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ABSTRACT 

Corrosion and erosion in pipes are a major concern for the chemical 

industries specifically during the transportation of corrosive chemicals in steel 

pipes.Such problems can lead to potential unscheduled plant down time and 

economic losses which can be in the order of USD500K per day.  Conventional 

ultrasonic thickness (UT) measurement is routinely used to quantify remaining wall 

thickness of pipes. In most practical transportation pipeline situations, the test 

surface is so large that apoint by point inspection of the entire surface is not feasible.   

As a result, industries seek a more efficient method to detect defects on their 

pipelines.  In this work, the application of guided wave technology to address this 

serious industrial problem was quantitatively assessed in terms of technical 

capabilities, economic feasibility and suitability to be incorporated as part of the 

industry risk based inspection programmes. The technical capabilities are 

qualitatively and quantitatively assessed through nine performance objectives, which 

were formulated to determine if it can be adopted in the industry.  Through 

laboratory study and field work at a paint pigment chemical manufacturing plant, it 

was shown that guided wave successfully met all nine performance objectives. It was 

demonstrated to be suitable for the detection of common defects such as pit and 

patch corrosion in a 12 inch nominal pipe size (NPS) Schedule 60 sulphuric acid 

pipeline.Key performance achievements found from this field study included a 

maximum inspection range of 260m from a single test location and the capability of 

detecting and monitoring growth of defect of up to 2% cross-sectional area loss.  

Through the use of the Inspection Value Method, it was shown in the case of the 

2.75km acid pipeline the use of guided wave with follow-up UT inspection can value 

their system at a net present value (NPV) of RM0.9 million at the 25th year; in 

comparison to NPV of - RM0.1 million (negative) as a result of using conventional 

manual UT on its own.A new inspection procedure which incorporates the use of 

guided wave along with other conventional NDT methods was proposed which 

complied with API 579-1 Fitness for Service requirements. 
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ABSTRAK 

Karat dan hakisan dalam paip adalah menjadi salah satu masalah utama 

dalam industri petrokimia khususnya dalam pengaliran bahan kimia yang boleh 

menghakis  paip keluli.  Hakisan sedemikian boleh membawa kepada kerosakan 

yang tidak diduga. Kerugian pendapatan boleh mencapai sehingga USD500K sehari. 

Pengukuran konvensional ultrasonik (UT) kerap diguna sebagai kaedah untuk 

mengesan ketebalan dinding paip. Secara praktikal, paip mempunyai permukaan 

keseluruhan yang amat besar yang perlu di imbas yang menyebabkan ujian tidak 

boleh dilaksanakan.  Oleh itu, industri perlu kepada kaedah yang lebih efisien untuk 

mengesan kecacatan pada saluran paip mereka. Dalam kerja ini, aplikasi teknologi 

gelombang untuk menangani masalah serius industri ini telah dinilai secara 

kuantitatif dari segi teknikal, kewangan dan kesesuaian untuk digabungkan sebagai 

sebahagian daripada program pemeriksaan berasaskan risiko dalam industri.  

Keupayaan teknikal dinilai secara kualitatif dan kuantitatif melalui sembilan objektif 

prestasi, yang dicadangkan untuk menentukan sama ada ianya boleh diguna dalam 

industri. Melalui kajian makmal dan tapak di sebuah kilang pembuatan cat kimia 

pigmen, kaedah ini telah menunjukkan bahawa teknologi gelombang ini memenuhi 

kesemua sembilan objektif prestasi. Ianya dibuktikan sesuai dalam pengesahan 

kecacatan yang biasa dihadapi iaitu lubang dan tampalan kakisan pada 12 inci untuk 

talian paip asid sulfurik.  Pencapaian prestasi utama yang diperoleh daripada kajian 

tapak dengan menggunakan gelombang pelaksanaan ini termasuklah keupayaan 

mencapai pemeriksaan maksimum sepanjang 260m dengan keupayaan mengesan dan 

memantau  kecacatan sehingga 2% keratan rentas. Melalui penggunaan Nilai Kaedah 

Pemeriksaan, dalam kes 2.75 km paip asid ini,  menggabungkan  kaedah teknologi 

gelombang yang disusuli pemeriksaan UT boleh mencapai nilai bersih kini (NPV) 

daripada RM0. 9 juta pada tahun ke-25; berbanding dengan NPV dari -RM0.1 juta 

(negatif) hasil dengan penggunaan UT  sahaja.  Kaedah pemeriksaan baru yang 

melibatkan penggunaan gelombang  dengan kaedah konvensional NDT yang 

dicadangkan  ini mematuhi keperluan API 579-1 Fitness for- Service. 
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CHAPTER 1  

