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ABSTRACT 

 

 Human action recognition is an active research area in computer vision 

because of its immense application in the field of video surveillance, video retrieval, 

security systems, video indexing and human computer interaction. Action 

recognition is classified as the time varying feature data generated by human under 

different viewpoint that aims to build mapping between dynamic image information 

and semantic understanding. Although a great deal of progress has been made in 

recognition of human actions during last two decades, few proposed approaches in 

literature are reported. This leads to a need for much research works to be conducted 

in addressing on going challenges leading to developing more efficient approaches to 

solve human action recognition. Feature extraction is the main tasks in action 

recognition that represents the core of any action recognition procedure. The process 

of feature extraction involves transforming the input data that describe the shape of a 

segmented silhouette of a moving person into the set of represented features of action 

poses. In video surveillance, global moment invariant based on Geometrical Moment 

Invariant (GMI) is widely used in human action recognition. However, there are 

many drawbacks of GMI such that it lack of granular interpretation of the invariants 

relative to the shape. Consequently, the representation of features has not been 

standardized. Hence, this study proposes a new scheme of human action recognition 

(HAR) with geometrical moment invariants for feature extraction and supervised 

invariant discretization in identifying actions uniqueness in video sequencing.  The 

proposed scheme is tested using IXMAS dataset in video sequence that has non rigid 

nature of human poses that resulting from drastic illumination changes, changing in 

pose and erratic motion patterns. The invarianceness of the proposed scheme is 

validated based on the intra-class and inter-class analysis. The result of the proposed 

scheme yields better performance in action recognition compared to the conventional 

scheme with an average of more than 99% accuracy while preserving the shape of 

the human actions in video images. 
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ABSTRAK 

 

 Pengecaman aksi manusia merupakan bidang penyelidikan yang aktif dalam 

visi komputer kerana terdapatnya lambakan aplikasi yang sering digunakan dalam 

bidang pengawasan video, capaian semula video, sistem keselamatan,  pengindeksan 

video dan interaksi komputer manusia. Pengecaman aksi dikelaskan sebagai 

perubahan ciri data yang dihasilkan oleh manusia dari sudut pandangan berbeza 

adalah bertujuan untuk membina pemetaan antara maklumat imej yang dinamik 

dengan pemahaman semantik. Walaupun terdapat banyak kemajuan yang telah 

dibuat terhadap pengecaman aksi manusia dalam dua dekad yang lalu, beberapa 

pendekatan yang dicadangkan dalam kajian kesusasteraan dilaporkan. Ini membawa 

kepada keperluan untuk melaksanakan kerja-kerja penyelidikan bagi menangani 

cabaran yang berterusan dan membangunkan pendekatan yang lebih cekap bagi 

menyelesaikan masalah pengecaman aksi manusia. Pengekstrakan ciri merupakan 

tugasan utama dalam pengecaman aksi yang mewakili teras dalam prosedur 

pengecaman aksi. Dalam pengawasan video, momen takubahan global berdasarkan 

Momen Takubah Geometri (GMI) lazimnya digunakan dalam pengecaman aksi. 

Walau bagaimanapun, terdapat banyak kelemahan menggunakan GMI seperti 

kekurangan tafsiran relatif tidak varian secara terperinci terhadap bentuk. Oleh yang 

demikian, perwakilan ciri tidak terselaraskan. Maka, kajian ini mencadangkan satu 

skema baru bagi pengecaman aksi manusia dengan menggunakan fungsi GMI untuk 

pengekstrakan ciri dan seliaan pendiskretan bagi mengenalpasti keunikan aksi 

manusia dalam jujukan video. Skema cadangan diuji dengan menggunakan dataset 

IXMAS bagi imej-imej dalam jujukan video yang mempunyai sifat tidak tegar 

postur manusia yang terhasil akibat daripada perubahan drastik pencahayaan, 

perubahan postur dan corak pergerakan yang tidak menentu. Ketakubahan skema 

cadangan disahkan berdasarkan analisis kelas-intra dan kelas-inter. Hasil kajian 

menunjukkan bahawa prestasi bagi skema cadangan adalah lebih baik dalam 

pengecaman aksi berbanding dengan skema tradisi iaitu dengan kadar pengecaman 

adalah lebih daripada 99% ketepatan dengan mengekalkan bentuk aksi manusia 

dalam imej video. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Overview 

 

 Of late, computer vision and pattern recognition have gained a lot of interest 

among researchers, motivated by the promise of the various applications in different 

domains. The applications include video surveillance, human computer interaction, 

video editing, gesture recognition and a wide range of industries such as robot 

learning and control, sports and biometric.  

