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ABSTRACT 

With the technological revolution in the 21
st
 century, time and distance of 

communication are decreased by using electronic mail (e-mail). Furthermore, the 

growing use of e-mail has led to the emergence and further growth problems caused 

by unsolicited bulk e-mails, commonly referred to as spam e-mail. Many of the 

existing supervised algorithms like the Support Vector Machine (SVM) were 

developed to stop the spam e-mail. However, the problem of dealing with large data 

and high dimensionality of feature space can lead to high execution-time and low 

accuracy of spam e-mail classification. Nowadays, removing the irrelevant and 

redundant features beside finding the optimal (or near-optimal) subset of features 

significantly influences the performance of spam e-mail classification; this has 

become one of the important challenges. Therefore, in order to optimize spam e-mail 

classification accuracy, dimensional reduction issues need to be solved. Feature 

selection schemes become very important in order to reduce the dimensionality 

through selecting a proper subset feature to facilitate the classification process. The 

objective of this study is to investigate and improve schemes to reduce the execution 

time and increase the accuracy of spam e-mail classification. The methodology of 

this study comprises of four schemes: one-way ANOVA f-test, Binary Differential 

Evolution (BDE), Opposition Differential Evolution (ODE) and Opposition Particle 

Swarm Optimization (OPSO), and combination of Differential Evolution (DE) and 

Particle Swarm Optimization (PSO). The four schemes were used to improve the 

spam e-mail classification accuracy. The classification accuracy of the proposed 

schemes were 95.05% with population size of 50 and 1000 number of iterations in 20 

runs and 41 features. The experiment of the proposed schemes were carried out using  

spambase  and  spamassassin benchmark dataset to evaluate the feasibility of 

proposed schemes. The experimental findings demonstrate that the improved  

schemes  were  able  to  efficiently  reduce  the  number  of  features  as well as  

improving the e-mail classification accuracy. 
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ABSTRAK 

Dengan revolusi teknologi pada abad ke-21, masa dan jurang komunikasi 

menurun dengan penggunaan mel elektronik (e-mel). Tambahan pula, penggunaan e-

mel yang semakin meningkat telah mengakibatkan kebangkitan pertumbuhan 

masalah yang disebabkan oleh e-mel pukal yang tidak dipesan, biasanya dirujuk 

sebagai e-mel spam. Kebanyakan algoritma pengelasan e-mel spam sedia ada seperti 

Mesin Vektor Sokongan (MVS) dibangunkan untuk menghentikan e-mel spam. 

Walau bagaimanapun, masalah berurusan dengan data yang besar dan ruang ciri 

berdimensi tinggi boleh membawa kepada ketepatan pengelasan  yang rendah dan 

kerumitan komputasi yang tinggi. Pada masa kini, mencari subset ciri-ciri yang 

optimum (hampir optimum) mempengaruhi prestasi pengelasan e-mel spam; ini telah 

menjadi salah satu cabaran yang penting. Namun, untuk mengoptimumkan 

keupayaan pengelasan  e-mel spam, isu-isu pengurangan dimensi perlu diselesaikan. 

Skema pemilihan ciri subset menjadi sangat penting untuk mengurangkan dimensi 

dengan memilih ciri subset yang sesuai untuk memudahkan proses pengelasan. 

Objektif kajian ini adalah untuk mengkaji dan membangunkan skema untuk 

meningkatkan dan mengekalkan ketepatan, dan mengurangkan kerumitan komputasi 

bagi pengelasan e-mel spam. Metodologi kajian ini terdiri daripada empat skema: 

