CARBON DIOXIDE REDUCTION TO FUELS USING MODIFIED TITANIUM NANOCATALYSTS IN MONOLITH PHOTOREACTOR

MUHAMMAD TAHIR

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemical Engineering)

> Faculty of Chemical Engineering Universiti Teknologi Malaysia

> > DECEMBER 2013

To my beloved father, late mother and family members

ACKNOWLEDGEMENT

I would like to take this opportunity to express my gratitude to Allah S.W.T for His blessings and guidance. Alhamdulillah, this long journey has come to an end, where I have gained a lot of experience useful to me, not only from conducting research and experiments, but also other tasks that I have performed and accomplished throughout my stay here, directly or indirectly.

First and foremost, my sincere and gratefulness goes to my supervisor, Professor Dr NorAishah Saidina Amin for her priceless guidance, suggestions and encouragements throughout my PhD study. Her continuous supports have inspired me to ensure that my thesis is completed successfully with flying colours. Aside, I would like to extend my warmest thanks to Chemical Reaction Engineering Group (CREG) members, Pakistani community and other UTM friends for their support and valuable inputs regarding the research.

I also wish to express my gratitude and utmost appreciation to my beloved parents, my father and late mother for being with me through thick and thin. They always dreamed for my PhD and without their support I would never be able to achieve this milestone. In 2011, the sad happening was unbearable when I heard that my beloved mother left this world during Haj on 10th Zilhajj at Madani Arfat. However, her prayers and love is always with me. May Allah rest her soul in peace (Ameen).

Lastly, I am also obligated to Ministry of Higher Education (MOHE) and Universiti Teknologi Malaysia (UTM) for the financial support in my PhD project. I am also grateful to COMSATS institute of Information Technology Lahore, Pakistan for providing study leaves for my PhD studies at Universiti Teknologi Malaysia.

ABSTRACT

Carbon dioxide (CO_2) is the largest contributor to global warming and its conversion to renewable fuels has stirred interest for greenhouse gas mitigation and energy crises alleviations. The photocatalytic CO₂ reduction to fuels is promising, yet existing technologies registered low CO₂ reduction efficiency. The main objective of this study was to develop a microchannel system for selective CO_2 reduction to fuels. Initially, nanocatalysts were investigated using cell type reactor with methane (CH₄) and carbon monoxide (CO) as the main products during CO_2 reduction with water vapour (H₂O) over indium (In)/TiO₂ and montmorillonite (MMT)/TiO₂ catalysts. Yield of CH₄ over TiO₂ was 31.25, enhanced to 244 µmole g-catal.⁻¹ h⁻¹ using 10% In-doped TiO₂. Loading MMT evidently enhanced TiO₂ performance with CH₄ yield rate 441.5 µmole g-catal.⁻¹ h⁻¹. Next, microchannel monolith photoreactor was explored for selective CO₂ reduction using H₂O and hydrogen (H₂) as reducing agents. Yield rate of CO attained was 962 µmole g-catal.⁻¹ h⁻¹ and selectivity 95%. Performance comparison revealed 183 fold higher yield rate in monolith compared to cell type reactor. Significantly higher monolith reactor performance reached using H_2 reducing agent and co-metal-doped TiO₂ nanocatalysts. Yield rate of CO over nickel (Ni) and In-co-doped TiO₂ reached to 12028 μ mole g-catal.⁻¹ h⁻¹, higher in order of 1.8 times than copper (Cu)- In/TiO₂, 5.93 times than In/TiO₂, 207.4 times than TiO₂ with performance 902 fold higher than the cell type reactor. Besides, monolith geometry, reaction temperature, feed ratios, metals-content and irradiation time contributed significantly to enhance reactor performances. Quantum efficiency of CO production was 1.04 %, 87 fold higher than reported in literature. Finally, Langmuir-Hinshelwood and kinetic model were developed to investigate adsorption behaviors and photocatalytic oxidation and reduction process, fitted well with experimental data, and assured efficient adsorption-desorption inside microchannels. In conclusion, microchannel monolith photoreactor with modified TiO₂ nanocatalysts could make possible markedly higher CO_2 reduction to fuels with higher selectivity.

