosphogypsum in Soil Stabilization. *Building and environment*. 42(9): 3393-3398.
- de Brito Galvão, T. C., Elsharief, A., and Simões, G. F. (2004). Effects of Lime on Permeability and Compressibility of Two Tropical Residual Soils. *Journal of environmental engineering*. 130(8): 881-885.
- Di Maio, C., Santoli, L., and Schiavone, P. (2004). Volume Change Behaviour of Clays: The Influence of Mineral Composition, Pore Fluid Composition and Stress State. *Mechanics of materials*. 36(5): 435-451.
- Duncan, J. M., Wong, K. S., and Mabry, P. (1980). Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses. *Geotechnical engineering*.
- Eberemu, A. O. (2011). Consolidation Properties of Compacted Lateritic Soil Treated with Rice Husk Ash. J. *Geomat.* 1(3): 70-78.
- Eisazadeh, A. (2010). Physicochemical Behavior of Lime and Phosphoric Acid Stabilized Clayey Soil. Doctoral Dissertation, UniversitiTeknologi Malaysia, Faculty of Civil Engineering).
- Eisazadeh, A., Kassim, K. A., and Nur, H. (2011). Characterization of Phosphoric Acid-and Lime-stabilized Tropical Lateritic Clay. *Environmental Earth Sciences*. 63(5): 1057-1066.
- Eisazadeh, A., Kassim, K. A., and Nur, H. (2012). Stabilization of Tropical Kaolin Soil with Phosphoric Acid and Lime. *Natural hazards*. 61(3): 931-942.
- Eisazadeh, A., Kassim, K. A., and Nur, H. (2013). Morphology and BET Surface Area of Phosphoric Acid Stabilized Tropical Soils. *Engineering Geology*. 154: 36-41.
- El Sawwaf, M., and Nazir, A. K. (2012). The Effect of Deep Excavation-Induced Lateral Soil Movements on the Behavior of Strip Footing Supported on Reinforced Sand. *Journal of Advanced Research*. 3(4): 337-344.

- ElectroScan Corporation. (1996). Environmental Scanning Electron Microscopy: An Introduction to ESEM . Wilmington, Massachusetts: Robert Johnson Associates.
- Fernandez A, Vazquez T, Palomo, A. (2011). Effect of Sodium Silicate on Calcium Aluminate Cement Hydration in Highly Alkaline Media: a Microstructural Characterization. *Am Ceram Soc.* 94(4): 1297–1303.
- Fernández-Jiménez, A., and Palomo, A. (2005). Composition and microstructure of alkali activated fly ash binder: effect of the activator. *Cement and Concrete Research*. 35(10): 1984-1992.
- Fon, C. L. (2010). Stabilization of Earth Roadbed for Road Building using Probase Soil Stabilizer. *Electronic Journal of Geotechnical Engineering* 15: 1793-1814.
- Fookes, P. (1997). Geological Society Professional Handbook: Tropical Residual Soils. A Geological Society Engineering Group Working Party Revised report. London: The Geological Society.
- Futai, M. M., and Almeida, M. S. S. (2005). An Experimental Investigation of the Mechanical Behaviour of an Unsaturated Gneiss Residual Soil. *Géotechnique*. 55(3): 201-213.
- Gadsen, J. A. (1975). Infrared Spectra of Minerals and Related InorganicCompounds. London: Butterworths.
- Garg, K. G. (1998). Retaining Wall with Reinforced Backfill-a Case Study. *Geotextiles and geomembranes*. 16(3): 135-149.
- García Lodeiro, I., Macphee, D. E., Palomo, A., and Fernández-Jiménez, A. (2009). Effect of Alkalis on Fresh C–S–H Gels. FTIR Analysis. *Cement and Concrete Research*. 39(3): 147-153.
- Georgiadis, M., and Anagnostopoulos, C. (1998). Lateral Pressure on Sheet Pile Walls Due to Strip Load. *Journal of geotechnical and geoenvironmental engineering*. 124(1): 95-98.

- Geliga, E. A., & Ismail, D. S. A. (2010). Geotechnical properties of fly ash and its application on soft soil stabilization. UNIMAS E–J Civil Eng. 1(2): 1-6.
- Ghazali, F. M. (1981). Soil Stabilization by Chemical Additives. University of Washington, USA: Ph.D. Thesis.
- Gidigasu, M. D. (1972). Mode of Formation and Geotechnical Characteristics of Laterite Materials of Ghana in Relation to Soil Forming Factors. *Engineering Geology*. 6(2): 79-150.
- Gidigasu, m.d. (1976). Laterite Soil Engineering: Pedogenesis and Engineering Principles, Amsterdam, Elsevior.
- Gregg, S. J. and Sing, K. S. W. (1982). *Adsorption, Surface Area and Porosity*. (Second edition). London: Academic Press.
- Gregg, R. (2008). Performance of Two Full-Scale Model Geosynthetic-Reinforced Retaining Walls Constructed with a Sandy-Silt Backfill Soil. *In Masters Abstracts International*. (Vol. 47, No. 02).
- Guggenheim, S. and Koster Van Groos, A. F. (2001). Baseline Studies of the Clay Minerals Society Source Clays: Thermal Analysis. *Journal of Clays and Clay Minerals*. 49 (5): 433-443.
- Guler, E., Hamderi, M., and Demirkan, M. M. (2007). Numerical Analysis of Reinforced Soil-Retaining Wall Structures with Cohesive and Granular Backfills. *Geosynthetics International*. 14(6), 330-345.
- Gullu, H., and Hazirbaba, K. (2010). Unconfined Compressive Strength and Post-Freeze–Thaw Behavior of Fine-Grained Soils Treated with Geofiber and Synthetic Fluid. *Cold regions science and technology*. 62(2): 142-150.
- Hatami, K., and Bathurst, R. J. (2006). Numerical Model for Reinforced Soil Segmental Walls Under Surcharge Loading. *Journal of Geotechnical and Geoenvironmental Engineering*. 132(6): 673-684.