INTRODUCTION 

1.1 Structural Health Monitoring of Pipeline 

Structural health monitoring (SHM) refers to the process of in-line 

permanently installed monitoring sensors for effective management of structural 

systems with respect to the potential occurrence of damage.  The goal of a SHM 

system is to decrease the cost of sustaining safe operations by facilitating condition-

based maintenance.  In other words, the principal objective is to direct decision-

making based on the current health of the structure (Farrar & Worden, 2007).  Whilst 

related, SHM systems are distinguished in concept from non-destructive (NDE) 

approaches in two major respects namely; 

1. SHM systems utilise embedded sensors to provide monitoring without the 

need to take the system offline for inspection.   

2. SHM systems are focussed on more autonomous operation, reducing or 

even eliminating the need for expert interpretation of results. 

1.2 Guided Wave Ultrasonic Testing 

Guided Wave Ultrasonic Testing (GWUT) or Long Range Ultrasonic Testing 

(LRUT) is one of latest methods in the field of non-destructive evaluation.  The 

method employs mechanical stress waves that propagate along an elongated structure 

while guided by its boundaries.  This allows the waves to travel a long distance with 

https://en.wikipedia.org/wiki/Nondestructive_testing
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little loss in energy.  Higher frequencies can be used in some cases, but detection 

range is significantly reduced.  In addition, the underlying physics of guided waves is 

more complex than bulk waves.  Much of the theoretical background has been 

addressed in a Section 3. 

Ultrasonic testing (UT) is a family of non-destructive testing techniques 

based on the propagation of ultrasonic waves in the object or material tested.  In most 

common UT applications, very short ultrasonic pulse-waves with centre frequencies 

ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into 

materials to detect internal flaws or to characterize materials.  A common example is 

ultrasonic thickness measurement, which tests the thickness of the test object, for 

example, to monitor pipework corrosion.  The “Time of Flight” of an ultrasonic wave 

is directly proportional to the thickness of the material measured.  This is described 

in Figure 1.1. 

 

  
 

Figure 1.1 Principles of conventional UT 

 

https://en.wikipedia.org/wiki/Non-destructive_testing
https://en.wikipedia.org/wiki/Ultrasound
https://en.wikipedia.org/wiki/Ultrasonic_thickness_measurement
https://en.wikipedia.org/wiki/Corrosion


3 
 

 

 

Figure 1.2 Comparison between conventional ultrasonic testing (UT) and guided 

wave ultrasonic testing (GWUT) 

While conventional UT measures the wall thickness at a spot, advanced 

guided wave ultrasonic testing (GWUT) can identify locations of metal loss along a 

length of the pipe (Guided Ultrasonics, 2010).   

Some of the differences between conventional ultrasonic waves and guided 

waves (see Figure 1.2) are; 

1. Guided waves are mechanical stress waves that travel along the wall of the pipe; 

therefore the entire volume of the pipe is inspected, 

2. Frequencies used in guided wave inspection are much lower than conventional 

ultrasonic testing; therefore the wave lengths are much longer and are scattered 

instead of reflected from changes in the dimension of the wave guide; typically 

between 30 – 75 KHz, 

3. The pipe acts as a wave guide, permitting the waves to travel long distances, 

4. The waves can be introduced at a single location into the pipe by one of two 

systems and these are; 

a) An array of piezoelectric crystals are positioned in modules that typically hold 

two transducers each.  The modules are spaced around the pipe under an air 

bladder which when pressurized forces the units against the surface. The 

individual crystals oscillate at the frequency at which they are excited and 
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transmit the wave into the pipe. 

b) Coils of insulated wire are wrapped around the pipe.  An alternating current is 

passed through the coils, and an oscillating magnetic field is produced.  Due to 

the magnetostrictive effect of ferromagnetic materials, this produces a wave in 

the pipe which can be amplified by using a nickel or cobalt strip bonded to the 

pipe under the coil. 

