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ABSTRACT 

 

In a plasma focus operation, the X-ray radiation properties are dependent on 

the thermodynamics data such as ion fraction (α), effective ion charge number (Zeff), 

and effective specific heat ratio (γ) at different temperatures. In Corona Model (CM), 

the value of ion fraction was first obtained from McWhirter’s equation and was 

subsequently used in determining the Zeff and γ values. The state-of-the-art ion 

fraction calculation based on Mazzotta’s (Mazz) in Modified Corona Model 

(MOCM) was compared with McWhirter’s (McW) computations for neon, argon and 

nitrogen gases. The implementation of McW’s and Mazz’s ion fraction calculation in 

CM and MOCM cases respectively showed deviations in terms of temperatures. The 

aim of this study is to investigate the Zeff and γ values based on the ion fraction values 

determined from Mazz’s and McW’s computations and applied in numerical 

experiment of plasma focus device emphasizing on radial compression plasma 

dynamics and parameters of soft X-ray (SXR) emission. The Zeff and γ for both 

computations were incorporated in Lee code for numerical experiment on SXR yield. 

Lee code version RADPF5.15K has been used with the incorporation of Zeff and γ 

computation based on CM and MOCM operating in various gas pressures. The 

parameters of SXR yield played important role as they were affected by these 

different thermodynamics data calculation used in CM and MOCM in the Lee 

Model. Among these three operating gases, argon plasma of MOCM showed 

tremendous significant effect towards the results in SXR yield which cannot be 

disregarded. Thus, it is concluded that the ion fraction values derived from Mazz’s 

computation has a significant effects on Zeff, γ, higher SXR yield and enhances radial 

compression phase performance. 
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ABSTRAK 

 

Dalam pengendalian plasma fokus, sifat radiasi sinar-X bergantung kepada 

data termodinamik seperti pecahan ion (α), bilangan cas ion berkesan (Zeff), dan 

nisbah haba tentu (γ) pada suhu yang berbeza. Dalam Model Corona (CM), nilai 

pecahan ion pada dasarnya diperoleh daripada persamaan McWhirter dan 

kemudiannya digunakan dalam menentukan nilai Zeff dan γ. Pengiraan pecahan ion 

terkini berdasarkan Mazzotta (Mazz) dalam Model Corona Diubahsuai (MOCM) 

dibandingkan dengan pengiraan McWhirter (McW) untuk gas neon, argon dan 

nitrogen. Pelaksanaan pengiraan pecahan ion McW dan Mazz dalam CM dan 

MOCM masing-masing menunjukkan sisihan dari segi suhu. Tujuan kajian ini adalah 

untuk mengkaji Zeff dan γ berdasarkan nilai pecahan ion yang ditentukan daripada 

pengiraan Mazz dan McW dan seterusnya diaplikasikan kepada simulasi peranti 

plasma fokus khususnya kepada mampatan jejarian dinamik plasma dan parameter 

pancaran sinar-X lembut (SXR). Zeff dan γ berdasarkan kedua-dua pengiraan telah 

dimasukkan dalam kod Lee untuk simulasi hasil SXR. Kod Lee versi RADPF5.15K 

telah digunakan dengan kemasukan pengiraan Zeff dan γ berdasarkan CM dan MOCM 

yang beroperasi dalam pelbagai tekanan gas. Parameter hasil SXR memainkan 

peranan penting kerana dipengaruh dengan perbezaan pengiraan data termodinamik 

yang digunakan dalam CM dan MOCM dalam Model Lee. Antara ketiga-tiga gas 

beroperasi, plasma argon dalam MOCM menunjukkan kesan yang ketara terhadap 

keputusan dalam hasil SXR yang tidak boleh diabaikan. Oleh itu, kesimpulannya 

nilai pecahan ion yang diperoleh daripada pengiraan Mazz ini mempunyai kesan 

yang besar ke atas Zeff, γ, hasil SXR yang lebih tinggi dan meningkatkan prestasi fasa 

mampatan jejarian plasma. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background of research 