ANOVA ujian-f satu hala, Evolusi Perbezaan Binari (BDE), Evolusi Perbezaan 

Bertentangan (ODE) dan Pengoptimuman Kelompok Zarah Bertentangan (OPSO), 

dan gabungan antara Evolusi Perbezaan (DE) dan Pengoptimuman 

Kelompok Zarah (PSO). Empat skema tersebut telah digunakan untuk meningkatkan 

ketepatan pengelasan e-mel spam. Ketepatan pengelasan pendekatan yang 

dicadangkan adalah 95.05% dengan jumlah populasi 50 dan 1000 lelaran dalam 20 

turutan dan 41 ciri-ciri. Percubaan pendekatan yang dicadangkan dilaksanakan 

dengan menggunakan penanda aras set data spambase dan spamassassin untuk 

menilai ketersavran pendekatan yang dicadangkan. Penemuan eksperimen 

menunjukkan bahawa, pendekatan baru dapat mengurangkan dengan cekap bilangan 

ciri-ciri serta meningkatkan ketepatan pengelasan e-mel. 
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CHAPTER 1 

INTRODUCTION 

1.1  Introduction 

In recent years, with the rapid development of Internet technologies, the 

number of people using electronic mail (e-mail) is continuously increasing (Allias et 

al., 2014; Trivedi and Dey, 2013). The usage of e-mail in everyday communication is 

mainly due to its time saving and cost reduction as well as being the fastest and 

easiest means of the delivery of messages. It has gained extremely wide popularity 

among internet users in information exchange (Chhabra et al., 2010; Naksomboon et 

al., 2010; Youn and McLeod, 2007a; Zhang et al., 2011b). However, the increase in 

e-mail users leads to the appearance of unwanted and harmful e-mails known as 

"spam e-mail" (Kesharwani and Lade, 2013; Kumar et al., 2012). According to many 

researchers, spam e-mail forms a threat to the Internet user community and service 

providers (Almeida et al., 2010). It has negative impacts on the usability of e-mail 

and IT infrastructure by occupying important resources such as wasting network 

bandwidth, producing unnecessary network congestion (Lai et al., 2009b). As well as 

consuming computing resources and time, spam e-mail reduces the effectiveness of 

legitimate advertising, filling  mailboxes, storage space (Pour et al., 2012). As the 

usage of e-mail continues to increase, the ratio of spam e-mail is also increasing and 

thereby becomes more difficult, time-consuming and costly to be classified manually 

(Oda and White, 2003; Soranamageswari and Meena, 2010). In recent years, 

researchers efficiently solved the above issue (classifying e-mails). E-mail spam 

classification methods were investigated, and many studies have been proposed to 
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improve their performance (Almeida et al., 2011; Yevseyeva et al., 2013). In 

addition, e-mail spam identification is a difficult task because spammers use tricks in 

order to avoid spam classifiers to ensure their delivery (Méndez et al., 2008; Sousa et 

al., 2013).  

E-mail spam classification schemes are affected negatively when dealing with 

large data and a high dimensionality of the feature space (Almeida et al., 2011; Islam 

and Yang, 2010). The high dimensionality of feature space may contain a large 

number of irrelevant and redundant features that can result in low accuracy and high 

execution time for the classifier (Behjat et al., 2012a; Fagbola Temitayo, 2012). With 

the proliferation of high-dimensional feature space, feature selection has become an 

essential task of learning process. Generally, feature selection is widely used in e-

mail spam classification to reduce the high dimensionality of feature space without 

sacrificing the performance of the classification (Khatri and Emmanuel, 2013). 

Reducing the dimensionality of the feature space allows the algorithm to work faster 

and more efficiently (Behjat et al., 2013; He et al., 2009b). The large number of 

features affects the execution time and led to reduced performance of e-mail 

classification (Lai et al., 2009a). As a part of any feature selection algorithm, there 

are numerous factors that need to be considered. The existing evaluation measure 

utilized in feature selection techniques are divided into three categories namely filter, 

wrapper and embedded approaches (Cortez et al., 2012; Khoshgoftaar et al., 2013b; 

Unler et al., 2011b). The main aim of the feature selection in e-mail spam 

classification is to overcome the high dimensionality of the feature space through 

removing the irrelevant and redundant features (Behjat et al., 2013; Xue et al., 2012). 