 

 
(a) 

 
(b) 

Figure 1.3 (a) Piezo electric crystals transducers  (b) Magnetostrictive transducers 

1.3 Background Problem and Motivation 

Corrosion and erosion in pipes are a major concern within the chemical 

industry specifically during the transportation of corrosive chemicals in steel pipes, 

as it could lead to potential explosions or unscheduled plant down time.  Both 

economical and safety incentives drive the chemical industry to assess the health of 

pipes which could lead to either down time or disasters.   

For example, oil production from Alaska's Prudhoe Bay field was reduced by 

95% (of its daily production of 630,000 barrels of oil) after a leak was discovered in 

the Trans-Alaska Pipeline resulted in an increased in crude oil prices by over 2% (to 

nearly USD90).  British Petroleum (BP) suffered major losses which saw their share 

value dipping by 2.5% at the FTSE 100 stock exchange in London (The Guardian, 

2011).   
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In another example, the death toll from two huge blasts caused by leaked oil 

from a ruptured pipeline in an eastern Chinese port city (Qingdao, China) had taken 

62 lives with 150 injured and contaminated approximately 3,000 square feet of the 

city.  The pipeline owned by China's largest oil refiner, Sinopec, ruptured and leaked 

for about 15 minutes onto a street and into the sea before it was shut off.  Hours later, 

as workers cleaned up the spill, the oil caught fire and exploded in two locations.  

This incident was classified as one of the country's worst industrial accidents of the 

year. 

 

(a) Trans-Alaskan oil pipeline leak 

(The Guardian, 2011) 

 

(b) Qingdao city oil pipeline leak 

(The Telegraph, 2013) 

 

Figure 1.4 Examples of oil pipeline leakage accidents which had caused the loss 

of human lives, environmental contamination and major financial loss 
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Figure 1.5 Sulphuric acid pipeline structural failure near Tiger Bay, Teluk 

Kalong, at Huntsman Tioxide Malaysia 

A further example of a major pipeline failure occurred locally at Huntsman 

Tioxide Malaysia (HTM) located at Teluk Kalong, Terengganu.  The pipeline 

transports concentrated sulphuric acid to the plant and a major accident occurred 

when a leak and pipe structural failure occurred at a stretch of the pipeline location as 

shown in Figure 1.5.  Although no injuries or fatalities were recorded but the incident 

had tarnished the good reputation held by HTM over the past 20 years.  A suitable 

sulphuric acid pipeline integrity management system (PIMS) which complies with 

industry standards is required to be implemented and this is the motivation of this 

work. 

As a result, the gas, refinery, chemical and petro-chemical industries seek to 

detect damage to their pipeline systems at the earliest possible time.  In order to do 

this, it would require a form of structural health monitoring (SHM) system to be 

implemented.  Guided wave ultrasonic testing (GWUT) or long range ultrasonic 

testing (LRUT) which is a new technology recently developed showed great potential 

to address these issues and has been identified to be a possible inspection tool to 

perform structural health monitoring (SHM) of pipelines carrying hazardous fluids. 
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Corrosion had been identified as one of the major factors which had caused 

the pipelines to leak and in this work, the application of guided ultrasonic wave for 

SHM of pipeline will be demonstrated in detail in both laboratory and field work. 

The complexity of the corrosion profiles encountered in practice makes more 

challenging the sizing of these discontinuities with guided ultrasonic waves.  In the 

literature many scientists and engineers have recognised similarities in the forms the 

corrosion manifested in practice.  These types of discontinuities can be classified in 

specific groups by similarity of the mechanism of attack (Scoot, 1994) or appearance 

of the corroded metal (Greene, 1967).  Other authors have discussed the more typical 

forms of corrosion related to specific metals and alloys (Uhlig, 1963) and (Evans U. 

R., 1960). However, as with any classification system, the classification of these 

corrosion types is not distinct or all-inclusive since more than one mode of attack 

may occur.  

