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ABSTRACT

In general, Malaysia experiences low wind speed, but some areas in this

country experience strong wind in certain periods of time within a year. In line with

the necessity to enhance the utilization of indigenous renewable energy resources in

order to contribute towards national electricity supply, the study on the potential of

the wind speed as a new source of renewable energy is significantly crucial. For that

reason, this study aims to model and forecast wind speed data in 10 stations all over

Peninsular Malaysia by using three different methods; Autoregressive Moving

Average (ARMA), hybrid model (ARMA with Generalized Autoregressive

Conditional Heteroscedasticity (ARMA-GARCH)) and Dynamic Linear models

(DLM). ARMA was used as the benchmark in identifying an adequate linear model.

The Autoregressive Conditional Heteroscedasticity (ARCH) effect in the residuals

data from the developed conventional model was determined. The presence of

ARCH shows that the model is not appropriate to be treated as a linear model.

Therefore, to overcome this problem, ARMA model was hybridized with GARCH

model. However, there is still some remaining ARCH exists in the residuals data for

several datasets. Thus, a new approach namely DLM was introduced in order to treat

the shortcoming. At the end of the research, a comparative study was made. It was

discovered that in most cases, DLM outperforms than other models. DLM is found to

be flexible in treating the dynamical fluctuation of the data and superior in terms of

predictive accuracy with just a small error when compared with other methods.
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ABSTRAK

Secara umum, Malaysia mengalami kelajuan angin yang rendah, tetapi di

sesetengah kawasan dalam negara ini mengalami tiupan angin yang kuat dalam

tempoh masa tertentu di sepanjang tahun. Selari dengan keperluan untuk

menggalakkan penggunaan sumber tenaga diperbaharui dalam menyumbang kepada

bekalan tenaga elektrik nasional, kajian ke atas potensi kelajuan angin sebagai satu

sumber baru bagi tenaga diperbaharui adalah sangat penting. Justeru itu, kajian ini

bertujuan untuk menghasilkan model dan meramal data kelajuan angin bagi 10 stesen

di Semenanjung Malaysia dengan menggunakan tiga kaedah berbeza; Autoregresif

Purata Bergerak (ARMA), model hybrid (ARMA dan model Teritlak Autoregresif

Bersyarat Heteroskedastisiti (GARCH)) dan Model Linear Dinamik (DLM). ARMA

telah digunakan sebagai penanda aras dalam mengenalpasti model linear yang sesuai.

Kesan Autoregresif Bersyarat Heteroskedastisiti (ARCH) dalam baki data daripada

model konvensional yang dibina telah ditentukan. Kehadiran kesan ARCH

menunjukkan model tersebut tidak sesuai dibina sebagai model linear. Oleh itu,

untuk mengatasi masalah ini, model ARMA telah digabungkan dengan model

GARCH. Walaubagaimanapun, masih terdapat baki kewujudan ARCH dalam baki

data pada sesetengah set data. Justeru itu, suatu pendekatan baru dinamakan DLM

diperkenalkan bagi mengatasi masalah ini. Pada akhir kajian, suatu kajian

perbandingan telah dilakukan. Ia telah ditemui dalam kebanyakan kes, DLM lebih

baik berbanding model lain. DLM didapati fleksibel dalam merawat perubahan

dinamik data dan lebih baik dari segi ketepatan ramalan dengan ralat yang kecil

dibandingkan dengan kaedah lain.
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CHAPTER 1

INTRODUCTION

1.0 Introduction

The development of wind energy technology shows the fastest growing in the

world. Wind energy offers many advantages. Currently, the wind energy usage was

emphasized by the researchers all around the world. Wind as a fuel source free, does

not contaminate the air like other power plants that certainly depends on burning of

fossil fuels such as coal or natural gas. The installation of wind turbines helps our

ecosystem in reducing the greenhouse effect as wind does not produce acid rain or

greenhouse gases. United States Energy Information Administration (2016) reported

that in the last 10 years, wind power capacity has grown with an increment of 30%

which represents 28% of worldwide capacity.

This sustainable source actually originated from the solar energy. The heat of

the atmosphere which comes from the sun produced the wind. Another two factors

that contribute to the production of wind are the earth’s rotation and the geographical

earth’s surfaces. The energy could be assembled as long as the sun shines and the
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wind blows. Therefore, the energy generated from the wind turbines can send the

power across the grid along the times. In economical context, wind power is quite

profitable. Among the renewable energy technologies today, wind is the lowest-

priced with the cost estimation of four to six cents per kilowatt-hour. However, it

relies on the wind resource and its particular financial projects. Moreover, referring

to the Wind Vision Report (US Department of Energy), wind has a bright

prospective to support more than 600,000 jobs in manufacturing, installation,

maintenance and supporting services by 2050.