The irrelevant and redundant features increase the amount of the search space and 

make e-mail spam classification more difficult (Gomez et al., 2012). To overcome 

these challenges, reduction of high dimensionality is proposed, which decreases the 

number of features in order to achieve higher classification accuracy (Wu et al., 

2011a). In recent work Sousa et al (2013) reported that the correct selection of subset 

features is a key issue in the task of discriminating between spam e-mail and non-

spam e-mail. Another survey by (Guzella and Caminhas, 2009) stated that the 

biggest challenge in e-mail spam classification is to provide a classification scheme 

to reduce the execution time and improve the classification accuracy. The key of this 
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study is to evaluate how different feature subset selection schemes can affect the 

performance of learning algorithm such as SVM-based e-mail classification system 

via reducing the dimensionality of the feature space.  

1.2  Problem Background   

The increasing risk size of spam e-mail has become a serious issue and 

uncontrollable not only to the Internet, but also for users and for Internet Service 

Providers (ISPs) (Idris et al., 2014; Sathawane, 2013). Spam e-mail is an intrusion of 

privacy, with problematic content such as online fraud, phishing attacks or viruses 

(Méndez et al., 2008). Spam e-mail creates a serious threat to the security of 

networked systems and computer users everywhere (Islam and Yang, 2010). 

Furthermore, a large amount of space is occupied in  user's mailbox, and there is no 

relation between spam message content and receivers (Alguliev et al., 2011; Pour et 

al., 2012). Further, users of e-mails are affected by spam e-mail due to time spent to 

distinguish between spam e-mail and non-spam e-mail (Guzella and Caminhas, 

2009). The importance of safeguarding the Inbox mail against spam e-mail is an 

essential issue  and  e-mail spam classification plays an important role in ensuring a 

non-spam e-mail. Recently, the high increase of spam e-mail has become a 

challenge. The e-mail spam classification problem is growing because spammers  

will always  find  new  ways  to  attack  e-mail spam  classifier  due  to  the economic 

benefits of sending spam e-mail (Sathawane, 2013). Therefore, there is a need to 

develop spam e-mail classifiers that can effectively eliminate the increasing of spam 

e-mail automatically before the spam enters the user's mailbox (Chhabra et al., 

2010). Among the approaches developed to combat spam e-mail, classification is an 

important and popular one (Zhang et al., 2014).  

E-mail spam classifiers have become obsolete in a short period of time and 

need to be updated on a regular basis due to the continuous changing of techniques 

used to send spam e-mail (Yevseyeva et al., 2013). Currently, there are two major 

approaches for e-mail spam classification: Collaborative Approach (CA) and 
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Content-Based Approach, (CBA) and some researchers have combined features from 

both of them to develop new approach (He et al., 2009b; Kuang et al., 2014; 

Sathawane, 2013; Sousa et al., 2010). The CA is based on sharing information about 

spam e-mails, while CBA uses a data mining classifier to analyze content (.e.g. word 

frequencies) (Cortez et al., 2012). The two approaches have their own drawbacks; 

CA often suffers from the sparsity of data although many techniques have been 

developed to improve this drawback. On the other hand, CBA behavior is dependent 

not only on the classifier learning capabilities, but also the type of FS method 

adopted (Sousa et al., 2013). In regards to e-mail spam classification, current 

research on CBA relies mainly on improving individual classifier performance via 

selecting the optimum subset features. The effectiveness of CBA e-mail spam 

classifier relies on the appropriate choice of the features (Méndez et al., 2006).  The 

increasing importance of e-mail spam classification motivates various aspects of 

classification-related study that provide a new solution, which may not be achievable 

by conventional e-mail classification approaches. The main goal of e-mail spam 

classification is to pre-sort messages into two categories of spam e-mail and non-

spam e-mail with a high accuracy rate and low execution time (Terri Oda, 2005). 