 

 One of the popular areas in computer vision and pattern recognition is human 

motion analysis, specifically in human action recognition (HAR). The aim of human 

action recognition is to generalize the variation of the human actions, and through 

the process, the image in various invariant positions can be featured. However 

human actions recognition remains a challenging task due to the dependency of the 

feature representation and accurate recognition (Barnachon et al., 2014; Bloom et 

al., 2013; Li et al., 2014; Cheng et al., 2014; Donderac et al., 2009; Junejo et al., 

2013; Lara and Labrador, 2013; Wu et al., 2011; Weinland et al., 2007; Weinland et 

al., 2006; Parameswaran and Chellappa, 2005).  

 

 



2 

 

1.2 Background of the Problem 

 

 Human action recognition (HAR) has become essential parts of many 

computer vision applications, and it involves a series of processes such as image 

data acquisition, feature extraction and representation and classification for 

recognition (Kaiqi et al., 2012; Samy Sadek et al., 2013). A human action can be 

viewed as a set of sequential silhouettes, whereby the basic approach of human 

action recognition is to extract a set of features from each frame of sequence (Di and 

Ling, 2013), then the features is used to perform classification (Rao and Shah, 

2001). A human silhouette contains the detailed information of the shape of the 

body, which can be obtained using translation, rotation and scaling processes (Di 

and Ling, 2013; Kui and Dit-Yan, 2008; Gorelick, Galun et al, 2006; Ahmad, 

Mohiuddin Lee, et al., 2008; Chaaraoui, et al., 2013) .  

 

 The advancement of human silhouette is commonly used as action 

description. Examples of human silhouette approach includes the history of shape 

changes using 2D action temporal templates (Ahad, et al., 2012; Bobick and Davis, 

1996; Bobick and Davis, 2001; Lu, et al., 2012; Megavannan, et al., 2012),  and the 

extension of 2D templates to 3D action template (Weinland, et al., 2006). Similarly, 

the notations of action cylinders and space time shapes were introduced based on 

silhouettes by Gorelick, et al. (2006), and Wang and Leckie (2010). All the works 

mentioned above rely mostly on the effective feature extraction and a representation 

technique, which is normally, combined with machine learning or pattern 

recognition methods.  

 

 In the past two decades, many action recognition techniques have been 

developed based on feature extraction and representation (Zhao, et al., 2013). 

Feature extraction and representation, a fundamental part of action recognition, 

greatly influences the performance of the recognition system. The representation of 

features are divided into two categories: local representation and global 

representation (Calderara, et al.,2008; Ikizler, et al.,2008; Mokhber, et al.,2008; 

Mokhber, et al.,2005; X.Sun, et al.,2009; Zhao, et al., 2013). Local representation is 

described as a collection of independent patches which features are extracted from 
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the region of interest. The limitations of the local feature include the sparse 

representation that could discard geometric relationship of the features, hence is less 

discriminative (Di and Ling, 2013; Poppe, 2010). Nevertheless, the representation is 

dependent on the extraction of sufficient amount of relevant interest points, which 

focused more on local motion than the figure shape, and sometimes pre-processing 

is needed to compensate for camera movements. Meanwhile, global representations 

are powerful since much of the information is encoded, as they focus on global 

information. Common global representations are derived from silhouettes, edges or 

optical flow.  

 

 Based on the literatures, many studies have been done on global approach for 

human action recognition. Bobick and Davis (2001), Bradski and Davis (2000), 

Davis and Bradski (1999), Hota,Venkoparao, et al. (2007) and Rosales (1998) were 

employed global representation for feature extraction and representation. In their 

works, global representation gives reasonable shape discrimination in translation and 

scaled invariant manner for template matching. Therefore, the process of extraction 

can be less computation and feasible implementation in real-time by using global 

based approach. Achard, et al. (2008), Mokhber, et al. (2005), Parameswaran and 

Chellappa (2005) were successfully extract the features based on global 

representation, so all information concerning an action is included in only one vector 

and allows to recognize actions without systems such as finite state machines. 