- Hatami, K., Bathurst, R. J., and Di Pietro, P. (2001). Static Response of Reinforced Soil Retaining Walls with Nonuniform Reinforcement. *International Journal* of Geomechanics. 1(4): 477-506.
- Hafez, M. A., Sidek, N., and Md. Noor, M. J. (2008). Effect of Pozzolanic Process on the Strength of Stabilized Lime Clay. *Electronic Journal of Geotechnical Engineering*. 13:1-19.
- Huat, B. B., Gue, S. S., and Ali, F. H. (Eds.). (2004). *Tropical Residual Soils Engineering*. CRC Press.
- Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., and Zadhoush, A. (2012). A Simple Review of Soil Reinforcement by using Natural and Synthetic Fibers. *Construction and Building Materials*. 30: 100-116.
- Hewayde, E., El Naggar, H., and Khorshid, N. (2005). Reinforced Lime Columns: a New Technique for Heave Control. Proceedings of the ICE-Ground Improvement. 9(2): 79-87.
- Horpibulsuk, S., Suksiripattanapong, C., Niramitkornburee, A., Chinkulkijniwat, A., and Tangsutthinon, T. (2011). Performance of an Earth Wall Stabilized with Bearing Reinforcements. *Geotextiles and Geomembranes*. 29(5): 514-524.
- Hossain, K. M. A., Lachemi, M., and Easa, S. (2007). Stabilized Soils for Construction Applications Incorporating Natural Resources of Papua New Guinea. *Resources, conservation and recycling*, 51(4): 711-731.
- Hossain, K. M. A., and Mol, L. (2011). Some Engineering Properties of Stabilized Clayey Soils Incorporating Natural Pozzolans and Industrial Wastes. *Construction and Building Materials*. 25(8): 3495-3501.
- Ho, M. H., and Chan, C. M. (2011). Some Mechanical Properties of Cement Stabilized Malaysian Soft Clay. World Acad. Sci. Eng. Technol. 74: 24-31.
- Horpibulsuk, S., Rachan, R., and Raksachon, Y. (2009). Role of Fly Ash on Strength and Microstructure Development in Blended Cement Stabilized Silty Clay. Soils and foundations. 49(1): 85-98.

- Hong, C. S., Shackelford, C. D., and Malusis, M. A. (2011). Consolidation and Hydraulic Conductivity of Zeolite-Amended Soil-Bentonite Backfills. *Journal of Geotechnical and Geoenvironmental Engineering*. 138(1): 15-25.
- Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y., and Suddeepong,
 A. (2010). Analysis of Strength Development in Cement-Stabilized Silty Clay
 from Microstructural Considerations. *Construction and building materials*. 24(10): 2011-2021.
- Huggins, E., and Ravichandran, N. (2011). Numerical Study on the Dynamic Behavior of Retaining Walls Backfilled with Shredded Tires. *In The GeoRisk* 2011 Conference: Geotechnical Risk Assessment and Management (GSP 224).
- Huang, C. C., and Luo, W. M. (2010). Behavior of Cantilever and Geosynthetic-Reinforced Walls on Deformable Foundations. *Geotextiles and Geomembranes*. 28(5): 448-459.
- Huat, B. B. K., Alias, A., and Aziz, A. A. (2008). Evaluation, Selection and Assessment of Guidelines for Chemical Stabilization of Tropical Residual Soils. *American journal of environmental sciences*. 4(4): 303-309.
- Indraratna, B., Mahamud, M. A. A., and Vinod, J. S. (2012). Chemical and Mineralogical Behaviour of Lignosulfonate Treated Soils. *In GeoCongress sState of the Art and Practice in Geotechnical Engineering. ASCE*. (pp. 1146-1155).
- Ismail, M. A., Joer, H. A., Sim, W. H., and Randolph, M. F. (2002). Effect of Cement Type on Shear Behavior of Cemented Calcareous Soil. *Journal of Geotechnical and Geoenvironmental Engineering*. 128(6): 520-529.
- Jarquio, R. (1981). Total Lateral Surcharge Pressure Due to a Strip Load. *Journal of the Geotechnical Engineering Division, ASCE*. 107(10): 1424-1428.
- JCPDS. (1995). *Index to the powder diffraction file*. International Center for Diffraction Data, Swarthmore, Pa.