Although, there are many algorithms such as SVM that have been developed for e-

mail spam classification problems, but  the  problem  is  still not  being  solved  

completely (Ashok and Shrivastav, 2014; Kumar et al., 2012).  

The big challenge is to develop better schemes that automatically classifies 

spam e-mail from non-spam e-mail (Lai et al., 2009a). The survey by Allias et al 

(2014) suggests that the e-mail spam classification has low classification accuracy 

due to a high dimensionality of feature space that contains redundant and irrelevant 

features (Allias et al., 2014; Suebsing and Hiransakolwong, 2012; Wu et al., 2011a). 

Unfortunately a high  dimensionality of feature space after preprocessing became a 

significant challenge for the classifier (Allias et al., 2014). In addition to the large 

number of data issues, the excessive number of features can also degrade the e-mail 

spam classification  accuracy (Parimala and Nallaswamy, 2012). This is because the 

large number of features leads to the problem of high dimensional feature space 

(Behjat et al., 2012c). The irrelevant and redundant features lead to a high execution 

time. Yet, not all of these features have the same importance for the e-mail spam 
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classification, and some of them may be unimportant due to redundancy or may even 

be irrelevant. One of the fundamental motivations for feature selection is to 

overcome the problem of high dimensionality (Mendez et al., 2006). To overcome 

this problem, dimensionality reduction schemes have been proposed, which can 

reduce the number of irrelevant features in order to achieve higher classification 

accuracy (Wu et al., 2011b). Therefore, a wide variety of methods have been 

proposed in the literature in order to determine the most important features for 

classification (Aggarwal and Zhai, 2012). The correct Feature Selection (FS) 

approaches are a key challenge to improve the e-mail spam classification (Cortez et 

al., 2012). Also, the result of eliminating irrelevant and redundant features leads to 

an optimized classification process that is efficient and accurate (Yevseyeva et al., 

2013). Nowadays the use of a finite subset of features to classify the e-mail as spam 

e-mail or non-spam e-mail is an important research topic (Kumar et al., 2012; Lai et 

al., 2009a; Yevseyeva et al., 2013).  

Recently, most of the  researchers in the area of e-mail spam classification 

have concentrated more on obtaining  the optimal classification accuracy via 

decreasing of the dimensionality feature space (Parimala and Nallaswamy, 2012; 

Yevseyeva et al., 2013). There are many solution methods available for e-mail spam 

classification. Most of these methods are based on Machine Learning (ML) 

algorithms such as classification techniques (Fagbola Temitayo, 2012; Guzella and 

Caminhas, 2009). The literature review presents various ML methods that have been 

proposed for e-mail spam classification, such as SVM algorithm. SVM algorithm 

was introduced in mid 1990s, and it is one of the robust methods for binary 

classification (Rakse and Shukla, 2010). It is a popular algorithm applied in the 

binary classification. Furthermore, it is one of the top ten influential algorithms for 

data mining as well as the most accurate method among all well-known algorithms 

(Maali and Al-Jumaily, 2013; Wu et al., 2008). Although many learning algorithms 

such as SVM have been widely used in e-mail spam classification, yet  the problem 

of dealing with huge data and high dimensional feature space that leads to low 

accuracy and high execution time (Chhabra et al., 2010; Wang, 2008). Figure1.1 

illustrates the scenario leading to the problem addressed by this research.  



6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Desired solution 

 

- Low dimensionality feature space 

- High accuracy 

 

Scenario of the e-mail Spam 

- Huge number of e-mail spam 

receive every day 

- wasting network bandwidth  

- filling  mailboxes 

 

The Gap 

Relevant and 

redundant features that 

can reduce the 

classification accuracy 

of the e-mail spam 

 

Limitation of existing e-mail 

classification methods 

- High dimensionality of 

feature space 

- Low accuracy 

 

 

Figure 1.1     Scenario leading to the problem 

Existing 

solutions: 

- Machine 

learning 

- Data Mining 
 

Problem: 