Therefore, the recognition process can be simplify and enhance robustness. Global 

representations statistically matched to stored examples of different movements and 

give a promising result using a large database of movements (Davis and Bradski, 

1999). Thus, the representations of sequence are not characterized as the temporal 

object (Achard, et al., 2008; X.Sun, et al., 2009). And through the previous study by 

Ahmad, et al. (2008) has been identified that the global representation is very useful 

moments kernel and present a native rotational invariance and far more robust to 

noise. 

 

 The conventional global representation based moment invariant that was put 

forward by Hu (1962), Geometric Moment Invariant (GMI), was widely used for 

feature extraction  and classification in human action recognition (Megavannan, et 
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al., 2012). This method has a unique characteristic in identifying an image due to its 

invariant to orientation, size and position of the shape image. The existence of action 

is identified by difference values of moment invariants in different image frame in 

video sequence. Consequently, this method leads some issues, especially in terms of 

the complexity of data feature representation during the feature extraction. The 

problem examples are in the intra-class and inter-class variation. The complexity 

increases dramatically with increasing order and their containment of redundant 

information about shape. Many researchers have found some drawbacks of the GMI, 

especially in pattern recognition. Table 1.1 illustrates the research developments in 

solving the weaknesses of GMI. 

 

Table 1.1 Drawbacks of Geometric Moment Invariant Concept 

 

Problem/ Issues Researchers/Year 

Reliant and incomplete invariant under 

translation, rotation and scaling 

(Flusser and Suk, 1993;  Xu and Li, 2008;  
Zhihu and Jinsong, 2010) 

Lost scale invariant in discrete 

condition 

(Botao Wong, et al., 2002; Ding, et al., 1992; 

Hongtao and Jicheng, 1993; Lihong, et al., 

2006) 

Improved  boundary images condition (Chen, 1993) 

Applied only a small subset of moment 

invariant  

(Wong, et al., 1995) 

Produce errors if the transformations are 

subjected to unequal scaling data 

transformation 

(Feng and Keane, 1994; Raveendran, et al., 

1993;  Muda, et al., 2007; Muda, et al.,2008; 

Palaniappan, et al., 2000; Pamungkas and 

Shamsuddin, 2009; Raveendran, et al., 1994; 

Raveendran, et al., 1995a,b; Raveendran, et al., 

1997; Shamsuddin, et al., 2000; Shamsuddin, et 

al., 2002) 

Data position of pixel is far away from 

centre coordinate 

(Balslev, et al., 2000) 

 

Problem in region, boundary and 

discrete condition 

(Yinan, et al., 2003) 

 

 A study conducted in 1992 has identified that the scale invariant was lost 

when the condition is in discrete condition (Ding, et al., 1992). Consequently, new 

techniques based on moment variant in discrete condition have been proposed by 

various researchers such as  Hongtao and Jicheng (1993) and  Botao Wong, et al. 

(2002), and a technique known as relative contour moment invariant was also 

introduced by  Lihong, et al. (2006). Also, some drawbacks has been identified in 
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Hu moments that the approach are reliant on whereby incomplete invariant occurs 

under translation, rotation and scaling (Flusser and Suk, 1993). Thus, a new moment 

formulations called affine moment invariant was presented by  Flusser and Suk 

(1993), which is an invariant under general affined transformation. This technique 

has been successfully used in human action recognition for feature extraction in  

Samy Sadek, et al. (2013). In 2008, the issue regarding the extracting shape 

characteristics independent of scaling, translation and rotation is discussed by  Xu 

and Li (2008). Thus, for a good solution to this problem, Xu and Li presented 3-D 

moment invariants which is invariants under similarity transformation and the 

moments are region-based. 