Conventional methods for corrosion inspections and detection exist, typically 

using ultrasonic and acoustics emission methods. There are however severe 

limitations when the pipes or components to be tested are in extreme hazardous 

environment, rendering such inspections feasible only during plant shutdowns.  Such 

inspections are done at discrete and localised locations which imply that such 

assessment of the entire pipeline to a “hit or miss” affair, or extremely time 

consuming if the inspections are extended along the entire pipe line. For example, 

inspection of insulated pipework by spot removal poses problems such as break in 

weather proofing and creating a potential entry point for future water ingress 

(Horrocks, et al., 2010).  Screening range using this method is also very little which 

would give rise to the potential to miss sections with defect. Moreover, 

inaccessibility of inspectors to carry out inspection also poses as a problem for 

conventional UT methods for wall thickness inspection.  Buried pipes under roads 

and rail crossings will disable operators from inspection using conventional methods 

unless expensive excavation work is carried out to expose the buried pipes.  In 

addition, there may not necessarily be enough space clearance to carry out these tests 

such as radiography or UT in areas such as pipe racks or process pipes. 
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Devices known as maintenance pigs and smart pigs are currently being 

implemented by being passed through a pipeline to measure wall thickness loss and 

other structural anomalies. In addition, leak indicating pressure testing and 

excavation to expose the surface of buried pipes for visual inspection are also used.  

However, these techniques are invasive and not very effective if there are internal 

obstructions, external dikes, or other complex geometric features along the pipeline.  

Furthermore, these approaches do not provide sufficient information to predict the 

future health of the piping unless a failure leading to leakage has already occurred.  In 

addition, these conventional techniques are time-based inspection methods which does 

not offer a solution of monitoring the health of the structure at all times, which could 

lead to missing of a serious defect between inspection periods. 

Long range ultrasonic testing (LRUT) is an advanced non-destructive testing 

(NDT) technology utilising guided ultrasonic wave. It is currently being 

implemented to overcome the limitation of conventional methods by being able to 

screen structures over a range of up to 100m from a single test location (Guided-

Ultrasonics Ltd, 2014).  In addition, this technology can be implemented for pipeline 

monitoring since the equipment can be retrofitted and permanently mounted onto 

pipes to continuously monitor the health of pipes. This technology has been 

developed and commercialised by a number of companies in the UK and US and it is 

now included in the API 570 procedures as a new pipeline safety inspection tool.  

Guided ultrasonic wave is a novel and promising technique which could offer a safe 

and economically feasible solution for the industry to detect and monitor defects on 

existing structures until the point is reached when they are deemed to be unsafe.  

However, since this technology is new in Malaysia (and also other Asian countries), 

the capability of the technology would therefore need to be demonstrated and 

validated under field condition before local plant managers are convinced of possible 

implementation in the industry. 
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1.4 Importance of the Study 

Ageing of plant is commonly misunderstood as being how old an equipment 

is.  However, its correct association should be about plant equipment condition and 

determining the extent of material deterioration and damage, which is usually but not 

necessarily associated with time in service.   

The typical ageing plant damage mechanism such as erosion and corrosion 

then contributes to an increase in likelihood of equipment failure over the plant 

lifetime.  Studies from the EU Major Accident Database have shown that ageing has 

a 50% contribution factor to technical integrity failure, which is the main factor 

(60%) leading to major hazard loss of containment incident (Horrocks, et al., 2010).  

See Table 1.1. 

 
 

Corrosion and erosion induced pipe failures can either be pipe rupture or 

leaks, with the latter being more common.  As seen in Figure 1.6, excavation damage 

and corrosion has been reported to be responsible for 1550 and 1073 significant 

incidents respectively in both onshore and offshore US transmission pipelines, from 

Table 1.1 : Average annual consequences of significant corrosion incidents between 

1988 and 2007 (Horrocks, et al., 2010). 
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the period of 1988 through to 2008 (Baker, 2008).  The US Department of 

Transportation‟s Pipeline and Hazardous Materials Safety Administration (PHMSA) 

defines an incident as significant if it causes fatality, an injury requiring 

hospitalisation, cost of USD50K or more, release of 5 barrels or more of a highly 

volatile liquid, 50 barrels or more of other liquids, or release of a liquid resulting in 

an unintentional fire or explosion (Baker, 2008). 

 
 

Figure 1.6 Causes of 5960 significant incidents in onshore and offshore pipelines 

as adapted from (Baker, 2008) 

On average there have been 52 significant incidents on US pipelines per year 

caused by corrosion alone. These corrosion induced incidents involved onshore 

hazardous liquid pipelines (63%), onshore gas transmission pipelines (15%), offshore 

gas transmission pipelines, natural gas distribution lines, gas gathering lines and off 

shore liquid lines (remaining %), as shown Figure 1.6.  From Figure 1.7, the pattern 

has been reported to be relatively consistent over time as a result of the industry‟s 

effectiveness at corrosion control.   
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However, the cost attributed to corrosion incidents alone is still very large 

and significant, with an average value of USD27 million per year for just US pipeline 

transmission. NACE International estimates the total costs attributed to all types of 

corrosion across the entire industry in the world is ata loss of USD276 billion from 

1988 to 2007, which accounts for pipeline rehabilitation and replacement costs.  