- Jie, Y. X., Li, G. X., Tang, F., Jin, Y., and Hua, J. X. (2012). Soil Stabilization in the Fill Project of the Olympic Rowing-Canoeing Park in Beijing. *Journal of Materials in Civil Engineering*. 25(4): 462-471.
- Kandolkar, S. S., and Mandal, J. N. (2013). Behaviour of Reinforced Mine Waste Model Walls under Uniformly Distributed Loading. *Electronic Journal of Geotechnical Engineering*. 18: 1351-1365.
- Kassim, K. A., Hamir, R., and Kok, K. C.(2005). Modification and Stabilization of Malaysian Cohesive Soils with Lime. *Geotechnical Engineering, Journal of* the South East Asian Geotechnical Society. 36(2): 123-132.
- Kassim, K. A. and Kok, K. C. (2004). Limestabilized Malaysian Cohesive Soils. *Jurnal Kejuruteraan Awam*. 16(1): 13-23.
- Kassim, K. A. and Kok, K. C. (1999). Mix Design for Lime Modification and Stabilization. Proc Of the 5th Geotechnical Engineering Conf. (GEOTROPIKA 99). 22-24 November 1999. Univ. Teknologi Malaysia: 235-244.
- Kaniraj, S. R., and Havanagi, V. G. (2001). Behavior of Cement-Stabilized Fiber-Reinforced Fly Ash-Soil Mixtures. *Journal of Geotechnical and Geoenvironmental Engineering*. 127(7): 574-584.
- Katz, L.E., Rauch, A.F., Liljestrand, H.M., Harmon, J.S., Shaw, K.S., and Albers, H.
 (2001). Mechanisms of Soil stabilization with Liquid Ionic Stabilizer. *Transp Res Rec: J Transp Res Board*. 1757(1): 50–57.
- Kepli, M.I. (1994). Properties of Granite Derived Residual Soils. Mara Institute of Technology: Final Year Project.
- Kerry Rowe, R., and Skinner, G. D. (2001). Numerical Analysis of Geosynthetic Reinforced Retaining Wall Constructed on a Layered Soil Foundation. *Geotextiles and Geomembranes*. 19(7): 387-412.

- Kittrick, J. A. and Jackson, M. L. (1955). Rate of Phosphate Reaction with Soil Minerals and Electron Microscope Observations on the Reaction Mechanism. *Soil Science Society Proceedings*. 19: 292-295.
- Kota, P. B. V. S., Hazlett, D., and Perrin, L. (1996). Sulfate-Bearing Soils: Problems with Calcium-Based Stabilizers. *Transportation Research Record 1546,TRB, National Research Council*, Washington, D. C., pp. 62-69.
- Lamb, D. W. (1962). Decomposed Laterite as Fill Material with Particular to Earth Dam Construction. *In Proceedings of Symposia Hong Kong Soils*. (pp. 57-71).
- Langier-Kuźniarowa, A., Yariv, S., and Cross, H. (2002). Organo Clay Complexes and Interactions. *Marcel Dekker*, New York, 273.
- Le Chatelier, H. (1887). The action of heat on clays. *Bull Soc Franc Mineral*. 10: 204-211.
- Lee, J., Kim, K., and Chun, B. (2012). Strength Characteristics of soils mixed with an Organic Acid Material for Improvement. *Journal of Materials in Civil Engineering*. 24(12): 1529-1533.
- Liu, J., Shi, B., Jiang, H., Huang, H., Wang, G., and Kamai, T. (2011). Research on the Stabilization Treatment of Clay Slope Topsoil by Organic Polymer Soil Stabilizer. *Engineering Geology*. 117(1): 114-120.
- Liu, H. (2012). Long-Term Lateral Displacement of Geosynthetic-Reinforced Soil Segmental Retaining Walls. *Geotextiles and Geomembranes*. 32: 18-27.
- Ling, F. N., Kassim, K. A., and Karim, A. T. A. (2012). Size Distribution Analysis of Kaolin Using Laser Diffraction Technique. Advanced Materials Research. 341: 108-112.
- Little, A. L. (1969). The Engineering Classification of Residual Tropical Soils. Proceedings 7th International Conference Soil Mechanics and Foundation Engineering. Mexico.1: 1-10.

- Locat, J., Berube, M. A., and Choquette, M. (1990). Laboratory Investigations on the Lime Stabilization of Sensitive Clays: Shear Strength Development. *Canadian Geotechnical Journal*. 27: 294–304.
- Lorenzo, G. A., and Bergado, D. T. (2004). Fundamental Parameters of Cement-Admixed Clay-New Approach. *Journal of Geotechnical and Geoenvironmental Engineering*. 130(10): 1042-1050.
- Locat, J., Tremblay, H., and Leroueil, S. (1996). Mechanical and Hydraulic Behaviour of a Soft Inorganic Clay Treated with Lime. *Can. Geotech. J.* (33): 654–669.
- Isabel, M., Pinto, M., and Cousens, T. W. (1996). Geotextile Reinforced Brick Faced Retaining Walls. *Geotextiles and Geomembranes*. 14(9): 449-464.
- Marasteanu, M. O., Hozalski, R., Clyne, T. R., and Velasquez, R. (2005). Preliminary Laboratory Investigation of Enzyme Solutions as a Soil Stabilizer (No. MN/RC-2005-25).
- Manso, J. M., Ortega-López, V., Polanco, J. A., and Setién, J. (2013). The Use of Ladle Furnace Slag in Soil Stabilization. *Construction and Building Materials*. 40: 126-134.
- Mahmood, T. (2009). Failure Analysis Of A Mechanically Stabilized Earth (mse)
 Wall Using Finite Element Program Plaxis. *The University of Texas at Arlington in Partial Fulfillment*. Master Thesis.
- Masumi E, Abtahi M, Sadeghi M, Hejazi M. (2011). Compressive Behavior of Composite Soils Reinforced with Polypropylene Fiber and Polyvinyl Acetate Resin, 5thSASTech, 12–14 May. Mashhad, Iran.
- Marto, A., Kassim, F. and Mohd Yusof, K.N. (2001). The Chemical Composition of Granitic Soils from Southern and Eastern Regions of Peninsular Malaysia.
 Proc. of the 6th Geotechnical Engineering Conference (GEOTROPIKA 2001). 5-7 November. University teknologi Malaysia, 57-69.