ABSTRAK

Karbon dioksida (CO₂) adalah penyumbang terbesar kepada pemanasan global dan penukarannya kepada bahan api diperbaharui telah menimbulkan minat dalam pengurangan gas rumah hijau dan peningkatan krisis tenaga. Terdapat potensi bagi pengurangan fotokimia CO2 kepada bahan api, namun teknologi sedia ada mendaftarkan ecekapan pengurangan CO₂ yang rendah. Tujuan utama kajian ini adalah untuk membangunkan sistem saluran-mikro bagi pengurangan CO₂ terpilih kepada bahan api. Kajian dimulakan dengan mengkaji mangkin menggunakan reaktor jenis sel dengan gas metana (CH₄) dan gas karbon monoksida (CO) sebagai produk utama semasa pengurangan CO₂ dengan wap air (H₂O) terhadap mangkin indium (In)/TiO₂ dan montmorilonit (MMT)/TiO₂. Hasil CH₄ terhadap TiO₂ sebanyak 31.25 telah meningkaf kepada 244 µmol g-catal.⁻¹ h⁻¹ menggunakan 10% In-dop TiO₂. Muatan MMT terbukti meningkatkan prestasi TiO₂ dengan kadar hasil CH₄ sebanyak 441.5 µmol g-catal.⁻¹ h⁻¹. Seterusnya, reaktor-foto monolit saluranmikro dikaji lagi untuk penurunan CO₂ terpilih menggunakan H₂O dan hydrogen (H₂) sebagai agen penurunan. Kadar hasil CO yang diperolehi adalah 962 µmol gcatal.⁻¹ h⁻¹ dengan selektiviti sebanyak 95%. Perbandingan prestasi menunjukkan 183 kali ganda kadar hasil yang lebih tinggi dalam reaktor monolit berbanding reaktor jenis sel. Prestasi terbaik reaktor monolit dicapai secara signifikan menggunakan H₂ sebagai agen penurunan dan mangkin nano ko-logam yang didopkan dengan TiO₂. Kadar hasil CO bagi nikel (Ni) dan In- diko-dopkan dengan TiO₂ mencapai sehingga 12028 µmol g-catal.⁻¹ h⁻¹ iaitu 1.8 kali lebih tinggi berbanding kuprum (Cu)- In/TiO₂, 5.93 kali berbanding In/TiO₂, 207.4 kali berbanding TiO₂ dengan prestasi sebanyak 902 kali ganda lebih tinggi berbanding reaktor jenis sel. Selain itu, geometri monolit, suhu tindakbalas, nisbah suapan, kandungan logam, dan masa penyinaran menyumbang secara signifikan dalam meningkatkan prestasi reaktor. Kecekapan kuantum bagi penghasilan CO adalah 1.04%, 87 kali lebih tinggi berbanding dengan nilai yang dilaporkan dalam literasi. Akhir sekali, model Langmuir-Hinshelwood dan kinetik dibangunkan untuk mengkaji sifat penjerapan, proses penurunan dan pengoksidaan foto-pemangkin, dilengkapkan dengan data eksperimen dan jaminan keberkesanan penjerapan-nyahpenjerapan dalam saluran mikro. Sebagai kesimpulan, reaktor-foto monolit bersaluran mikro dengan mangkin nano TiO2 terubahsuai mampu menukarkan CO₂ dengan lebih signifikan kepada bahan api dengan selektiviti yang lebih tinggi.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	ТКАСТ	v
	ABS	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST	TOF TABLES	xiv
	LIST OF FIGURES		xvi
	LIST	TOF SYMBOLS	xxvi
	LIST	COF ABBREVIATIONS	xxviii
	LIST	COF APPENDICES	XXX
1	INTI	RODUCTION	1
	1.1	Research Background	1
	1.2	Photocatalytic Carbon Dioxide Reduction	4
	1.3	Problem Statement	8
	1.4	Research Hypothesis	9
	1.5	Research Objectives	11
	1.6	Research Scope	11
	1.7	Research Outcomes	13
	1.8	Outline of Thesis	14

LITE	ERATURE REVIEW	15
2.1	Introduction	15
2.2	Scenario of Energy Crises and Global Warming	16
2.3	Fundamentals and Progress in CO ₂ Recycling	19
	2.3.1 Favorable Recycling Pathways	19
	2.3.2 Thermodynamic Analysis for Photocatalytic	
	CO ₂ Reduction	22
	2.3.3 Fundamentals of Photocatalysis	25
	2.3.4 Progress Towards Sustainable Hydrocarbon	
	Fuels	29
2.4	Titanium Dioxide Semiconductor	30
	2.4.1 Enhancement of TiO ₂ Photocatalytic Activity	33
	2.4.1.1 Nanosized TiO ₂ Materials	33
	2.4.1.2 Metal Doped TiO ₂ Nanocatalysts	34
	2.4.1.3 Co-metal Doped TiO ₂ Nanocatalysts	38
	2.4.1.4 Microstructured Materials Modified	
	TiO ₂	39
2.5.	Synthesis and Characterization TiO2 Nanocatalysts	41
	2.5.1 Technologies for Developing Nanoparticles	41
	2.5.2 Sol- Gel Synthesis of TiO ₂ Nanoparticles	42
	2.5.3 Characterization of Nanocatalysts	46
	2.5.3.1 Brunauer–Emmett–Teller (BET)	
	Surface Area	47
	2.5.3.2 DR UV-Visible and PL Spectroscopy	49
	2.5.3.3 X-Ray Photoelectron Spectroscopy	
	(XPS)	49
	2.5.3.4 X-Ray Diffraction (XRD)	50
	2.5.3.5 Scanning Electron Microscopy (SEM)	51
	2.5.3.6 Transmission Electron Microscopy	
	(TEM)	51
	2.5.3.7 Mercury Intrusion Porosimetry and	
	FTIR Spectroscopy	52
2.6.	Photocatalytic Reactors for CO ₂ Reduction	52