During the same 20 year period, the 1073 corrosion induced significant incidents (or 

18%) lead to 30 fatalities, 100 injuries and a total loss of assets amounting to 

USD551 million. 

1.5 Problem Statements 

Lessons should be learnt from the fatal explosion that occurred in August 6, 

2012 at Chevron Richmond refinery (California, USA) which was caused by gas 

leakage from a 1.5m length of 8-inch carbon steel atmospheric gas-oil pipeline.  

Chevron process safety management & operational excellence centre released an 

investigation report on April 12, 2013 stating that the cause of the pipe leak was the 

result of wall thinning due to sulphide corrosion.  On August 2, 2013, the mayor of 

Richmond filed lawsuit on Chevron seeking compensation for “the legal harm to the 

 

Figure 1.7 History of significant corrosion incidents in the US, extracted from 

(Baker, 2008) 
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general public as well as to the assets and resources of the city of Richmond”, which 

is still an on-going case at the time of writing of this thesis.  See Figure 1.8 and 

Figure 1.9.  This case study was adopted by HTM as their “accident case reference”. 

Huntsman process safety management group (PSM) had identified this 

problem as “very severe” and had recommended that a condition based pipeline 

monitoring system to be implemented in their Tioxide plant especially in all pipes 

that carry sulphuric acid. 

 
Figure 1.8 Explosion and fire caused by 

leakage in a 1.5m 8-inch carbon steel pipe 

suffering from sulphide corrosion – HTM 

PSM Case Reference 

 

Figure 1.9 Evidence of sulfidation 

corrosion in the ruptured pipe 

 

(a) 

 

(b) 

 

 

Figure 1.10 Typical sulphuric pipeline installed at HTM a) over ground 

pipeline  b) inside containment (or buried pipe) 
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Corrosion and erosion of sulphuric acid pipelines causing non-uniform wall 

thinning are the major problems at Huntsman Tioxide Malaysia.  This phenomenon 

occurred more severely at pipe bends (see Figure 1.10a) than at the straight pipes 

(see Figure 1.10b). 

Current conventional sulphuric acid pipeline inspection program practiced by 

HTM includes visual and UT thickness measurement inspection.  Inspections are 

done annually and the spot thickness checks are determined by qualified third party 

independent NDT companies.  In hazardous locations, inspections can only be 

performed when the plant has been shut down and in “difficult to access” or non-

accessible locations inspections cannot be done. 

1.6 Research Objectives 

There are primarily two major objectives in this Doctorate of Engineering 

programme and they are classified under (1) industrial and, (2) academic 

requirements. 

1.6.1 Industrial Objectives 

In this research work, there are two main industrial objectives and they are; 

(1) To quantitatively assess the technical capabilities of guided wave as an 

inspection tool for the purpose of pipeline screening and structural health 

monitoring of sulphuric acid pipelines.   

 
(2) To economically assess and quantify the cost of inspection and monitoring 

using guided waves. 

 
The measurement of success in the achievement of the first objective was 

discussed and agreed amongst Huntsman-Tioxide Malaysia (HTM) corporate process 
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safety management (PSM), Imperial College, London (ICL) and Universiti 

Teknologi Malaysia (UTM).  The agreed scope of work shall comply with API 

570:1998 – Piping Inspection Code and are defined as follows; 

(a) To assess the feasibility of detection of erosion and hydrogen induced defects 

at bends and straight pipes, 

(b) To establish the performance objectives of the guided wave pipe inspection 

tool, 

(c) To quantify the performance of the inspection tool under laboratory condition 

and, 

(d) To quantify the performance of the inspection tool under plant condition. 

1.6.2 Academic Objective 

Based on the definition of UTM‟s Engineering Doctorate (Engineering 

Business Management) program published in 5-April 2013, “the research work must 

demonstrate innovation in the application of knowledge to solve a significant 

industrial problem. The work should make a significant contribution to the 

performance of the company”. 