- Classification 

Accuracy 
 



7 

 

The problem of SVM with a high dimensional feature space and the large 

dataset classification still remains a challenge (Liu et al., 2013). Yet the problem of 

optimizing the SVM in terms of improving the classification accuracy is the subject 

of ongoing research (Zhang et al., 2012). The accuracy of SVM as a classifier was 

affected by the high dimensionality of features (number of variable) (Wang et al., 

2005). For example Genetic Algorithm (GA) algorithm was adopted in the work of 

Wang et al (2005) to select the optimal subset feature. SVM algorithm has 

continuously received increasing attention from researchers in spam e-mail 

classification. Some  research  has  been  done  in  SVM  with e-mail spam 

classification (Lai et al., 2009a; Lai and Wu, 2007). The conventional SVM 

algorithm is insufficient because it considers all e-mail features as equal in 

importance. All the e-mail features are used even if they have irrelevant or redundant 

features. There are different processes and methods used in order to enhance the 

accuracy and computational complexity of the learning algorithms such as SVM. 

Many researchers approach this problem of computational complexity and the 

classification accuracy via performance feature selection (Fagbola Temitayo, 2012; 

Maldonado and L’Huillier, 2013).  

This thesis focuses on reducing the number of features (high dimensionality) 

via selecting the optimal (or near-optimal) subset features based on ECs algorithm. 

Additionally, reducing the number of features increases the e-mail spam 

classification accuracy. The literature presents that the researchers have tried to 

enclose feature selection schemes to select the optimal subset feature in classification 

problems (Parimala and Nallaswamy, 2012). Empirically, the FS approaches lead to 

a higher accuracy rate of e-mail classification. In the area of data mining, many 

researchers have mentioned that the maximum performance is not achieved by using 

all available features but by using a subset of all features. Moreover, the correlation 

between the features influences the classification accuracy. There is little  research 

that provides a study to choose the optimal (or near-optimal) subset features in e-mail 

spam classification (Behjat et al., 2012b). Generally, the problems in e-mail spam 

classification can be classified into three groups: high dimensional feature space, 

execution time, and low accuracy. and various researchers put in considerations 

(Suebsing and Hiransakolwong, 2012). From the above there are further needs to 
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design and build better approaches by using ECs algorithm to select the optimal 

(near-optimal) subset features. Additionally, to differentiate between low and high 

features in terms of importance, researchers in this thesis consider the features that 

have emerged in order to obtain higher e-mail spam classification accuracy. Also, 

this study focuses on using feature subset selection schemes that help to select the 

subset features related to the performance of the e-mail classification system. The 

selection of the features is based upon some accuracy criteria, without significantly 

reducing the performance from the classifier system.  

1.3  Problem Statement 

Although several supervised algorithms have been widely used in e-mail 

spam classification, the problem of dealing with huge data and high dimensionality 

(many feature) is low accuracy as many researches are being carried out (Chhabra et 

al., 2010; Fagbola Temitayo, 2012; Morariu et al., 2006).  

"A high dimensionality of the feature space based on a large number of 

irrelevant and redundant features can affect the classification accuracy of various 

supervised algorithms during run for e-mail spam classification". 

1.4  Research Questions 

This research is intended to deal with the problems related to e-mail spam 

classification. This research seeks to answer the following main question: 

 How can the removal of irrelevant and redundant features besides the 

selection of the optimal (or near-optimal) subset features reduce the high 
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dimensionality of the feature space and increase the classification accuracy of e-mail 

spam classification? 

In order to answer the main question raised above, the following sub-

questions need to be addressed: 

 

i. How can effectively eliminate the irrelevant and redundant features to 

reduce the high dimensionality of e-mail spam classification?  

ii. What are the optimum features that could significantly improve the 

execution time for e-mail spam classification? 

iii. How can OBL approach improve the DE and PSO algorithms in terms 

of enhancing the e-mail spam classification accuracy? 

iv. How can the hybridization of PSO and DE as feature selections 

enhance the e-mail spam classification accuracy? 