 

 In 1995, a group of researchers have identified that GMI can only be applied 

on a small subset of moment invariants  when they found that GMI is not able to 

determine a complete set of Moment Invariant (Wong, et al., 1995). Thus, they 

improved the third-order moment and fourth-order moment of GMI and tested the 

methods on Character recognition. In 1993, a derivation on normalization for the 

improvement of the conditions of boundary images, called Improved Moment 

Invariant, has been proposed by  Chen (1993). The advantages of the proposed 

method is that it could save computational time for the boundary images. However, 

it was discovered that the techniques mentioned earlier cannot be applied to both 

region and boundary conditions as the features represented by the equations are not 

the same as that obtained from the GMI methods (Yinan, et al., 2003). 

Consequently, they proposed a new technique for translation, scaling and rotations 

that can be discretely kept invariant into region and boundary conditions. A study 

conducted in year 2000  has identified that GMI have some problem with regards to 

the position of data, in which the pixel of data is far away from the centre of 

coordinate if there is a noise (Balslev, et al., 2000). This consequence happened 

because GMI cannot effectively recognize the data that are concentrated near the 

center of mass, and as a result these data will be abandoned.  

 

 Another drawback of GMI is problems associated with transformation errors. 

GMI produce error if the transformations are subjected to unequal scaling. Based on 

the literature review conducted, numerous researchers have made various 
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improvements on the invariants for images that undergo unequal scaling such as 

Pamungkas and Shamsuddin (2009), Muda, et al. (2008), Muda, et al. (2007), 

Shamsuddin, et al. (2002), Shamsuddin, et al. (2000), Palaniappan, et al. (2000); 

Feng and Keane (1994), Raveendran, et al. (1993), Raveendran, et al. (1997), 

Raveendran, et al. (1995a) Raveendran, et al. (1995b), Raveendran, et al. (1994). 

Normally, the scaling factor used in GMI is equal scaling, but it does not work well 

for images that undergo unequal scaling. Unequal scaling means that the 𝑥 and 𝑦-

scaling of an image are different (Feng, and Keane, 1994). Table 1.2 illustrates the 

advancement of unequal scaling formulation based on the normalization centre to 

obtain invarianceness when unequal scaling is used.   

 

Table 1.2 Advancement of Geometrical Moment in Unequal Scaling Images 

 

Authors/Year Description 

 Raveendran, et al. 
(1993) 

This equation has a flaw of scaling in the derivation of the 

central moments.  

Mathematical expression: 

𝜂𝑝𝑞 = 𝛾𝑝𝑞 𝛾𝑞𝑝  ;  𝛾𝑝𝑞 =   
𝑏

𝑎
 

𝑝−𝑞
2

 
 

Raveendran, et al. 
(1994) 

Mathematical expression: 

𝜆 𝑝𝑞 =  𝑟
𝑝−𝑞

2 𝜆𝑝𝑞  𝑤𝑖𝑡ℎ 𝑟 =
𝑏

𝑎
 

a. If 𝑎 = 𝑏 or 𝑟 = 1, then the invarianceness holds for 

every 𝜆 𝑝𝑞 = 𝜆𝑝𝑞   

b. Otherwise, if 𝑎 ≠ 𝑏, then the expression for scaling 

becomes: 

𝜂 𝑝𝑞 =
𝜇 𝑝𝑞  𝜇 𝑝𝑞  

𝑖+1

𝜇 𝑝+1,0𝜇 0,𝑞+1,
,𝑤𝑖𝑡ℎ 𝜇 𝑝𝑞 =  

1

𝑎𝑝+1𝑏𝑞+1 𝜇𝑝𝑞   
 

Feng and Keane 

(1994) 

The proposed technique is called Aspect Moment Invariant 

(AMI). The technique eliminates the need of size 

normalization. The dynamic range remains constant with 

moment order.  

Mathematical expression: 

𝜂𝑝𝑞 =
𝜇00

𝑝+𝑞
2

+1

𝜇20

𝑝+𝑞
2 𝜇02

𝑝+𝑞
2

𝜇𝑝𝑞  

 

Raveendran, et al. 
(1995a,b) 

The mathematical expression is different from that of 

(Raveendran, P., S. Jegannathan, et al., 1993). This 

equation is not rotation invariant.  