 

High current plasma focus (PF) device discharges is a versatile machine 

known to be the sources of producing high density of plasma with emission of 

intense radiation such as neutron [1] and abundant amount of soft X-ray (SXR), hard 

X-ray (HXR), highly energetic ions and electrons [2]. With performance as source of 

such radiations, the plasma focus machine had gained much interest in the research 

around the world especially in improving and optimizing the machine for various 

purposes. Different types of plasma focus devices were discovered by Mather [3] and 

Filippov [4] in the early 1960’s named Mather-type and Filippov-type plasma focus 

devices. 

 

The dynamical plasma formation and structure of the plasma focus has been 

examined with a two‐dimensional numerical fluid model [5]. A two-dimensional, 

three-fluid code based on the two-fluid Potter code was developed for simulating the 

plasma focus discharge and for modelling the ionization and recombination 

phenomenon by treating neutral gas as plasma medium [6]. A simple plasma focus 

(3.3kJ) device was specifically designed in earlier work [7, 8] from the prospect of 

educational value, reliability and cost-effective device.  
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There are various theoretical models have been generated to simulate plasma 

dynamics in plasma focus device [9]. In 1984, a 2-phase radiative plasma focus 

model [10] was developed by S. Lee [7] called Lee Model numerical experiments to 

characterize any conventional Mather-type plasma focus. The improvement of this 

model was executed progressively until 1991 with the development of 5-phase model 

[10]. Based on Corona Model, radiative plasma focus model was established [11] 

with the capability of yielding trajectory and structure of plasma [12] thus showing 

good agreement with the experimental measured values.  

 

Corona Model computation for all ionization balance [13] was utilized for 

thermodynamics data calculations involving specific heat ratio and charge number as 

function of temperature [10, 14]. The improvement in Lee Model code has been done 

specifically on the SXR radiation part [12] using line radiation calculation in 1998. 

The code was then modified for adapting the plasma behaviour in Filippov-type 

plasma focus operation [15]. Comprehensive range of numerical experiments have 

been studied to attain scaling laws on neutron yield and neon soft X-ray yield in 

terms of storage energy and pinch current for optimizing machine parameters and 

operating parameters [16] in Lee Model. 

 

The modification and improvement of the model is feasibly needed for better 

continuum and emission processes. The investigation of the calculation of plasma 

ionization balance for X-ray radiation has become very keen so far [17-22]. In the 

modelling of plasma focus, the approach used for ionization balance from Corona 

Mode has been computed using McWhirter’s calculation [17].  

 

This had given opportunity for us to continually improve and modify the 

nominal area of the dependable aspect for SXR radiation, so that predictable altered 

dynamics in particles emission yields and radiations could be achieved numerically. 
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Results assembled from the numerical experiments and data collected from 

actual experimentations are useful to enable in obtaining a greater insight of the 

physics of the real processes in a plasma focus device. Therefore, the numerical 

method for improving plasma dynamics in the plasma focus devices that will affect 

the radiation yields especially for the plasma compression is investigated. This is a 

highly cost effective method for exploring a lot of complex physical phenomena 

which are not possible by actual experiments. 

 

1.2 Problem statement 

 

Extensive research in increasing the X-ray yield and expanding its application 

in the plasma focus has become an interest in the public domain. In spite of this, 

there is minimal study in the area of plasma thermodynamics data concerning plasma 

ionization balance effect which requiring more recent data and calculation. Since the 

production of X-ray is dependent on this thermodynamics data, hence it is feasible to 

make some modification for this ionization balance to see the effects on X-ray yield 

that is unobtainable until now. In this study, the analysis of X-ray yield in the plasma 

focus device is obtained for plasma ionization balance effect and its influence on 

various parameters in a Mather-type plasma focus. This study will look into how 

much deviations of plasma ionization balance data for the case of modified 

calculation and previous calculation as well as other thermodynamics data such as 

ion charge number and specific heat ratio affected due to the occurred deviations. 