Recent statistics show that by the year 2050, the total population of

Malaysian is estimated to be 40.7 million people (Bujang et al., 2015). Energy has

become as fundamental needs of the development in Malaysia. Hence, the demand of

energy is also projected to increase. Practically, energy is essential in all aspect of

everyday life including agricultural, drinking water, lighting health care,

telecommunication, and industrial activities. Wind can be seen as a suitable resource

of energy since Malaysia experience continuous wind and it also produce minor

impacts on the environment. As the rising bids of wind energy, it is essential for

power utilities to plan the assimilation of wind power. Wind with the intermittency

and random character makes the modeling and the forecasting of wind speed more

valuable and it can be a support tool for the operators of the Control Energy Centre

(CEC) of the power utility (Cadenas and Rivera, 2010). Hence, an accurate

measurement of wind speed prediction is preferred for providing an overview on

how the behavior and trend of historical pattern and future projected pattern of wind

speed could be, which the power energy could be estimated from. Wind power is

extensively exploited in the countries like Germany, Denmark and Spain. As an

example, it was reported that more than 4% of electricity in Spain comes from the

wind source (Sanchez, 2006). However in Malaysia the installation of wind turbine is

still in the research stage.

As reported by the star online 28th October 2013, the Sustainable Energy

Development Authority Malaysia (Seda) was considered to include wind as an

alternative source in the renewable energy scheme. Hence, a comprehensive study
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and thorough analysis on the availability of wind energy in Malaysia is immediately

essential to decide whether wind should be included as another renewable resource in

the scheme. Thus, this study provides a dynamical model capable in describing and

forecasting the wind speed data sets of 10 stations across peninsular Malaysia. The

assessments of the wind models can help to express the dynamic on how much wind

energy can be produced at a particular area.

Therefore, the characteristic of Peninsular Malaysia daily wind speed will be

explored intensively and comprehensively in this study and both criteria will be

considered; spatial and temporal properties. This will enhance the understanding of

the process for the effective development and execution of wind energy installation

as one of the renewable energy resources.

1.1 Background of the study

In Malaysia, the highest maximum wind speed was recorded at Kuching,

Sarawak on 15 September 1992 with 41.7 m/s whereas the highest mean daily wind

speed with 3.8 m/s was recorded at Mersing, Johor. As a whole, Malaysia

experiences low wind speed. However certain areas in this country recorded high

readings. Therefore it is essential to study the Malaysia’s wind speed behavior and

identify the potential area to be developed with the wind energy generation system.

At Malaysian meteorological department, the wind speed data is measured by using

anemometers (Figure 1.1), the most common instrument of which the cups are

mounted symmetrically from the right angle to the vertical shaft. Basically the

operation of this instrument is based on the difference between the wind pressures

from one side of the cup to the other which causes the cup to spin about the shaft.

The rate of the rotation is directly proportional to the speed of wind.
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Figure 1.1 Anemometers

(Picture courtesy from http://www.met.gov.my)

Hafezatul (2010) found that from 22 weather stations studied across

Peninsular Malaysia, Sabah and Sarawak, there are only two types of wind; weak

wind (discomfort thermal) and strong wind (comfort thermal). In terms of building

and construction, for different regional areas different types of buildings need to be

considered based on the wind speed flow. For southern part of peninsular Malaysia

the construction of high-rise building is quite appropriate since this location was

recorded with the weak wind condition. The rest of the areas are considered with the

comfort thermal condition which are suitable for terrace housing and low-rise

building.

Nowadays, researchers all around the world have focused on an alternative in

the production of clean and renewable energy that comes from resources which are

naturally replenished on a human timescale. Wan et al., (2011) explored the wind

energy potential at east coast of peninsular Malaysia and found that the wind power

of study site (Terengganu, 4o13.6’N and 103o26.1’ E) is lowest during the south west

monsoon season, while it is highest during the north east monsoon season with the

value of 84.60 W/m2. Therefore, small wind turbines could be used in order to

deliver the energy power which is particularly generated during the north east

monsoon which starts from late November and ends in early March. Nurhayati

(2010) and Siti et al. (2011) discovered that Mersing is the most potential site for

installing wind turbine due to peak mean wind speed during the northeast monsoon

with approximately of 62 W/m2. This reveals that there is a high potential on
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applying the small scale wind turbine system at Mersing for power generation

purposes.