Mathematical expression: 

𝛾𝑝𝑞 =  
𝜂𝑝𝑞

𝜂𝑝+1,𝑞+1
,𝑤𝑖𝑡ℎ 𝜂𝑝𝑞 =  

𝑏

𝑎
 

𝑞−𝑝
2

 

 

Palaniappan, et al. 
(2000) 

The expression for scale factor uses higher order but a second 

order moment equation is chosen. The expression is invariant 



7 

 

to translation and non-uniform scaling. 

Mathematical expression: 

𝜂𝑝𝑞 =  
𝜇 02

𝜇 20
 

𝑝−𝑞
4

𝜂 𝑝𝑞

 
 

Shamsuddin, et al. 
(2000) 

An integration of Higher Order Moment and Aspect Moment 

Invariant. 

Mathematical expression: 

𝜂𝑝𝑞 =   
𝜇20

 𝑝+1 /2𝜇02
 𝑞+1 /2

𝜇40
 𝑝+1 /2𝜇04

 𝑞+1 /2
 𝜇𝑝𝑞  

 

Yinan, et al. (2003) The expression can cover invariant for both region and 

boundary in discrete and continuous region. 

Mathematical expression: 

 

𝜂𝑝𝑞 =  
𝜇𝑝𝑞

 𝜇00 
𝑝+𝑞+2

2

 

𝜂′𝑝𝑞 = 𝜌𝑝+𝑞𝜂𝑝𝑞 =  
𝜌𝑝+𝑞

 𝜇00 
𝑝+𝑞+2

2

𝜇𝑝𝑞  

𝜂"𝑝𝑞 =
𝜇𝑝𝑞

 𝜇00 
𝑝+𝑞+1

2

 

 

Muda, et al. (2007) An integration of United Moment Invariant and Higher Order 

Centralized Scale Invariant. 

 

 Muda, et al. (2008) An integration of Aspect Moment Invariant and United 

Moment Invariant. 

 

Pamungkas and 

Shamsuddin (2009) 

An integration of Aspect Moment Invariant and Weighted 

Central Moment. 

 Hameed, et al. (2014) Non-Zero Invariants 

 

 Figure 1.1 illustrates the scenarios leading to the research problem in human 

action recognition. The action classification is crucial in recognizing the human 

action because the extracted features of the motion must be classified accordingly.  
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Figure 1.1 Scenarios leading to the Research Problem  

 

 In order to interpret the human behavior, it is important to recognize the 

human action. However, the interpretation still remains a challenging and complex 

task due to illumination and scale/view changes, occlusions and background clutter 

in the videos (Shabani, et al., 2013; Wu, et al.,2011). Random movements cause 

 

TREND IN HUMAN ACTION RECOGNITION 

 In the past two decades, human action recognition has been attracting a wealth of research 

interest in the area of computer vision and pattern recognition. Challenging research 

problem in computer vision and pattern recognition. 

 

CHALLENGES ON HUMAN ACTION RECOGNITION 

 The approaches proposed in the literature limited in their ability. 

 Environment contains noise, thus exist geometric attack. 

 Confuse in performing the same action in different way, which lead to errors of recognition.  

 The complexity increases dramatically with increasing order and their containment of 

redundant information about shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISSUES IN CURRENT HUMAN ACTION RECOGNITION PROBLEM 

1. Feature extraction and representation 

 Shapes with noise are common due to complex background and the size of moving objects 

varies with distance. 

 Difficult to determine class of action due to the same features during extraction 

 The problem of  local features is sparse representation, that could discards geometric 

relationship of the features, hence is less discriminative  

 Since two decades, many researchers have been conducting the feature extraction using 

Geometric Moment Invariant proposed by Hu;  but Hu’s moment has high redundancy and 

sensitive to noise, where the silhouette information is not correct. 

 The environment contains noise, especially the existence of geometric attack. 

2. Classification 

 Recognition rate descends sharply in noisy environment. 

 

HUMAN ACTION FEATURE 

EXTRACTION AND 

REPRESENTATION 

Consists of extracting posture and 

motion cues from the video that are 

discriminative with respect to human 

actions. 

SOLUTION OF THE PROBLEM IN HUMAN ACTION RECOGNITION 

 Developing good algorithms for solving problem of feature extraction and classification of 

human action recognition would yield huge potential for a large application. 

