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ABSTRACT 
 

The bio-electromagnetic inverse problem is the identification of 

electromagnetic sources based on signals recorded from Electroencephalography 

(EEG) or Magnetoencephalography (MEG) and physical equations with a minimum 

of priori information. Following initial applications in modelling epilepsy patients' 

electrical brain activity, extensive research has been done in processing massive 

amounts of signal data from patients while preserving as much information as 

possible. Improvements in analyzing EEG/MEG recordings have significant utility 

not just in epilepsy treatment and diagnosis, but neuro-cognitive research in general. 

The main objective of this research is to build structures holding visualized and 

flattened EEG data as differential geometric entities, and to extend these structures as 

a dynamical system dealing with the evolution of large amounts of point data about 

brain activity. One aspect of existing research involves EEG signal data recorded 

across a time interval and processed using fuzzy clustering techniques, resulting in 

point data sets representing areas of high electrical activity within the brain. 

Concepts in differential geometry are applied to these spaces as a dynamical and 

visualized approach to modelling the evolution of signal clusters in the brain over 

time. Initially, Flat EEG data sets are shown to be topological spaces, manifolds and 

vector spaces. Two vector bundle structures for the Flat EEG space are thus 

developed: one analogous to Minkowski space-time and the other based on the 

classical notion of spatial change over linear time. From there, Koszul connections 

were constructed for both vector bundles, and both are shown to have zero curvature. 

Having provided a continuous differential structure to Flat EEG data, the evolution 

of signal clusters as a discrete dynamical system is then interpolated into a 

continuous form, allowing an enhanced view of the brain's state changes over time. 
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ABSTRAK 
 

Masalah songsangan bio-elektromagnet ialah mengenal pasti sumber 

elektromagnet berdasarkan isyarat rakaman Elektroensefalografi (EEG) atau 

Magnetoensefalografi (MEG) dan persamaan fizis bersama maklumat priori yang 

minimum. Berikutan daripada penggunaan awal dalam membina model aktiviti 

elektrik otak pesakit epilepsi, penyelidikan telah dilakukan demi memproses 

bilangan besar data isyarat pesakit sambil memelihara sebanyak mungkin maklumat 

asal. Penambahbaikan analisis rakaman EEG/MEG mempunyai kegunaan bukan 

sahaja dalam rawatan dan diagnosis epilepsi, malah juga penyelidikan neuro-kognitif 

secara am. Objektif utama penyelidikan ialah membina struktur menempatkan data 

EEG yang berbentuk visual dan rata sebagai objek geometri keterbezaan, dan 

melanjutkan struktur tersebut sebagai sistem dinamik berkenaan evolusi sejumlah 

besar data titik aktiviti otak. Satu aspek penyelidikan kini melibatkan data isyarat 

EEG yang dirakam pada suatu selang masa dan diproses menggunakan teknik 

kelompok kabur, menghasilkan set data titik mewakili kawasan aktiviti elektrik yang 

tinggi di dalam otak. Konsep geometri keterbezaan digunakan terhadap ruang set 

tersebut sebagai pendekatan dinamik dan visual bagi permodelan evolusi semasa 

kelompok isyarat dalam otak. Sebagai permulaan, data set EEG Rata dibuktikan 

sebagai ruang topologi, manifold dan ruang vektor. Dengan itu dua struktur berkas 

vektor untuk ruang EEG Rata dibina: satu setara dengan ruang-masa Minkowski dan 

satu lagi berdasarkan idea klasik perubahan ruang melawan masa linear. Dari situ, 

kaitan Koszul dibangunkan untuk kedua-dua berkas vektor, yang juga terbukti 

mempunyai kelengkungan sifar. Setelah menyediakan struktur keterbezaan lancar 

bagi data EEG Rata, evolusi kelompok isyarat tersebut dalam bentuk sistem dinamik 

diskret kemudian diberi interpolasi menjadi sistem dinamik berterusan, 

membolehkan pandangan lebih baik bagi perubahan keadaan otak terhadap masa. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Introduction 

 

 The bio–electromagnetic inverse problem is the identification of 

electromagnetic sources based on signals recorded from Electroencephalography 

(EEG) or Magnetoencephalography (MEG) and physical equations with a minimum 

of priori information. Going from initial applications in modelling epilepsy patients' 

electrical brain signals, extensive research has been done in processing and 

transforming massive amounts of signal data from patients while preserving as much 

information as possible. Improvements in analysing EEG/MEG records have 

significant utility not just in epilepsy treatment and diagnosis, but neuro–cognitive 

research in general. 

 

1.2  Background of Research 

 

 The field of signal processing presents the challenge of preserving data 

integrity as they are transformed into spaces with varying dimensions. One example 

of this in the field of medicine is the visualization of EEG signal data into two-

dimensional arrays to aid diagnosis. Previous research were dependent on data 

recorded over instances within an interval. The data set is essentially discretised over 

time, even though EEG signal data is continuous. This is due to transformations 

required for the clustering process. 
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 The question of the movement of clusters within space should involve 

differential geometrical structures. Vector spaces are simple, well-understood objects 

useful for modelling the spatial path of information over time. Neuroelectrical 

activity in the brain also exhibits the properties of a dynamical system. 

 

1.3 Problem Statement 

 

 Analysis of Flat EEG signals has depended on discrete instances recorded 

over an interval. In order to aid the visualization and ease of interpretation of these 

massive sets of data by professionals, the dynamics of Flat EEG signals should be 

described as a set of vectors and thus rendered as an evolving system. 

 

1.4 Research Objectives 

 

 The objectives of this research include 

 i.      To construct vector bundles based on Flat EEG space. 

 ii.     To construct connection(s) on the bundles. 

 iii.    To express these geometric objects as dynamical systems. 

 iv.    To approximate orbits of Flat EEG cluster data. 
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1.5  Research Scope 

 

 This research utilises mathematical theory based on differential geometry and 

dynamical systems on bioelectromagnetic field data of the brains of epilepsy patients 

during seizures, in order to be considered in conjunction with the Fuzzy Topographic 

Topological Mapping (FTTM) model. 

  

1.6  Significance of Research 

 

 A differential structure for post-clustering Flat EEG is needed to stitch 

together disparate sets of instantaneous information into a continuous whole. This is 

helpful in order to aid the detection of epileptogenic foci by modelling the paths of 

the strong electrical signals in the brain. 
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1.7  Thesis Outline  

 

 Figure 1.1 shows a flowchart outlining all the chapters in this thesis and their 

main topics of interest. 

 

KOSZUL CONNECTIONS OF FLAT EEG BUNDLES FOR 

DESCRIPTION OF BRAIN SIGNAL DYNAMICS 

BACKGROUND OF RESEARCH 

 

METHODOLOGY                                         Constructing Bundles and Connections 

 

IMPLEMENTATION                                         Dynamical Systems & Interpolation 

 

CONCLUSION 

 

Figure 1.1 Thesis Outline 

Chapter 1 
Introduction 

Chapter 2 
Literature Survey 
Flat EEG/MEG 

Chapter 3 
Differential Geometry 

on Manifolds 

Chapter 4 
Vector Bundles 

on Flat EEG 

Chapter 5 
Connections for 

Bundles of Flat EEG 

Chapter 7 
Future Research 
and Conclusion 

Chapter 6 
Flat EEG Bundles 

as Dynamical Systems 
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1.8  Context of Research 

 

Figure 1.2 shows the relationship between the research in this thesis and other 

work previously done in similar fields. Further details and elaborations on this topic 

can be found in Chapter 2. 

 

 

Figure 1.2 Context of Research 
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