		2.6.1 Fundamentals of Photocatalytic Reactors	52
		2.6.2 Progress in Photocatalytic Reactors	53
	2.7	Monolith Photoreactors and Catalysts	61
		2.7.1 Monolith Reactors	61
		2.7.2 Monolith Catalysts	63
		2.7.3 Fundamental Processes in Monolith	64
	2.8	Langmuir-Hinshelwood Model	65
	2.9	Evaluation of Photoreactor Efficiency	70
	2.10	Literature Summary	71
3	RESE	CARCH METHODOLOGY	73
	3.1	Introduction	73
	3.2	Materials of Research	74
	3.3	Catalyst Preparation	77
		3.3.1 Synthesis of TiO ₂ Nanoparticles	78
		3.3.2 Synthesis of MMT/TiO ₂ Nanocomposites	79
		3.3.3 Synthesis of Metal Doped TiO ₂ Nanoparticles	80
	3.4	Catalyst Characterization	83
	3.5	Photocatalytic Activity Measurements	85
		3.5.1 Cell Type Photocatalytic Reactor	87
		3.5.2 Microchannel Monolith Photoreactor	89
	3.6	Gas Chromatography Analysis of Products	91
	3.7	Analysis of Catalysts and Experimental Data	93
		3.7.1 Calculation of Crystal Size and Band Gap	
		Energy	93
		3.7.2 Calculation of Conversion, Yield Rate and	
		Selectivity	94
		3.7.3 Calculation of Quantum Efficiency	94
	3.8	Kinetic Model Development	95
4	CHAI	RACTERIZATION OF NANOCATALYSTS	97
	4.1	Introduction	97
	4.2	X-ray Diffraction (XRD) Analysis	98

	4.2.1 XRD of MMT Modified TiO ₂	
	Nanocomposites	98
	4.2.2 XRD of Metal Doped TiO ₂ Nanoparticles	99
4.3	SEM and FESEM Analysis	104
	4.3.1 Morphology of TiO ₂ Nanoparticles and	
	MMT/TiO ₂ Nanocomposite	104
	4.3.2 Morphology of Doped TiO ₂ Nanoparticles	105
	4.3.3 Morphology of Catalysts Coated Over	
	Monolith Channels	108
4.4	TEM and HRTEM Analysis	112
4.5	FTIR Analysis	115
4.6	Adsorption Isotherm, Surface area and Pore Structure	
	Analysis	117
4.7	X-ray Photoelectron Spectroscopy (XPS)	124
4.8	DR UV-Visible Spectrophotometer Analysis	128
	4.8.1 DR UV-Vis Analysis of MMT Modified TiO ₂	
	Nanocomposites	128
	4.8.2 DR UV-Vis Analysis of Metal Doped TiO_2	
	Nanoparticles	130
4.9	Photoluminescence (PL) Analysis	134
4.10	Summary	138
CAR	BON DIOXIDE REDUCTION WITH WATER	
VAP	OURS USING CELL TYPE PHOTOREACTOR	139
5.1	Introduction	139
5.2	CO ₂ Photoreduction with Water Vapors Over	
	Montmorillonite Modified TiO2 Nanocomposites	140
	5.2.1 Effect of MMT Loading on TiO ₂ Photoactivity	140
	5.2.2 Effect of CO_2/H_2O Feed Ratio on CH_4 Yield	141
	5.2.3 Effect of Reaction Temperature on CH ₄ Yield	143
	5.2.4 Effect of Irradiation Time on Hydrocarbon	
	Yield	144

5.3 CO₂ Photoreduction with Water Over In-doped TiO₂

	Nanop	particles	148
	5.3.1	Effect of Light Intensity on CH4 Yield	148
	5.3.2	Effect of In-Loading on CH4 Yield	149
	5.3.3	Effect of CO ₂ /H ₂ O Feed Ratio on CH ₄ Yield	151
	5.3.4	Effect of Reaction Temperature on CH4 Yield	152
	5.3.5	Effect of Irradiation Time on Hydrocarbons	
		Yield	153
5.4	Mech	anism of CO ₂ Photoreduction with Water Vapors	157
5.5	Devel	opment of Kinetic Model	163
	5.5.1	Langmuir-Hinshelwood Model	163
	5.5.2	Time Dependent Kinetic Model	168
5.6	Sumn	nary	174
CAR	BON	DIOXIDE REDUCTION WITH WATER	
VAP	OURS	IN MICROCHANNEL MONOLITH	
РНО	TORE	ACTOR	176
6.1	Introd	luction	176
6.2	CO_2	Photoreduction with Water Over MMT/TiO ₂	
	Suppo	orted Microchannel Monolith Photoreactor	177
	6.2.1	Effect of Monolith Geometry	177
	6.2.2	Effect of Irradiation Time On CO ₂ Reduction	179
	6.2.3	Performance Comparison of Cell Type and	
		Monolith Photoreactor	180
	6.2.4	Mechanism of Photocatalytic CO ₂ Reduction	
		with Water Vapours	184
6.3	$\rm CO_2$	Reduction with Water Vapors Using In/TiO ₂	
	Suppo	orted Microchannel Monolith Photoreactor	186
	6.3.1	Effect of Cell density and Channel Length	186
	6.3.2	Effect of Reaction Temperature on CO Yield	188
	6.3.3	Effect of In-Loading on CO Yield	189
	6.3.4	Effect of Feed Ratio and Irradiation Time	190
	6.3.5	Performance Comparison of Cell Type and	
		Monolith Photoreactor	193