 

HUMAN ACTION 

CLASSIFICATION 

Learning statistical models from 

the extracted features, and using 

those models to classify new 

feature observations 

PROCESS 

DATA 
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scattered data, and consequently, these problem cause the features are not labeling 

action class correctly and representation of data features are not standardize properly 

(Mokhber, et al., 2008; Sen Wang, et al., 2012; Shabani, et al., 2013). The most 

important characteristic of invariance of the human action is the stability under 

different views but distinctive from the different classes. However, the increasing 

number of action classification in a video will lead to more challenges due to the 

higher overlapping between classes. This shows that inappropriate feature extraction 

and representation may directly cause a low accuracy in classification of human 

action. Therefore, more standardize uniform representation of data distributions are 

needed for recognition of human action.  

 

1.3 Statement of the Problem 

 

Some issues have been identified with regards to feature extraction and 

recognition task of human action in a video surveillance. In this study, there are two 

problem statements and potential solutions have been addressed as following: 

  

Related issue 1: There is a large variation in the performance of human action, such 

as variation in human motion silhouette. Geometric Moment Invariant proposed by 

Hu’s moment has high redundancy and sensitive to noise, where the silhouette 

information is not correct. Due to the environment contains noise; the features could 

be existence of geometric attack.  

 

Hypothesis 1: The unique global features based on moment invariant algorithm are 

implemented in the process of feature extraction in order to improve the 

invarianceness of the human action feature vector representation. A good feature 

extraction approach should be able to generalize over variations within class (intra-

class) and distinguish between actions of different classes (inter-class). Therefore, 

the variation of the features of human action can be minimize variation for intra-

class and maximize variations for inter-class for human action. 
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Related issue 2: The orientation of a person might be different (such as front view or 

side view), and the motion direction might be changed when the person moves. 

Therefore, objects would result in a poor human body representation because the 

rate at which the actions are recorded affects the temporal extent of action, 

especially when motion features are used.  

 

Hypothesis 2: A suitable human action representation should be utilized when 

dealing with these changes without affecting the recognition accuracy of action. 

Thus, the standard representation procedure for the effective learning methods is 

applied in order to raise the performance of the system and reduce the amount of 

accessible information to a manageable size of feature vector representation without 

losing any valuable information. 

 

The research questions that need to be addressed in order to complement statement 

above are: 

 

i. How to extract the robust image feature vector from geometrical moment 

function? 

ii. How to determine the invarianceness of human motion from the geometrical 

feature vectors? 

iii. How to standardize the uniqueness of the human action for effective learning 

methods? 

 

1.4 Purpose of the Study 

 

 The purpose of the study is to develop a new scheme of human action 

recognition representation techniques based on the global features that can be 

achieved by extracting the silhouette of the human global features using the 

proposed geometrical moment invariant technique. The technique for enhancing the 

learning process is proposed to improve the variance between features that could 

increase the performance accuracy in human action recognition. This can be done by 
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extracting the human silhouette using the proposed geometrical based moment, 

which include Higher Order Scale Moment Invariant (HGMI), Aspect Moment 

Invariant (AMI), United Moment Invariant (UMI), Aspect United Moment Invariant 

(AUMI), and Higher United Moment Invariant (HUMI). The data features will then 

be further validated using the invariant discretization for classification of human 

action recognition. 

 

1.5 Objectives of the Study 

 

 The purpose of the study can be achieved with the following objectives: 

 

i. To propose a new scheme for the human action recognition. 

ii. To propose feature extraction based on geometrical moment invariant 

method for human action invarianceness. 

iii. To propose compactness standard representation of geometrical features 

through supervised invariant discretization. 

 

1.6 Scope of the Study 

 

 The scope of the study is limited to the following conditions: 

 

i. The scope of feature extraction is only for two dimensional (2D) images 

silhouette. 

ii. Sample image frames are obtained from IXMAS dataset. The dataset contain 

13 actions (check watch; cross arms; scratch head; sit down; get up; turn 

around; walk; wave, punch; kick; point; pick up, throw). 

iii. The size of resolution of each video image frame is 200 x 200 pixels. 

iv. This research is focused on geometrical moment approaches to handle the 

feature representation of the human action obtained from video images. 
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v. This study will explore the substantially on feature extraction and 

representation; and feature interval for learning phase ONLY, and 

classification algorithm used for recognition will not be considered. 

vi. Microsoft Studio 2010 is used to develop the proposed method. 

vii. In this study, Microsoft excel, WEKA 3.7 is used to recognize the proposed 

method. 

viii. SPSS toolkit and Minitab 15 is used as the statistical analysis to further 

validate the action recognition result. 

ix. ANOVA is used for significant test for the proposed methods. 