- Marto, A. and Novrial. (1999). The Effect of Lime-Soil Cylinders on Laterite Slope Model. Proc.of the 5th Geotechnical Conf. (GEOTROPIKA 99). 22-24 November. University teknologi Malaysia, 223-234.
- Mackenzie, R. C., and Mitchell, B. D. (1972). Soils. *Differential thermal analysis*. 2: 267-297.
- Madejova, J. and Komadel, P. (2001). Baseline studies of the clay mminerals society source clays: Infrared methods. *Clays and Clay Minerals*. 49(5): 410-432.
- Marel, H. W. V. D. and Beutelspacher, H. (1976). Atlas of infrared spectroscopy of clay minerals and their admixtures. Amsterdam: Elsevier Scientific Publishing.
- Marto, A, Kasim, F. and Yusof, M.F. (2002a). Engineering Characteristics of Residual Granite Soil of Southern Peninsular Malaysia. *Proc. of the Research Seminar on Materials and Construction*. 29-30 oct 2002. Univ. teknologi Malaysia, 315-325.
- Marto, A, Kasim, F and Mohd Yusof, K.N. (2002b). Minerology, Microstructure and Chemical Composition of Granitic Soil at Central Regions of Peninsular Malaysia. *Proc. of the Research Seminar on Materials and Construction*. 29-30 oct 2002. Univ. teknologi Malaysia, 352-366.
- Marto, A, Kasim, F and Yusof, M.F. and Mohd Yusof, K.N. (2002c). Physical and Chemical Composition of Residual Soils of Eastern Region of Peninsular Malaysia. Proc. of the 2nd Wworld Engineering Congress. 22-25 july 2002.Univ. Putra Malaysia, 275-281.
- Macchechnie, W. R. (1967). Some Consolidation Characteristics of a Residual Mica Schist. In Proceedings of the Regional Conference for Africa—Soil Mechanics and Foundation Engineering. 44(2): pp. 135-139).
- Manual, U. S. S. P. D. (1984). Updated and Reprinted by US Department of Transportation. *FHWA with permission: July*.

- Malek, R. (2006). Development of a Mechanism to Explain the Action of EcSS 3000[™] Soil Stabilizer. *Report for Materials Research Institute*. Pennsylvania State University.
- McBride, M. B. (1994). *Environmental Chemistry of Soils*. New York: Oxford University Press.
- McKelvy, M. L., Britt, T. R., Davis, B. L., Gillie, J. K., Lentz, L. A., Leugers, A., Nyquist, R. A. and Putzig, C. L. (1996). *Infrared Spectroscopy. Analytical Chemistry*. 68: 93-160
- Mgangira, M. B., and Ndibewu, P. (2010, August). Identification of Microscale Characteristics of Treated Subgrade Materials and How they Relate to Macroscopic Properties. *In Proceedings of the 29th Southern African Transport Conference (SATC 2010).* (Vol. 16, p. 19).
- Mgangira, M. B. (2008). Microstructural Pavement Material Characterization: Some Examples. *Southern African Transport Conference (SATC)*.
- Miller, G. A., and Azad, S. (2000). Influence of Soil Type on Stabilization With Cement Kiln Dust. *Construction and building materials*. 14(2): 89-97.
- Mitchell, J, K. (1981). Soil Improvement- State- of the- Art Report. *Proc.of the 10th Int.Conf. on Soil Mechanics and Foundation Engineering*. 4(12): 509-565.
- Mitchell, J. K., and Sitar, N. (1982, January). Engineering Properties of Tropical Residual Soils. In Engineering and Construction in Tropical and Residual Soils, ASCE. 30-57.
- Mitchell, J. K. (1993). *Fundamentals of soil behavior*. Second edition. New York: john wiley and sons.
- Michael, A. S. and Tausch, Jr., F. W. (1960). Phosphorous Chemicals as Soil Stabilizers. *Industrial and Engineering Chemistry*. 52(10): 857-858.
- Mittal, S., Garg, K. G., and Saran, S. (2006). Analysis and Design of Retaining Wall Having Reinforced Cohesive Frictional Backfill. *Geotechnical and Geological Engineering*. 24(3): 499-522.