xi

	6.3.6 Quantum Efficiency Analysis
6.4	Development of Kinetic Model
6.5	Summary
CAF	RBON DIOXIDE REDUCTION WITH HYDROGEN
IN M	IICROCHANNEL MONOLITH PHOTOREACTOR
7.1	Introduction
7.2	CO_2 Photoreduction with H_2 Over Metal Doped TiO_2
	Catalysts
	7.2.1 Effect of In-Loading Over TiO ₂ Photoactivity
	7.2.2 Effect of Cu-In co-doping Over TiO ₂
	Photoactivity
	7.2.3. Effect of Ni-In co-doping Over TiO ₂
	photoactivity
	7.2.4 Effect of CO ₂ /H ₂ Feed Ratios Over Cu-
	In/TiO ₂ Photoactivity
	7.2.5 Effect of CO ₂ /H ₂ Feed Ratios Over Ni-In/TiO ₂
	Photoactivity
	7.2.6 Effect of Reaction Temperature Over Cu-
	In/TiO ₂ Photoactivity
	7.2.7 Effect of Reaction Temperature Over Ni-
	In/TiO ₂ Photoactivity
	7.2.8 Effect of Irradiation Time
7.3	Performance Comparison of Photocatalysts
7.4	Photocatalysts Stability Test
7.5	Reaction Mechanism for Photocatalytic CO ₂
	Reduction with H ₂
7.6	Kinetic Model Development
	7.6.1 Langmuir-Hinshelwood Model Development
	7.6.2 Oxidative-Reductive Kinetic Model
'.7	Summary

8 CONCLUSIONS AND RECOMMENDATIONS 253

8.1	Conclusions	253
8.2	Recommendations for Future Research	257
REFERENCES		259
Appendices A-E		280-304

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Summary of reduction potentials for half-cell reactions at pH	
	7 in aqueous solution versus the normal hydrogen electrode.	24
2.2	Properties of anatase, rutile and brookite [104, 126].	32
2.3	${\rm TiO}_2$ based photocatalysts synthesis techniques and	
	precursors [126, 153].	43
2.4	Important parameters used in the various steps of a sol-gel	
	process [126, 157].	45
2.5	A summary of different types of photocatalytic reactors and	
	their limitations.	57
2.6	Characteristics of monolith and monolith washcoat.	62
3.1	Type and specification of materials used for catalyst	
	synthesis.	75
3.2	Types of gases used during experimental work.	75
3.3	Standard gas used for GC calibration.	76
3.3	Temperature program applied for GC-1system.	92
4.1	Crystallite size of TiO ₂ and Modified TiO ₂ catalysts	103
4.2	Summary of physiochemical characteristics of ${\rm TiO}_2$ and	
	modified TiO ₂ samples.	123
4.3	Summary of band gap energy of TiO_2 and modified TiO_2	
	samples.	135
5.1	Summary of product yield rates during photocatalytic CO_2	
	reduction using different catalysts	156
5.2	The summary of operating parameters employed in cell type	
	reactor.	156

5.3	Adsorption equilibrium and rate constants of Langmuir-	
	Hinshelwood model estimated using experimental data on	
	In/TiO ₂ and MMT/TiO ₂ catalysts.	166
5.4	Summary of model constants for fitting with experimental data	
	for photocatalytic CO_2 reduction with H_2O in cell type reactor	173
6.1	Summary of product yield rates produced during	
	photocatalytic CO_2 reduction using different catalysts and	
	photoreactors.	183
6.2	Comparison between the cell type and microchannel monolith	
	photoreactor using TiO_2 and MMT/TiO ₂ catalysts.	184
6.3	Summary of the products produced during photocatalytic CO_2	
	reduction with H_2O using both type of reactors and catalysts.	195
6.4	Summary of operating parameters used for cell type and	
	microchannel monolith photoreactor and calculated photonic	
	efficiencies.	197
6.5	Summary of kinetic constants for fitting model with	
	experimental data.	203
7.1	Yield rates of all the products produced over all types of	
	photocatalysts during photocatalytic CO_2 reduction with H_2 .	215
7.2	Summary of the products produced during photocatalytic CO_2	
	reduction with H_2 using TiO_2 and metal modified TiO_2	
	catalysts coated over monolith channels	231
7.3	The summary of operating parameters used for TiO_2 and metal	
	modified TiO_2 catalysts coated monolith photoreactor and	
	calculated quantum efficiencies.	232
7.4	Adsorption equilibrium and rate constants of L-H model	
	estimated using experimental data of CO_2 reduction with H_2	
	over Cu and Ni co-doped In/TiO_2 catalyst in monolith	
	photoreactor.	244
7.5	Summary of kinetic constants for fitting model with	
	experimental data for CO_2 reduction with H_2 over Cu and Ni	
	co-doped TiO ₂ catalysts.	249