Also, how much deviations occur in the X-ray yield and its properties as well as the 

compression dynamics during the pinch phase due to the deviations in plasma 

ionization balance data.  
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1.3 Objectives of research 

 

The present research is mainly to investigate the deviations of the ionization 

balance and its effects on thermodynamics data involving ion charge number and 

specific heat ratio as well as the X-ray emission and its related properties 

numerically. The study specifically included as below: 

 To determine the effects of plasma ionization balance towards the ion 

charge number and specific heat ratio in Corona Model. 

 To find the Lee Model code with the incorporation of modified Corona 

Model subroutines within the code comprising the modified ion charge 

number and specific heat ratio.  

 To compare the thermodynamics data obtained based on the modified 

Corona Model and previous Corona Model subroutines in Lee code. 

 To characterize the effects of the thermodynamics data in Lee Model 

emphasizing on radial plasma compression dynamics and related 

properties of X-ray emission.   

 

1.4 Scope of research 

 

This research covered numerical experimentation of plasma thermodynamics 

data using Corona model which then be further used in the Lee model for plasma 

focus operation. In this present project, the evaluation of plasma ionization balance 

corresponding to temperature will be firstly studied. The investigation of the effect of 

plasma ionization balance towards the ion charge number and specific heat ratio in 

neon (Ne), argon (Ar) and nitrogen (N2) gases will also be included in the Corona 

Model. The incorporation of Corona Model subroutines within the Lee Model code 

which comprising the thermodynamics data calculations for Ne, Ar and N2 will be 

utilized in this scope. To produce reliable X-ray in this code, the thermodynamics 

data is the crucial part that needs to be estimated appropriately. Consequently, the 

effects of these thermodynamics calculations towards X-ray yield will be 
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investigated emphasizing on the plasma compression dynamics during the final 

phase and to the related parameters of X-ray yield in Lee Model. Numerical 

experimentation will be done to study the effects of X-ray yield based on the 

modified version of Corona Model and then results will be compared with the 

previous Corona Model used for those three gases.  

 

1.5 Significance of research 

 

The study of plasma focus device has been widely and actively researched for 

its concept, design, construction, various physics phenomena operation as well as the 

proper and better improvement of diagnostics techniques for each application 

purpose. Apart from application purpose, the research is also important to be 

investigated numerically for development in educational area. Therefore, by 

incorporating the numerical modification of thermodynamics data based on extensive 

improvement of plasma ionization balance calculation, more realistic design and 

product is possibly achieved for better yield and energy resolution in plasma focus 

study. This study will improvise the calculations in consideration which was yet to 

be explored. Thus, it contributes to the comprehension of the ionization balance 

concept by providing a demonstration in the numerical experiments and explaining 

the uncovered aspects of this phenomenon.  

 

1.6 Thesis Organization 

 

In chapter 1, the introductory description is covered with the background, 

brief history of the plasma focus research, followed by the problem statement, 

objectives of research, scope of research and its significance to the current research. 

In chapter 2, the review of different approaches of plasma ionization balance and 

plasma dynamics in plasma focus as well as soft X-ray compression dynamics of 
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plasma focus will be discussed regarding the literature review. In chapter 3, the 

theoretical aspects of plasma and plasma focus devices are covered including the 

dynamics of plasma focus operation, general concepts of X-ray emission from 

plasmas including the collisional ionization balance theory. In chapter 3, the 

methodology used in numerical experiments of Lee Model along with the proposed 

modification in the existing Corona Model is presented. The results presentation of 

the numerical experiments in graphical and tabulated form is included in chapter 4 

and depicts an elaborated discussion by interpreting the obtained data. In chapter 6, 

the conclusion of the research findings is included. It also suggests some aspects to 

be investigated for the future study in the area of research of the plasma focus 

devices.  
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