- Mitchell, J. K. and Soga, K. (2005). *Fundamentals of Soil Behavior*. (3rdedition). New York: John Wiley and Sons.
- Miranda-Trevino, J. C., and Coles, C. A. (2003). Kaolinite Properties, Structure and Influence of Metal Retention on pH. *Applied Clay Science*. 23(1): 133-139.
- Moore, D. M., and Reynolds, R. C. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. (2ndedition). New York: Oxford University Press.
- Mtallib, M. O. A., and Bankole, G. M. (2011). The Improvement of the Index Properties and Compaction Characteristics of Lime Stabilized Tropical Lateritic Clays with Rice Husk Ash (RHA) Admixtures. *Electronic Journal* of Geotechnical Engineering. 16: 983-996.
- Nalbantoglu, Z., and Tuncer, E. R. (2001). Compressibility and Hydraulic Conductivity of a Chemically Treated Expansive Clay. *Canadian Geotechnical Journal*. 38(1): 154-160.
- Nayak, S., Sunil, B. M., and Shrihari, S. (2007). Hydraulic and Compaction Characteristics of Leachate-Contaminated Lateritic Soil. *Engineering Geology*. 94(3): 137-144.
- Naeini, S. A., Naderinia, B., and Izadi, E. (2012). Unconfined Compressive Strength of Clayey Soils Stabilized with Waterborne Polymer. *KSCE Journal of Civil Engineering*. 16(6): 943-949.
- Narasimha Rao, S. and Rajasekaran, G. (1996). Reaction Products Formed in Lime-Stabilized Marine Clays. *Journal of Geotechnial Engineering*, ASCE. 122: 329–336.
- Nacamoto, K. (1970). Infrared Spectra of Inorganic and Coordinated Compounds.New York: Wiley.
- Newman, J. K., J. S. Tingle, C. Gill, and T. McCaffrey. (2005). Stabilization of Sand Using Polymer Emulsions. *International Journal of Pavements*. Vol. 4: No. 1–2.

- Newman, K., and Tingle, J. S. (2004). Non-Conventional Soil Stabilizers for Contingency Airfield Construction.
- Nur Diyana, N. (2010). *The potential of cement stabilization in soft soil*. Doctoral dissertation, Universiti Malaysia Pahang.
- Obuzor, G. N., Kinuthia, J. M., and Robinson, R. B. (2012). Soil Stabilization with Lime-Activated-GGBS-a Mitigation to Flooding Effects on Road Structural Layers/Embankments Constructed on Floodplains. *Engineering Geology*. 151: 112-119.
- Ojuri, O. O., and Ogundipe, O. O. (2012). Modeling Used Engine Oil Impact on the Compaction and Strength Characteristics of a Lateritic Soil. *Electronic Journal of Geotechnical Engineering*. 17: 3491-3501.
- Okagbue, C. O. (2007). Stabilization of Clay Using Woodash. *Journal of materials in civil engineering*. 19(1): 14-18.
- Oldham, J. C., Eaves, R. C., and White Jr, D. W. (1977). *Materials evaluated as potential soil stabilizers* (No. WES-MP-S-77-15). Army Engineer Waterways Experiment Station Vicksburg Ms.
- Olugbenga Oludolapo, A. M. U., Ogunjobi, O. A., and Okhuemoi, A. I. (2012). Effects of Forage Ash on Some Geotechnical Properties of Lime Stabilized Lateritic Soils for Road Works. *International Journal of Engineering and Technology*, 2(4).
- Osinubi, K. J. (1998). Influence of Compactive Efforts and Compaction Delays on Lime-Treated Soil. *Journal of transportation engineering*. 124(2): 149-155.
- Osinubi, K. J., and Nwaiwu, C. M. (2006). Design of Compacted Lateritic Soil Liners and Covers. *Journal of geotechnical and geoenvironmental engineering*. 132(2): 203-213.
- Osinubi, K. J., and Nwaiwu, C. M. (2006). Compaction Delay Effects on Properties of Lime-Treated Soil. *Journal of materials in civil engineering*. 18(2): 250-258.

- Osinubi, K. J, and Amadi, A. A. (2009). Hydraulic Performance of Compacted Lateritic Soil–Bentonite Mixtures Permeated with Municipal Solid Waste Landfill Leachate. *Transportation Research Board (TRB) 88th annual meeting CD-ROM*, 11–15th Jan 2009, Washington DC, USA. Paper 09-0620: 1–18
- Ouellet, S., Bussière, B., Aubertin, M., and Benzaazoua, M. (2007). Microstructural Evolution of Cemented Paste Backfill: Mercury Intrusion Porosimetry Test Results. *Cement and Concrete Research*. 37(12): 1654-1665.
- Ou, O., Zhang, X. G., and Yi, N. P. (2011). The Experimental Study on Strength of Subgrade Soil Treated with Liquid Stabilizer. Advanced Materials Research. 194: 985-988.
- Parsons, R. L., and Milburn, J. P. (2003). Engineering Behavior of Stabilized Soils. Transportation Research Record: Journal of the Transportation Research Board. 1837(1): 20-29.
- Palomino, A. M., and Santamarina, J. C. (2005). Fabric Map for Kaolinite: Effects of pH and Ionic Concentration on Behavior. *Clays and Clay minerals*. 53(3): 211-223.
- Petry, T. M. (1997). Performance-Based Testing of Chemical Stabilizers. Transportation Research Record, TRB, National Research Council, Washington. 1589: 36-41.
- Petry, T. M., and Das, B. (2001). Evaluation of Chemical Modifiers/Stabilizers for Chemically Active Soils – Clays. *Transportation Research Record, TRB, National Research Council*, Washington. 1757: 43-49.
- Peethamparan, S., Olek, J., and Lovell, J. (2008). Influence of Chemical and Physical Characteristics of Cement Kiln Dusts (CKDs) on Their Hydration Behavior and Potential Suitability for Soil Stabilization. *Cement and concrete research*. 38(6): 803-815.
- Pinto, M. I. M., and Cousens, T. W. (1999). Modelling a Geotextile-Reinforced, Brick-Faced Soil Retaining Wall. *Geosynthetics International*. 6(5): 417-447.