 

1.7 Research Methodology 

  

 This section briefly introduces the research methodology implemented in this 

study. The detailed discussion of the research methodology is presented in Chapter 

3. Two phases are involved in order to achieve the goal and objectives of the study. 

Phase I is the investigation phase, in which the problem definition and formulation 

are explained, collection of data and the related literatures and existing methods are 

reviewed. Phase II is the development phase, which consists of two main stage: 

feature extraction and representation stage, standardize action learning features for 

classification stage, as shown in Figure 1.2.  Five algorithm of the moment invariant 

for feature representation techniques are developed in this phase. The algorithm 

includes higher order scale Moment Invariant (HGMI), Aspect Moment Invariant 

(AMI), United Moment Invariant (UMI), Aspect United Moment Invariant (AUMI) 

and Higher United Moment Invariant (HUMI). The idea behind the proposed 

geometrical moment techniques is to extract the global features from human 

silhouette. After feature extraction, the human action invarianceness method is 

analyzed based on intra-class and inter-class variance, following which the extracted 

features vectors are discretized for performance in action learning. The invariant 

discretization is proposed in this action learning process in order to represent and 

illustrate the human action features in systematic representations. The final step is 

the classification of the human action. 
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Phase 1: Investigation Phase

Problem definition and 

formulation
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of existing method

Data collection from 

publicly available database

Phase 2: Development Phase

Human Action Invarianceness (HAI)

Proposed a new scheme of 

human action recognition

Proposed feature extraction 

Algorithm 

Proposed method for 
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representation

Proposed 
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Invariant 

Discretization

Action Recognition

Conclusion

 

 

Figure 1.2 Overview of the research design 
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1.8 Research Contribution 

 

 This section highlights the research contribution that leads to the philosophy 

of the study in problem domain perspective. In this study, the focus is on the feature 

representation of human action using human silhouette as the primitive descriptive 

unit. The extracted global features from the proposed Geometrical Moment 

representation consist of human action features that can be generalised as the action 

features. For feature representation perspective, five types of geometrical moment 

are proposed as a technique to generate the representation for every video image in 

order to reduce the possible error. Then, for action learning perspective, these 

features are discretized using invariant discretization. The summary of the 

philosophy of the study is illustrated in Figure 1.4. 
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Figure 1.3 The philosophy of study 
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1.9 Organization of the Thesis 

 

 This thesis is organized into seven chapters. Chapter 1 describes the 

overview of chapter, problem background and problem statement, purpose and 

objectives of the study, research scope, methodology and contribution. 

 

 Chapter 2 consists of literature reviews in which previous works related to 

the issues were surveyed. This chapter consists of the concept of video surveillance, 

the human motion analysis model, research issues in human action recognition, 

feature extraction for human action recognition, and the foundations of moment 

invariant for feature extraction that includes the concepts and types of moment 

invariant. This is followed with the explanation on the discretization in action 

learning and the previous studies related to action learning. The explanation on the 

classifier that is used in the study is also included in the chapter, and finally the 

previous research on moment invariant in human action recognition is discussed.  

 

 The methodology of the research is explained in Chapter 3 that covers the 

overall research methodologies, which include the investigation phase and 

development phase. This chapter also provides the operational procedures used, 

covering data source collection procedure (database, feature extraction technique, 

data representation, and discretization procedure), performance measurement 

procedure (intra-inter class definition and ANOVA), and its development tools. 

 

 In Chapter 4 and Chapter 5 are the discussions of the study objectives as has 

been outlined in Chapter 1. Each chapter discusses the overall research findings for 

each objective. Lastly, Chapter 6 presents the conclusion of the study and 

recommendations for future research. 
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