1.7 Scope and Limitations of the Study 

The intent of this work was to demonstrate practical and economically 

feasible industrial applications of GWUT technology in SHM of pipelines. An 

extensive literature review of the principles and applications of guided wave 

technology was carried out, covering the period of 1991 to 2014. 

The commercially available equipment used for the purpose of demonstration 

was GUL‟s Wavemaker™ G4mini, which was introduced into the market in early 

2014.  Before demonstrating the technology at the field, a pipe test rig was fabricated 
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in the laboratory to verify the performance of this equipment at defect detection.  

Using the deployable solid enhanced focusing capability (EFC) ring, baseline signals 

were successfully established for the λm 4” pipe loop and two test locations (above 

and below ground) on the 2.75km 12” sulphuric acid pipeline at Huntsman-Tioxide 

pigment production plant.    

Due to time restriction, implementation of the more suitable gPIMS™ 

permanently installed ring, which is designed to be permanently installed onto the 

pipe (to give more stable readings for repeated monitoring) could not be carried out 

for this pipe section.  Based on the data collected from this site, a procedure specific 

for these pipe sections was successfully devised for future implementation by 

Huntsman-Tioxide.   

A preliminary economic analysis for the plant wide implementation of guided 

wave for the purpose of SHM was also investigated upon. 

1.8 Structure of this Dissertation 

This dissertation is divided into nine chapters.  Chapter 1 introduces the effect 

of problems associated with corrosion in which the chemical industry faces.  These 

problems includes billions of dollars‟ worth of cost every year, produces about 50 

fatality globally each year and damages to the environment. 

Chapter 2 provides an extensive literature review of the commercial available 

ultrasonic guided waves products in the market. The history of the technological 

development of these products is briefly covered here.  The current usage capabilities 

and limitations of these equipment and feasibility for screening pipes successfully are 

discussed in great details in this chapter.  In addition, this chapter covers the 

proposed future technological improvements on ultrasonic guided wave equipment 

which are currently undergoing research and development. 
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Chapter 3 provides the background theory to ultrasonic guided waves 

propagating in structures.  Shear horizontal (SH) waves in plates and torsional guided 

waves in pipes are emphasised in this thesis due to relevance to thesis.  The analogy 

between the propagation of guided waves in pipes and plates is also presented.  In 

addition, the choice of mode, frequency range and a general procedure to conduct 

finite element simulations are discussed in this chapter. 

Chapter 4 outlines the methodology of this research work.  It identifies the 

industrial problem and reviews the current industrial best practice for pipeline 

inspection systems.  A thorough research of new NDT innovations available 

commercially in the market is discussed and the selection of guided wave testing 

(GWT) which is an advanced NDT technology is decided based upon its excellent 

defect detection capability.  Rigorous training of the GW technology by Guided 

Ultrasonics Ltd. to familiarise with the technology acquired was done in order for the 

instrument to be applied at both laboratory level and pilot study at the industrial 

plant. 

Chapter 5 describes the industrial case study which was done at Huntsman 

Tioxide, Malaysia to demonstrate the capability of GWT as a pipe screening 

instrument with 100% wall coverage.  A list of GW performance targets including its 

success criteria was set by Hunstman as the objectives for the case study.  The 

outcome of the case study was very favourable and demonstrated that GW 

technology was successful in meeting all the performance targets set.   

Chapter 6 proposes a new pipe inspection procedure which combines the 

current conventional NDT with advanced NDT methods to offer an improved defect 

detection system to Huntsman‟s pipe integrity management system. In this chapter, 

the probability of detection (POD) of a defect in both NDT methods are discussed in 

detail and the benefit of combining the two methods are described. 

Chapter 7 assesses the cost implications in the implementation of this new 

pipe inspection procedure in the plant‟s pipeline integrity management system.  It not 

only shows how the improved defect detection system can prevent accidents from 
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occurring but also saves unnecessary cost to plant operators since only the section of 

pipes screened with defects need to be followed up with manual UT inspection.  If 

the pipeline has few defects, it could save plant operators more than 50% of the 

existing pipe inspection cost. 

Chapter 8 details out the proposed general preliminary structural health 

monitoring procedure for the transportation pipes involved in HTM‟s process flow. 

Chapter 9 summarises the key findings and contribution of this work along 

with recommendation for future works. 
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