- Plante, A. F., Fernández, J. M., and Leifeld, J. (2009). Application of Thermal Analysis Techniques in Soil Science. *Geoderma*. 153(1): 1-10.
- PLAXIS (2000). PLAXIS Version 8 Manual. A.A Balkema Publishers.
- Prabakar, J., Dendorkar, N., and Morchhale, R. K. (2004). Influence of Fly Ash on Strength Behavior of Typical Soils. *Construction and Building Materials*. 18(4): 263-267.

Quantachrome Corporation. (2007). Autosorb-1 series Manual. 1008 07101 REV. A.

- Rauch, A. F., Katz, L. E., and Liljestrand, H. M. (2003). An Analysis of the Mechanisms and Efficacy of Three Liquid Chemical Soil Stabilizers. Center for Transportation Research, the University of Texas at Austin.
- Ramadhansyah, P. J., Mahyun, A. W., Salwa, M. Z. M., Abu Bakar, B. H., Megat Johari, M. A., &and Wan Ibrahim, M. H. (2012). Thermal Analysis and Pozzolanic Index of Rice Husk Ash at Different Grinding Time. *Procedia Engineering*. 50: 101-109.
- Rahardjo, H., Lim, T. T., Chang, M. F., and Fredlund, D. G. (1995). Shear-Strength Characteristics of a Residual Soil. *Canadian Geotechnical Journal*. 32(1): 60-77.
- Rao, S. M., Sridharan, A. and Chandrakaran, S. (1988). The Role of Iron Oxide in Tropical Soil Properties. Proc. of the 2nd Int. Conference on Geomechanics in Tropical Soils, Singapore. 12-14 Dec. Rotterdam: balkema, 43-48.
- Rahardjo, H., Heng, O. B., and Choon, L. E. (2004). Shear Strength of a Compacted Residual Soil from Consolidated Drained and Constant Water Content Triaxial Tests. *Canadian Geotechnical Journal*. 41(3): 421-436.
- Rajasekaran, G. and Narasimha Rao, S. (1997). The Microstructure of Lime-Stabilized Marine Clay. *Ocean Engineering*. 24(9): 867-878.
- Rajasekaran, G., and Narasimha Rao, S. (2002). Compressibility Behaviour of Lime-Treated Marine clay. *Ocean engineering*. 29(5): 545-559.

- Raj, P. P. (2008). Soil Mechanics and Foundation Engineering. Pearson Education India.
- Rahman, M. D. (1986). The Potentials of Some Stabilizers for the Use of Lateritic Soil in Construction. *Building and Environment*. 21(1): 57-61.
- Rauch, A. F., Harmon, J. S., Katz, L. E., and Liljestrand, H. M. (2002). Measured Effects of Liquid Soil Stabilizers on Engineering Oroperties of Clay. *Transp Res Rec: J Transp Res Board*. 1787(1): 33–41.
- Rahmat, M. N., and Ismail, N. (2011). Sustainable Stabilisation of the Lower Oxford Clay by Non-Traditional Binder. *Applied Clay Science*. 52(3): 199-208.
- Rashid, A. S. A., Zainudin, Z., Noor, N. M., and Yaacob, H. (2013). Effect of Stabilized Laterite on California Bearing Ratio (CBR) and Unconfined Compressive Strength (UCS). *Electronic Journal of Geotechnical Engineering (EJGE)*. 5655-5660.
- Rao, S. M., and Shivananda, P. (2005). Compressibility Behaviour of Lime-Stabilized Clay. *Geotechnical and Geological Engineering*. 23(3): 309-319.
- Rhodes, C. J. (2007). Zeolites: physical aspects and environmental applications. *Annual Reports Section*" C"(Physical Chemistry). 103: 287-325.
- Rodrigues, M. G. F. (2003). Physical and Catalytic Characterization of Smectites from Boa-Vista, Paraíba, Brazil. *Cerâmica*. 49: 146-150.
- Rogers, C. D. F., Glendinning, S., and Dixon, N., (1996). Lime Stabilization. Proceedings of the seminar held at Loughborough University, Thomas Telford Publisher.
- Russo, G., Dal Vecchio, S., and Mascolo, G. (2007). Microstructure of a Lime Stabilised Compacted Silt. In Experimental Unsaturated Soil Mechanics , Springer Berlin Heidelberg. 49-56.
- Saeed, K. A., Eisazadeh, A., & Kassim, K. A. (2012). Lime stabilized Malaysian lateritic clay contaminated by heavy metals. *Electronic Journal of Geotechnical Engineering (EJGE)*. (17): 1807-1816.