XV

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE

2.1	(a) World energy consumption since 1970, and projected	
	towards 2030, (b) Worldwide energy related CO ₂ emission for	
	the past three decades and projected for the next three decades	
	[76].	18
2.2	Recycling of carbon dioxide to renewable fuels, (a) Capturing	
	and recycling of CO ₂ from point source and recycling after	
	combustion, (b) capturing and recycling CO ₂ from point	
	source, from atmosphere and recycling after combustion	20
2.3	Carbon dioxide neutral cycle with renewable methanol and	
	liquid fuel production.	22
2.4	Schematic representation of conductance band potentials of	
	semiconductor and thermodynamic reduction potentials of	
	various compounds measured at pH=7 [43, 104, 105]	26
2.5	Schematic representation of band gap formation and	
	photocatalytic processes [103].	28
2.6	Mechanism and pathways for photocatalytic oxidation and	
	reduction processes on the surface of heterogeneous	
	photocatalyst [66].	28
2.7	Crystalline structure of TiO ₂ based materials; (a) Anatase, (b)	
	Rutile, (c) Brookite [126].	30
2.8	Schematic presentation of particle size on TiO ₂ photoactivity	34

2.9	(a) Metal modified semiconductor photocatalyst particles for	
	electron trapping, (b) Surface and bulk electron carrier	
	trappings.	35
2.10	(a) MMT structure, (b) XRD spectra of different stages of	
	clay, (c) synthesis steps to produce delaminated Ti-pillared	
	montmorillonite.	41
2.11	Types of isotherms for N_2 adsorption-desorption (IUPAC).	48
2.12	Explanation of Type IV isotherms of adsorption (IUPAC).	48
2.13	Classification of UV and solar photocatalytic reactors.	54
2.14	(a) Schematic representation of annular reactor with the lamp	
	outside the shell, (b) Schematic of batch annular stirred	
	reactor for CO_2 reduction [171].	55
2.15	(a) Schematic presentation of monolith reactor, (b) cross	
	section description of single channel, and (c) heat and mass	
	transfer process inside monolith channel.	65
3.1	Flow chart of general research methodology.	74
3.2	Sol-gel preparations of TiO ₂ nanoparticles.	78
3.3	Sol-gel method for preparation of MMT modified TiO_2	
	nanocomposites and monolith dip coating	80
3.4	Preparation of In/TiO_2 nanoparticles and coated over	
	monolith.	82
3.5	Sol-gel preparations of metal-In-modified TiO2 nanoparticles	
	and metal-In/TiO ₂ coated monolith.	83
3.6	Schematic of cell type experimental setup for photocatalytic	
	CO ₂ reduction with H ₂ O to hydrocarbons.	88
3.7	Experimental rig of cell type photoreactor system for	
	photocatalytic CO ₂ reduction.	88
3.8	Schematic of experimental set-up using monolith	
	photoreactor for photocatalytic CO ₂ reduction	90
3.9	Experimental rig of monolith photoreactor system for	
	photocatalytic CO ₂ reduction	91
3.10	Flow chart of general kinetic model development	
	methodology.	96

4.1	XRD patterns of anatase TiO2 nanoparticles, MMT and	
	MMT/TiO ₂ catalysts.	99
4.2	XRD patterns of anatase TiO_2 nanoparticles and $\mathrm{In}/\mathrm{TiO}_2$	
	catalysts.	100
4.3	XRD patterns of TiO ₂ , In-Cu doped TiO ₂ , bare monolith and	
	catalyst coated over monolith channels.	101
4.4	XRD patterns of TiO ₂ , Ni-In doped TiO ₂ , bare monolith and	
	catalyst coated monolith over channels.	103
4.5	FE-SEM micrographs of TiO ₂ nanoparticles at different	
	magnification.	104
4.6	(a) SEM micrographs of pure MMT plates; (b-d) FE-SEM	
	images of delaminated MMT/TiO_2 nanocomposites at	
	different magnifications	105
4.7	FE-SEM micrographs of 10 % In-doped TiO ₂ Nanoparticles	
	at different magnifications.	106
4.8	FE-SEM micrographs of 3% Cu- 10 % In-doped TiO2	
	Nanoparticles at different magnifications.	107
4.9	FESEM micrographs of 3% Ni- 10 % In-doped TiO_2	
	Nanoparticles at different magnifications.	108
4.10	SEM micrographs of bare monolith at different	109
	magnifications	
4.11	SEM micrograph of MMT/TiO $_2$ coating monolith channels.	110
4.12	FESEM micrographs of In/TiO_2 catalyst coating on monolith	
	channels.	110
4.13	FE-SEM micrographs of Cu-In co-doped TiO_2 coating on	
	monolith.	111
4.14	FESEM micrographs of Ni-In co-doped TiO_2 coating on	
	monolith.	112
4.15	TEM and HRTEM images of MMT modified TiO_2	
	nanocomposite.	113
4.16	TEM and HRTEM images of In/TiO ₂ nanoparticles.	114
4.17	TEM and HRTEM images of In/TiO ₂ coated over monolith.	115
4.18	FTIR spectra of bare TiO ₂ , MMT and 20% MMT/TiO ₂	