Furthermore, wind energy is an ideal alternative energy source which is

rapidly developed all around the world. As an example in China, it was reported that

the total current capacity of wind farms is 25805.3 MW, with a progress rate of

114% in 2009. As the applications of the wind energy grows, it is essential for power

utilities to plan the assimilation of wind power and other traditional powers. Hence,

an accurate measurement of wind speed prediction is preferred (Hui et al. 2010).

The research flow of this study can be illustrated in Figure 1.2. Firstly, the

wind speed data will go through the pre-processing analysis starting with spatial

analysis known as Kriging. It is then followed by the data explanatory analysis

comprises of descriptive statistics, checking of long memory and Mann Kendall

trend test. After all the pre-processing analysis is done, the modelling process begins.

All wind speed datasets will be modelled using conventional models; ARMA.  The

error component will be tested with Mc-Leod Li test (ML test) to check the presence

of ARCH. If ARCH does not exist, the model is adequate. But if ARCH exists, the

model is inadequate. Therefore, the ARCH effects need to be treated. In this study,

GARCH model will be hybridized into the conventional ARMA.
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Figure 1.2 Flowchart summarizing the methodological framework

The adequacy of ARMA-GARCH will be checked by Ljung-Box (LB) test

and Lagrange-Multiplier (LM) test. If the model is adequate, the end result will be

ARMA-GARCH model. However, if there is still excessive ARCH in ARMA-

GARCH, then Dynamic Linear Model (DLM) will be introduced. The first class of

DLM introduced is DLM Polynomial. If the model is adequate, the end result is

DLM Polynomial. If not, we introduced the second class of DLM; DLM-ARMA.

The adequacy checking by LB test and ML test will be carried out. If the model is

adequate, the end result is DLM-ARMA model.
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1.2 Problem Statement

Currently, the production of electrical energy sources in Malaysia was

entirely fabricated from water basis. Even though water is a ceaseless source, other

renewable energy alternatives are still needed in order to support the production of

energy for occupying people’s necessities. In line with the save our earth campaign,

one alternative that can be seen helpful and effective is through the energy generated

from wind speed since wind is natural, continuous and clean source.

However, researches in this area are still limited, not much information can

be acquired in Malaysia. Modeling wind speed data may become a very thoughtful

task due to an erratic of natural phenomena. As a substitutable, time series models

are used. Time series models normally have a comparatively simple structure that

integrates the component of uncertainty in the outcome.  This uncertainty signifies

the portion of the process that cannot be explained deterministically. Time series

models are aimed to duplicate the imperative patterns of evident in the data set based

on the present information of the physical processes.

Wind with the volatility characteristics may become a challenging task in the

data analysis process. Therefore a good analysis of the data is vital to apprehend the

entire behaviour of the wind speed data which lead to an accurate modeling and

forecasting. Moreover, when it comes to the wind energy calculation, a precise and

lesser error method is preferred. Therefore in this study, an attempt has been made in

finding the best method to represent the wind speed model. The occurrence of

Autoregressive Conditional Heteroscedasticity (ARCH) effect that was found in the

residuals data is another problem that needs to be treated. An alternative has been

studied critically in order to remove the ARCH effect. Hence, this study will explore

the most suitable method that is able to overcome the problems of excessive ARCH

effect in the ARMA-GARCH model.
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Another aspect that needs to be considered is in terms of forecasting ability.

Forecasting wind speed data commonly involves short-term forecast. Therefore a

dynamic time series model that is capable to forecast in short term duration is

essential. A model that is flexible in capturing any pattern of the data series was

examined comprehensively. Furthermore, the analysis of wind speed time series with

conventional models (e.g Ahmed et al, 2010) requires at least a preliminary

transformation of the data to get stationarity; but we might feel more natural to have

models which allow analyzing more directly data which show instability in the mean

level and in the variance, without transformation. So this study hopefully will fulfill

the researcher’s essential and contributes a piece of knowledge in wind speed energy

generated field in terms of modeling and forecasting. As a conclusion; three main

problems was identified to be handled in this study. Firstly is in term of modeling

Malaysia’s wind speed using time series approach, secondly is in term of treating the

excessive ARCH effect in the ARMA-GARCH model and thirdly is to select the best

model that capable to do short-term forecasting.

1.3 Objectives of the study

The objectives of the research are:

(i) To investigate the wind speed trend in Peninsular Malaysia.

(ii) To propose the hybrid time series linear model

(iii) To propose state space approach known as Dynamic Linear Model (DLM)

(iv)To compare the performance of conventional and hybrid times series models

with the state space approach model.