- Sallam, A. (2009). Application of Finite Element Analysis in Geotechnical Engineering. *Florida Engineering Society Journal*. May 2009.
- Saikia, B. J., and Parthasarathy, G. (2010). Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 1: 206.
- Santoni, R. L., Tingle, J. S., and Webster, S. L. (2002). Stabilization of Silty-Sand with Nontraditional Additives. *Transportation Research Record, Paper No.* 02-3756, Transportation Research Board, Washington, D. C.,1787: 61-70.
- Sasaki, A. (2005). Size Distribution Analysis of Nanoparticles Using Small Angle Xray Scattering Technique. *Rigaku J.* 22(1): 31-38.
- Santoni, R. L., Tingle, J. S., and Nieves, M. (2005). Accelerated Strength Improvement of Silty Sand with Nontraditional Additives. *Transportation Research Record: Journal of the Transportation Research Board*. 1936(1): 34-42.
- Santoni, R. L., Tingle, J. S., and Nieves, M. (2003). Accelerated Strength Improvement of Silty Sand using Nontraditional Additives. *In 82nd Annual Meeting, TRB*, Washington, DC.
- Salih, A. G. (2012). Review on Granitic Residual Soils' Geotechnical Properties. *Electronic Journal of Geotechnical Engineering*. 2645-2658.
- Scholen, D. E. (1992). Non-Standard Stabilizers. Report No. FHWA-FLP-92-011, FHWA, Washington, D. C., July, 113 pages.
- Scholen, D. E. (1995). Stabilizer Mechanisms in Nonstandard Stabilizers. Proceedings of 6th International Conference on Low-Volume Roads, TRB, National Academy Press, Washington, D. C. 2: 252-260.
- Sezer, A., İnan, G., Yılmaz, H., and Ramyar, K. (2006). Utilization of a Very High Lime Fly Ash for Improvement of Izmir Clay. *Building and environment*. 41(2): 150-155.

- Shinde, A. L., and Mandal, J. N. (2007). Behavior of Reinforced Soil Retaining Wall With Limited Fill Zone Paramete. *Geotechnical and Geological Engineering*. 25(6): 657-672.
- Singh, H., Huat, B. B., Sew, G. S., and Ali, F. H. (2004). Origin, Formation and Occurrence of Tropical Residual Soils. *Tropical residual soils engineering*. 1-19.
- Solanki, P., and Zaman, M. (2012). Microstructural and Mineralogical Characterization of Clay Stabilized Using Calcium-Based Stabilizers. Scanning electron microscopy, Intech, Rijeka. 771-798.
- Sridharan, A., Rao, S. M., and Murthy, N. S. (1992). Physico-Chemical Effect on Compressibility of Tropical Soils. *Soils and foundations*. 32(4): 156-163.
- Stuart, B. (1996). *Modern Infrared Spectroscopy*. New York and UK: John Wiley and Sons.
- Sukmak, P., Horpibulsuk, S., Shen, S. L., Chindaprasirt, P., and Suksiripattanapong, C. (2013). Factors Influencing Strength Development in Clay–Fly Ash Geopolymer. *Construction and Building Materials*. 47: 1125-1136.
- Sukmak, P., Horpibulsuk, S., and Shen, S. L. (2013). Strength Development in Clay– Fly Ash Geopolymer. *Construction and Building Materials*. 40: 566-574.
- Sunil, B. M., Nayak, S., and Shrihari, S. (2006). Effect of pH on the Geotechnical Properties of Laterite. *Engineering geology*. 85(1): 197-203.
- Syafalni, Lim HK, Ismail N, Abustan I, Murshed MF, Ahmad A. (2012). Treatment of Landfill Leachate by Using Lateritic Soil as a Natural Coagulant. *Journal* of Environmental Management. 112: 353–359.
- Tatsuoka, F., Uchida, K., Imai, K., Ouchi, T., and Kohata, Y. (1997). Properties of Cement-tTreated Soils in Trans-Tokyo Bay Highway Project. *Proceedings of the ICE-Ground Improvement*. 1(1): 37-57.

- Tang, C., Shi, B., Gao, W., Chen, F., and Cai, Y. (2007). Strength and Mechanical Behavior of Short Polypropylene Fiber Reinforced and Cement Stabilized Clayey Soil. *Geotextiles and Geomembranes*. 25(3): 194-202.
- Taha, M. R, Sarac, D., Chik, Z. and Nayan, K, A. (1997). Geotechnical and Geoenvironmental Aspects of Residual Soils. Proc. 4th Regional Conference in Geotechnical Engineering (GEOTROPIKA 97). 11-12 November 1997, University Teknologi Malaysia. 331-341.
- Taha, M.R., Hossain, M.K. Chik, Z. and Nayan, K.A. (1998) Geotechnical Behaviour of a Malaysian Residual Granite soil. *Pertanika J. Sci. & Technol.* 7 (2): 151-169.
- Taha, M.R., Hossain, M.K. and Mofiz, S.A. (2000). Behaviour and Modeling of Granite Residual Soil in Direct Shear Test. *Journal of Institution of Engineers Malaysia*. 61(2): 27-40.
- Taha, M. R. and Asmirza, M. S. (2001). Elasto-Plastic Model Predictions for a Granitic Residual Soil in Drained Triaxial Test. Proc. of the 6th Geotechnical Engineering Conf. (GEOTROPIKA 2001). 5-7 November 2001. Univ. Teknologi Malaysia. 73-86.
- Tan, B.K. (1996). Physic-Chemical Properties of Some Granite Soils from Peninsular Malaysia. Proc of 4th Intl. Conf. on Tropical Soils. Kuala Lumpur. 595-600.
- Tawfik, E. F., Hamid, T. B., and Aggour, M. S. (2007). Design of Cantilever Retaining Walls in Unsaturated Soils Using AASHTO Load and Resistance Factor Design (LRFD) Method. *In Probabilistic Applications in Geotechnical Engineering (pp. 1-10). ASCE.*

Terzaghi, K. (1996). Soil Mechanics in Engineering Practice. John Wiley and Sons.