	catalysts.	116
4.19	FTIR spectra of bare TiO_2 and metal loaded TiO_2 samples.	117
4.20	(a) N_2 adsorption-desorption isotherms of TiO_2 and	
	MMT/TiO ₂ samples; (b) BJH pore size distributions of	
	corresponding samples.	118
4.21	(a) N_2 adsorption–desorption isotherms of TiO_2 and In/TiO_2	
	samples; (b) BJH pore size distributions of corresponding	
	samples.	119
4.22	N_2 adsorption–desorption isotherms of $TiO_2,In/TiO_2$ and co-	
	doped TiO ₂ samples.	120
4.23	XPS spectra of 10 % MMT/TiO ₂ nanocomposites; (a) spectra	
	of Ti 2p, (b) O 1s, (c) C 1s, (d) Na 1s, (e) Si 2p, (f) Al 2p, (g)	
	Mn 2p, and (h) Mg 2p.	125
4.24	XPS spectra of 10% In/TiO ₂ sample: (a) spectra of Ti 2p, (b)	
	In 3d, and (c) O 1s.	126
4.25	XPS spectra of 3% cu-10% In/TiO ₂ sample: (a) spectra of Ti	
	2p, (b) Cu 2p, (c) In 3d, (d) O 1s, and (e) C 1s.	127
4.26	UV–Vis absorption spectra of TiO_2 and MMT modified TiO_2	
	nanocomposites.	129
4.27	Band gap energy calculation from absorption spectra of TiO_2	
	nanoparticles and MMT modified TiO ₂ nano-particles.	129
4.28	UV-Vis absorption spectra of TiO_2 and In-doped TiO_2	
	nanoparticles.	130
4.29	Band gap energy calculations from absorption spectra of TiO_2	
	samples.	131
4.30	UV–Vis absorption spectra of Cu-In co-doped TiO_2	
	nanoparticles.	132
4.31	Band gap energy calculations from absorption spectra of Cu-	
	In co-doped TiO ₂ samples.	132
4.32	UV–Vis absorption spectra of Ni-In co-doped TiO_2	
	nanoparticles.	133
4.33	Band gap energy calculations from absorption spectra of Ni-	
	In co-doped TiO_2 samples.	133

4.34	PL emission spectra of TiO ₂ and MMT/TiO ₂ nanocomposites.	135
4.35	PL emission spectra of TiO ₂ and In-doped TiO ₂ nanoparticles.	
		136
4.36	PL emission spectra of Cu- In co-doped TiO ₂ nanoparticles.	
		137
4.37	PL emission spectra of Ni-In co-doped TiO ₂ nanoparticles.	
		137
5.1	Effects of MMT loading on TiO_2 photoactivity for	
	photocatalytic CO ₂ reduction to CH ₄ (reaction temperature	
	348 K, reaction time 4 h, and $P_{\rm H2O}$ 0.032 bar).	141
5.2	The yield of CH_4 at different feed ratios (CO_2/H_2O) over 20	
	% MMT/TiO ₂ photocatalyst (reaction temperature 348 K,	
	reaction time 4 h).	142
5.3	Effects of temperature on photocatalytic CO ₂ reduction to	
	CH_4 over 20% MMT/TiO ₂ photocatalyst (reaction time 2 h,	
	CO_2/H_2O feed ratio 1.2).	144
5.4	Effect of irradiation time for photocatalytic CO ₂ reduction	
	with H_2O to CH_4 and CO over 20% MMT/TiO ₂ (T= 393 K,	
	and CO_2/H_2O feed ratio 1.20).	145
5.5	Effect of irradiation time on photocatalytic CO ₂ reduction	
	with H_2O to higher hydrocarbons over 20% MMT/TiO ₂ (T=	
	393 K, and CO_2/H_2O feed ratio 1.20).	145
5.6	Average production rate of all hydrocarbon products over	
	TiO ₂ and 20% MMT modified TiO ₂ (T= 393 K, and CO ₂ /H ₂ O	
	feed ratio 1.20).	147
5.7	Effect of light intensity on CO ₂ reduction with H ₂ O to CH ₄	
	over TiO ₂ (reaction temperature =100 °C, $P_{\rm H2O}$ =0.042 bars,	
	$PCO_2 = 0.02$ bars).	149
5.8	Effect of In-content on TiO ₂ activity for the production of CO	
	and CH ₄ (irradiation time=2 h, T =100 $^{\circ}$ C, P _{H2O} =0.042 bars,	
	$PCO_2 = 0.02$ bars).	151
5.9	Yield of CH_4 at various initial CO_2/H_2O feed ratios over 10%	
	In/TiO ₂ (irradiation time 4 h, reaction temperature 100 $^{\circ}$ C)	152