(v) To use the best model to forecast the wind speed data
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1.4 Scope and limitations

The data used in this study involves daily wind speed data (secondary data)

dated from January 1st 1985 to December 31st 2009 covering ten stations in

Peninsular Malaysia only due to unavailability of complete wind speed stations. The

unit of wind speed data is meter per second (m/s). However, the data contains

missing values. Therefore the Mean Imputation method was used to fill up the

missing values. The pre-processing method includes descriptive statistics, Ordinary

Kriging, Long memory and Mann Kendall trend test. The tools that were applied

throughout the analysis process comprises of R-software and Gretl software. This

study focuses on short-term forecasting model only due to necessity of wind energy

calculation. Wind farm managers and workers require immediate forecasting tools

for the instantaneous plan of maintenance. It also can optimize the whole electricity

supply, stabilize the load and supply of electricity and also improve the cost

effectiveness of energy supply. The analysis of the wind speed data include the

conventional method based on Box-Jenkins approach, hybrid with volatility model;

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) model and a

proposed model; DLM that allows the short term forecasting method.

1.5 Significance of the research

Selecting the best model is important to forecast the wind speed data. An

accurate forecasting model will reduce the planning errors and increase the reliability

of the electric power grid (Masseran, 2016). This thesis aims to provide a short term

forecasting model of the daily wind speed data. The prediction of wind speed from

the best fitted model will provide an accurate view of future pattern and the

calculation of energy generated can be estimated instantly for future usage.

Therefore, several contributions will be highlighted here.
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Firstly, this thesis examined the spatial variability of Peninsular Malaysia

wind speed and areas with high, moderate and low wind speed event was recognized.

The structure of wind speed data that was identified is important in deriving the wind

speed patterns, measuring wind speed amounts in experimental locations and at the

same time helping in classifying locations of high, moderate and low wind speed

events. A thorough study is effectively beneficial for planners and other users. The

aims of this research are to study the properties of wind speed time series through

conventional and volatility models. Hence, through the details analysis the problem

solving of excessive persistence can be identified. At the end of the study, a good

forecasting model could be produced and able to describe the dynamics of wind

speed data of the study areas.

The wind speed data even though performed well with the linear model but

the checking of heteroscedasticity presence is necessary to reconfirm either the

model constructed is adequate or not. If this effect exists, it indicates that the linear

model is not suitable to fit the behavior of the data. So, in this research the dealing of

the heteroscedasticity effect will be highlighted since this effect plays a major

concern in regression analysis. The presence of heteroscedasticity effect can

invalidate the statistical tests of significance.

Furthermore, a novel model approach was developed in this thesis that

captures all the characteristics observed in wind speed time series. The thesis first

considers the class of conventional Autoregressive Moving Average (ARMA) model

with hybrid GARCH. However, from the analysis we found that the hybrid model

ARMA-GARCH fails to capture the entire volatility of wind speed data as the

remaining of ARCH effect still exists in the residuals data.  Therefore, an alternative

to overcome the excessive of ARCH effect in ARMA-GARCH model was presented

by introducing Dynamic Linear Model (DLM) based on State Space approach that is

capable to capture the volatility of the wind speed data without going through any

transformation of the data. This approach was found to be easier and simpler yet

flexible in any kind of condition.  The dynamic properties of this method allow the
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model to follow closely the behavior of the wind speed data. Thus, a more accurate

model was created in presenting daily wind speed data in Peninsular Malaysia.

Modeling Malaysian wind speed data could be a vital contribution since it

provides an overview on how the trend and nature of the data. The trend of historical

pattern will be exploited to project the short term future pattern which the

instantaneous power energy could be estimated from. Hence, it will help the

authorities in planning the total power grid and the effective cost in particular

location for public usage. In other words, this paper aims to develop a model that

signifies a prediction of the wind speed data and an attempt has been made in order

to execute a formula that is capable to capture the future pattern of the data.

1.6 Organization of the thesis

The rest of the thesis is organized as follows:  Chapter 2 presents a review of

the related literature.  Chapter 3 gives the methodology used in this thesis.  The main

contributions of this research start in Chapter 4.  Chapter 4 explores the basic

characteristics of the daily wind speed data sets and the spatial variability

representing locations with high, moderate and low wind speed event.  Chapter 5

presents a conventional wind speed model that describes the basic characteristics

found in the wind speed data exploration and chapter 6 proposes a new approach that

captures the limitations of the previous models.  Chapter 7 closes the thesis with

conclusions and recommendations for future research.
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