1.5 The Aim of the Study  

This study aims to propose schemes of selecting the optimal (or near-optimal) 

subset features and obtaining the optimum (or near-optimum) overall classification 

accuracy of e-mail spam classification regardless of the number of the optimal subset 

features selected. This study aims to remove the irrelevant and redundant features. 

The proposed schemes must ensure that reducing of the high execution time as well 

as improving the accuracy of e-mail spam classification.  
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1.6  Objectives of the Study 

The main goal of this study is to proposed schemes to select an optimal 

feature and to improve the e-mail spam classification accuracy. The objectives of this 

study are: 

i. To reduce the high dimensionality for e-mail spam classification 

based on one-way ANOVA F-test. 

ii. To improve the execution time of e-mail spam classification based on 

BDE scheme as feature selection.  

iii. To improve the accuracy of e-mail spam classification based on ODE 

and OPSO scheme.  

iv. To improve hybrid scheme based on combination of PSO and DE for 

feature selection to enhance the accuracy of e-mail spam 

classification. 

1.7  Scope of the Study 

The scope of this study is to answer the research questions stated above in 

order to draw conclusions. Furthermore, the preceding section stated the objectives 

of this research which focus on how to produce an optimal (or near-optimal) e-mail 

spam classification schemes. The following aspects are the scope of the study for the 

stated objectives: 

i. Binary e-mail spam classification (spam detection) due to the nature of e-mail 

datasets. 

ii. Support Vector Machine (SVM) algorithm as classification algorithm due to 

popular algorithm that are used as classifiers for e-mail spam classification 

area. 

iii. Correlation coefficient as fitness functions 
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iv. Binary Differential Evolution (BDE) algorithm to reduce the execution time 

for e-mail spam classification. 

v. Improved Differential Evolution (DE) algorithm based on Opposition Based 

Learning (OBL) and Particle Swarm Optimization (PSO) algorithm to 

improve the accuracy of e-mail spam classification. 

vi. Improved Particle Swarm Optimization (PSO) algorithm based on Opposition 

Based Learning (OBL) to improve the accuracy of e-mail spam classification. 

vii. Evaluation of the performance of the proposed schemes using two standards 

dataset: "spambase" and "spamassassin." These are obtained from the 

machine learning repository of the Center for Machine Learning and 

Intelligent. 

viii. The accuracy, precision, F-measure, false positive, computational complexity 

(execution time) and recall were selected to measure and evaluate the systems 

generated.  

ix. The statistical significant test (Pearson correlation coefficient) was used to 

measure the agreement level between the proposed and the other methods 

such as e-mail spam classification with SVM using all features. 

1.8  Significance of the Study  

Since the start of research in e-mail spam classification, all proposed schemes 

aim to increase the performance accuracy of classification results without putting 

other issues into consideration such as high dimensionality feature space. Thus, our 

experiments show that the accuracy increased by selecting the optimal (near-optimal) 

subset features before classification via designing a classification scheme or by 

combining methods of other techniques. This research desires to make a significant 

contribution by presenting a new evolutionary feature subset selection scheme with 

SVM for e-mail spam classification. The improve schemes are to increase the 

accuracy and at the same time to reduce the execution time for e-mail spam 

classification. According to Symantec Intelligence Report in September 2012 the 

percentage of spam in e-mail traffic was increased by 2.7 percentage points from 
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August and averaged 75%, in addition to the Kaspersky Lab annual report the in 

which the total amount of spam in mail  traffic  was 78.5% (Bulletin, 2012; Wood, 

2012).  