5.10	Effect of reaction temperature on the yield of CH ₄ production	
	over 10% In/TiO ₂ catalyst at CO ₂ /H ₂ O feed ratio 1.43.	153
5.11	Effect of irradiation time on CO ₂ reduction to CO and CH ₄	
	using TiO_2 and 10% In/TiO_2 catalyst (reaction temperature	
	100 °C, CO ₂ /H ₂ O feed ratio 1.43)	154
5.12	Effect of irradiation time on photocatalytic CO ₂ reduction to	
	hydrocarbons over 10% In/TiO ₂ catalyst (reaction	
	temperature 100 $^{\circ}$ C, CO ₂ /H ₂ O feed ratio 1.43).	155
5.13	Reaction scheme for the production of CO, CH ₄ and	
	hydrocarbons during photocatalytic CO2 reduction and H2O	
	oxidation	161
5.14	Schematic of possible reaction mechanism for photocatalytic	
	reduction of CO_2 with H_2O ; (a) Oxidation and reduction	
	process over In/TiO2, (b) Recombination and separation of	
	charges, c) Schematic structure of MMT/TiO_2	
	nanocomposites with oxidation and reduction process.	162
5.15	Representation of reversible reaction on heterogeneous	
	photocatalysts surface	166
5.16	Profile of Langmuir-Hinshelwood model for photocatalytic	
	CO ₂ reduction over In/TiO ₂ catalyst	167
5.17	Profile of Langmuir-Hinshelwood model for photocatalytic	
	CO ₂ reduction over MMT/TiO ₂ catalyst	167
5.18	Comparison of the proposed kinetic model fitting-well with	
	the empirical profile of CH_4 and CO formation over TiO_2 and	
	In/TiO ₂ catalysts	173
5.19	Comparison of model fitting with the experimental data for	
	formation of CH_4 and CO over MMT modified TiO_2 catalyst	174
6.1	Geometric effects of monolith photoreactor for CO ₂ reduction	
	with H_2O to CH_4 over TiO_2 at $P_{\rm H2O}$ 0.042 bars and $P_{\rm CO2}$ of	
	0.040 bars: (a) Effect of cell density, (b) Effect of channel	
	length.	178
6.2	Photocatalytic CO_2 reduction with H_2O to CO and C_1 - C_3	
	hydrocarbons over MMT/TiO_2 coated monolith: (a) Yield of	

	CO and CH ₄ , (b) Yield of hydrocarbons ($P_{\rm H2O}$ 0.042 bars and	
	P _{CO2} of 0.040 bar, CPSI=100, L=2.5 cm, dia=6 cm).	179
6.3	Performance comparisons between cell type and monolith	
	photoreactor over TiO ₂ and MMT/TiO ₂ catalysts.	181
6.4	(a) Schematic of reaction scheme for reduction of CO ₂ with	
	H_2O to various products, (b) adsorption-desorption	
	mechanism through microchannels of monolith.	185
6.5	Effects of channel density and length on performance of	
	monolith photoreactor for photocatalytic CO ₂ reduction with	
	H ₂ O vapours over TiO ₂ catalyst: (a) Effect of cell density, (b)	
	Effect of channel dimension (reaction temperature 373 K,	
	P_{H2O} of 0.074 bars and P_{CO2} of 0.020 bars).	187
6.6	Effect of reaction temperature on yield rate of CO using 10%	
	In/TiO ₂ coated monolith photoreactor (L=2 cm, CPSI=100,	
	$CO_2=0.02$ bar, $P_{H2O}=0.074$ bar).	189
6.7	Effect of In-loading into TiO2 for photocatalytic CO2	
	reduction over monolith keeping all the parameters fixed	
	(L=2 cm, CPSI=100, reaction temperature 373 k, $P_{\rm H2O}$ of	
	0.074 bar and P_{CO2} of 0.02 bar).	181
6.8	Photocatalytic CO ₂ reduction with H ₂ O over 10 % In/TiO ₂	
	coated over monolith channels at different irradiations time	
	and CO ₂ partial pressures: (a) Yield of CO, (b) Yield of CH ₄ ,	
	(c) Yield of hydrocarbons (Length 2 cm, CPSI 100, reaction	
	temperature 373 K, and P_{H2O} of 0.074 bar).	191
6.9	Comparison of photocatalytic CO ₂ reduction with H ₂ O using	
	cell type and monolith photoreactor (V =150 cm^3 , reaction	
	temperature 373 K, CO ₂ /H ₂ O feed ratio 0.54).	194
6.10	Comparison of model fitting with the experimental data for	
	formation of CH ₄ and CO on TiO ₂ supported monolith	
	photoreactor.	203
6.11	Comparison of kinetic model fitting-well with the empirical	
	profile of CH ₄ formation using TiO ₂ and MMT coated	
	monolith photoreactor.	204