Tingle, J. S., Newman, J. K., Larson, S. L., Weiss, C, A., Rushing, J. F. (2007). Stabilization Mechanisms of Nontraditional Additives. *Transp Res Rec: J Transp Res Board*. 1989(1): 59–67.

- Tingle, J. S., Santoni, R. L. (2003). Stabilization of Clay Soils with Nontraditional Additives. *Transp Res Rec: J Transp Res Board*. 1819(1): 72–84.
- Ting, W. H. and Ooi, T. A. (1976). Behavior of Malaysian Residual Granite Soil as a Sand-Silt-Clay Composite Soil. *Geotechnical engineering, journal of* southeast asian geotechnical society. 7: 67-79.
- Townsend, F. C. (1985). Geotechnical characteristics of residual soils. *Journal of Geotechnical Engineering*. 111.1: 77-94.
- Tuncer, E. R. (1998). Pore Size Distribution Characteristics of Tropical Soils in Relation to Engineering Properties. Proc. of the 2nd Int. Conference on Geomechanics in Tropical Soil. Singapore. 12-14 Dec. Rotterdam: balkema, 63-70.
- Uddin, K., Balasubramaniam, A. S., and Bergado, D. T. (1997). Engineering behavior of cement-treated Bangkok soft clay. *Geotech Eng.* 28(1): 89–119.
- Velasquez, R. A., Marasteanu, M. O., and Hozalski, R. M. (2006). Investigation of the Effectiveness and Mechanisms of Enzyme Products for Subgrade Stabilization. *International Journal of Pavement Engineering*. 7(3), 213-220.
- Vesic, A. S. (1973). Analysis of Ultimate Loads of Shallow Foundations. *Closure of Discussion of Original Paper J*. Soil Mech. Found. Div. Jan. 1973. 1F, 6R. J. GEOTECH. ENGNG. DIV. V100, N. GT8, 1974, P949–951. In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts (Vol. 11, No. 11, p. A230). Pergamon.
- Vinod, J. S., Mahamud, M. A., and Indraratna, B. (2012). Elastic Modules of Soils Treated with Lignosulfonate. *Conference on Geomechanics: Ground Engineering in a Changing World*. Australia. 487-492.
- Wesley, L. D. (1988). Engineering Classification of Residual Soils. Proc. of the 2nd Int. Conference on Geomechanics in Tropical Soils, Singapore. 12-14 Dec. Rotterdam, balkema, 77-84.

- Wild, S., Arabi, M., and Ward, G. L. (1989). Fabric Development in Lime Treated Clay Soils. *Ground Engineering*. 22: 35-37.
- Wood, D. M. (2003). Geotechnical modelling (Vol. 1). Taylor and Francis.
- Yang, T., Wen, X. D., Li, J., and Yang, L. (2006). Theoretical and Experimental Investigations on the Structures of Purified Clay and Acid-Activated Clay. *Applied Surface Science*. 252: 6154-6161.
- Yang, K. H. and Liu, C. N. (2007). Finite Element Analysis of Earth Pressures for Narrow Retaining Walls. *Journal of Geo-Engineering*. 2(2):43-52.
- Yan, Q., and Yan, X. (2011). Numerical Simulation Research and Use of The Steel Sheet Pile Supporting Structure in Vertical Excavation. The Institute of Storage-Transportation and Architectural Engineering, China University of Petroleum, China.
- Yin, J. H., and Lai, C. K. (1998). Strength and Stiffness of Hong Kong Marine Deposits Mixed with Cement. *Geotechnical Engineering*. 29(1).
- Yilmaz, I., and Civelekoglu, B. (2009). Gypsum: An Additive for Stabilization of Swelling Clay Soils. *Applied Clay Science*. 44(1): 166-172.
- Yong, R. N., and Ouhadi, V. R. (2007). Experimental Study on Instability of Bases on Natural and Lime/Cement-Stabilized Clayey Soils. *Applied clay science*. 35(3): 238-249.
- Yoo, C., and Kim, S. B. (2008). Performance of a Two-Tier Geosynthetic Reinforced Segmental Retaining Wall Under a Surcharge Lload: Full-Scale Load Test and 3D Finite Element Analysis. *Geotextiles and Geomembranes*. 26(6), 460-472.
- Zelalem, A. (2005). Basic Engineering Properties of Lateritic Soils Found in Nejo-Mendi Road Construction Area, Welega. M. Sc. Thesis, Department of Civil Engineering, Addis Ababa University, Ethiopia.
- Zhu, Z. D., and Liu, S. Y. (2008). Utilization of a New Soil Stabilizer for Silt Subgrade. *Engineering Geology*. 97(3): 192-198.

Zhang, T., Xu, Y. Y., and Wang, H. (2012). Application and Curing Mechanism of Soil Stabilizer. *Advanced Materials Research*. 557: 809-812.