1.9  Research Contributions  

The contributions of this study are as follows: 

i. An improved e-mail spam classification scheme using feature selection 

scheme based on one-way ANOVA and SVM as a classifier to remove the 

irrelevant and redundant features. 

ii. An improved e-mail spam classification scheme using a significant feature 

selection based on binary DE and SVM as a classifier to reduce the high 

execution time.  

iii. An improved e-mail spam classification scheme using OPSO and ODE to 

select the optimal (or near-optimal) features and SVM classifier to improve 

the accuracy of classification. 

iv. An improved e-mail spam classification scheme using a feature selection 

based on hybrid (PSO and DE) and SVM classifier to improve the accuracy 

of classification. 

1.10  Thesis Organization   

  

This thesis is organized into eight chapters as: 
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Chapter 1: Introduction 

The introductory chapter of this thesis provides a brief overview of some of 

the issues that are of concern to those working in the field of e-mail spam 

classification. This chapter will also look at the overview of the whole studies, the 

problem statements, research questions, aims, and the scope of this study as well as 

examining the contributions this research can make to the field of e-mail spam 

classification. 

Chapter 2: Literature Review 

This chapter provides background information and reviews of the related 

work in the area of e-mail spam classification. The chapter reviews recent surveys 

presented in the area. Since this study proposes ECs algorithm based solutions, the 

chapter also reviews, most especially, the feature selection schemes and 

classification research based on similar or other EAs. It reviews ML approaches that 

have been presented to improve the search performance of EAs. The chapter covers 

available datasets utilized in the methodology. 

Chapter 3: Research Methodology 

This chapter defines the methodology followed in this research to achieve the 

study's objectives. The main experiments of this study are to be conducted through 

four main approaches: a new feature subset selection based on one-way ANOVA F-

test for e-mail spam classification, feature subset selection based Binary Differential 

Evolution Algorithm for e-mail spam classification, opposition DE and opposition 

PSO Algorithm based feature selection, and a hybrid of DE and PSO as feature 

subset selection in E-mail Spam Classification.  
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Chapter 4: A New Feature Selection Based on One-Way ANOVA F-test  

 This chapter provides a new feature subset selection based on one-way 

ANOVA f-test to remove the irrelevant and redundant features so these researchers 

are left with the most relevant features that increase or maintain accuracy of e-mail 

spam classification. 

Chapter 5: Feature Selection Based Binary Differential Evolution (BDE) 

Algorithm  

This chapter demonstrates feature subset selection based on Binary 

Differential Evolution (BDE) scheme and uses correlation coefficient as fitness 

function to determine the most optimal subset features that could contribute to reduce 

the execution time and improve the e-mail spam classification accuracy. 

Chapter 6: Feature Subset Selection Based ODE and OPSO  

The main goal of this chapter is to avoid the problem of generating solutions 

based on random estimates. The problem of the application based on random 

estimates (guesses) is that it may give different solutions each time which are far 

from the optimal solutions. This chapter presents feature subset selection based on 

ODE and also based on OPSO for efficient feature subset selection and evaluated by 

e-mail spam classification rate using SVM as classifier to present a better accuracy. 

The DE and PSO algorithms are computationally expensive due to the slow nature of 

the evolutionary process. In this chapter researchers use the correlation coefficient as 

a fitness function for OPSO while simultaneously using the correlation coefficient as 

a fitness function for ODE. Additionally, they use OBL to improve the convergence 

rate of classical DE and PSO and to improve the speed of DE and PSO.  
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Chapter 7: Hybridization of PSO and DE as Feature Selection  

These chapters present evolutionary feature selection based on the 

hybridization of DE and PSO. In this chapter, PSO operator such pbest and gbest 

were used instead of  three random generations in mutation phase of DE to accelerate 

the convergence rate of DE algorithm, which indicates that  researchers use the PSO 

before the mutation phase in DE. Then, the feature selection based on hybrid of 

DEPSO approach was applied to determine the most important features contributing 

to e-mail spam classification accuracy.  

Chapter 8: Conclusion and Future Work 

Chapter 8 will review the conclusion of the research discussed throughout 

this study. This section will also put forward recommendations for future studies. 
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