6.12	Comparison of model fitting with the experimental data for	
	the formation of CO on 10 wt. % In/TiO ₂ supported monolith	
	at different CO ₂ partial pressure.	204
6.13	Comparison of model fitting with the experimental data for	
	the formation of CH4 on 10 wt. % In/TiO2 supported monolith	
	at different CO ₂ partial pressure.	205
7.1	Effect of In-content on TiO_2 coated monolith on CO_2	
	reduction to CH_4 and CO at reaction temperature 100 $^{\circ}C$,	
	irradiation time 2 h, CO_2/H_2 molar feed ratio 1.0.	209
7.2	Effect of cupper and In-co-doped TiO ₂ coated monolith on	
	yield of CO at CO_2/H_2 molar feed ratio of 1.0 and reaction	
	temperature of 100 °C.	212
7.3	Effect of cupper and In-co-doped TiO ₂ over monolith on yield	
	of CH ₄ at CO ₂ /H ₂ molar feed ratio of 1.0 and reaction	
	temperature of 100 °C.	212
7.4	Photochemical conversion of CO2 to CO over Ni and In-co-	
	doped TiO ₂ at CO ₂ /H ₂ molar feed ratio of 1.0 and reaction	
	temperature of 100 °C.	214
7.5	Photochemical conversion of CO ₂ to CO over Ni and In-co-	
	doped TiO ₂ at CO ₂ /H ₂ molar feed ratio of 1.0 and reaction	
	temperature of 100 °C.	214
7.6	Effect of CO_2/H_2 molar feed ratios on photocatalytic CO_2	217
	reduction with H_2 to CO over 3% Cu-10% In/TiO_2 coated	
	monolith at reaction temperature of 100 °C	
2.7	Effect of CO_2/H_2 molar feed ratios on photocatalytic CO_2	
	reduction with H_2 to CH_4 over 3% Cu-10% In/TiO_2 coated	
	monolith at reaction temperature of 100 °C	218
7.8	Effect of CO_2/H_2 molar feed ratios on photocatalytic CO_2	
	reduction with H_2 to hydrocarbons over 3% Cu-10% In/TiO_2	
	at reaction temperature of 100 °C.	219
7.9	Effect of CO ₂ /H ₂ molar feed ratio on 3% Ni- 10 % In-doped	
	TiO ₂ activity at reaction temperature 100 °C for; (a) Yield of	
	CO, (b) Yield of CH _{4.}	220

7.10	Effect of CO ₂ /H ₂ molar feed ratios on yield of hydrocarbons	
	over $Ni-In/TiO_2$ catalyst coated monolith at reaction	
	temperature 100 °C.	221
7.11	Effect of reaction temperature on yield of CO over 3% Cu-	
	10% In-doped TiO ₂ coated over monolith at CO_2/H_2 molar	
	feed ratio of 1.5.	222
7.12	Effect of reaction temperature on yield of CH ₄ over 3% Cu-	
	10% In-doped TiO ₂ coated over monolith at CO_2/H_2 molar	
	feed ratio of 1.5.	223
7.13	Effect of reaction temperature on yield of CO over 3% Ni-	
	10% In-doped TiO ₂ coated over monolith at CO_2/H_2 molar	
	feed ratio of 1.5.	225
7.14	Effect of reaction temperature on yield of CH ₄ over 3% Ni-	
	10% In-doped TiO ₂ coated over monolith at CO_2/H_2 molar	
	feed ratio of 1.5.	225
7.15	Effect of irradiation time on photoreduction of CO ₂ to CO on	226
	TiO_2 and doped TiO_2 coated over monolith at temperature	
	120 °C and CO_2/H_2 molar feed ratio 1.5.	
7.16	Effect of irradiation time on photoreduction of CO_2 to CH_4 on	
	TiO_2 and doped TiO_2 coated over monolith at temperature	
	120 °C and CO_2/H_2 molar feed ratio 1.5.	227
7.17	Effect of irradiation time on photoreduction of CO_2 to	
	hydrocarbons on TiO_2 and doped TiO_2 coated over monolith	
	at temperature 120 $^{\circ}$ C and CO ₂ /H ₂ molar feed ratio 1.5.	228
7.18	Conversion of CO_2 and H_2 over TiO_2 and modified TiO_2	230
	catalysts coated over monolith channels at reaction	
	temperature 120 $^{\circ}$ C, and CO ₂ /H ₂ feed ratio of 1.50.	
7.19	Schematic presentation of change in color of Cu-In/TiO $_2$	
	catalyst supported over monolith channels during various	
	runs.	234
7.20	Stability test over Cu-In/TiO2 catalyst for CO2 reduction to	
	CO at reaction temperature 120 $^{o}\mathrm{C}$ and CO_2/H_2 molar feed	
	ratio of 1.50.	235

7.21	Stability test over Cu-In/TiO ₂ catalyst for CO ₂ reduction to	
	CH_4 at reaction temperature 120 oC and CO_2/H_2 molar feed	
	ratio of 1.50.	235
7.22	Stability test of run-3 over Cu-In/TiO ₂ catalyst for CO_2	
	photoreduction to hydrocarbons.	236
7.23	(a) Photocatalysis process over In/TiO_2 catalyst for CO_2	
	reduction and H_2 oxidation, (b) Oxidation and reduction	
	processes over metal modified In/TiO2 catalyst.	240
7.24	(a) Schematic of reaction scheme over co-metal modified	
	TiO_2 catalyst for reduction of CO_2 with H_2 to various	
	products, (b) adsorption-desorption mechanisms through	
	monolith microchannels.	241
7.25	Langmuir Hinshelwood model fitting with experimental data	
	for CO ₂ reduction with H ₂ using Cu and Ni co-doped In/TiO ₂	
	coated over monolith channels.	245
7.26	Model fitting with the experimental data for the formation of	
	CO and CH ₄ on TiO ₂ supported monolith.	250
7.27	Model fitting with the experimental data for the formation of	
	CO on Cu and Ni metal modified TiO ₂ supported monolith.	250

LIST OF SYMBOLS

α	-	Intensity factor
β	-	Full width at half maximum
С	-	Speed of light
d_h	-	Channel size
D	-	Average particle size
е-	-	Electron
E_{gap}	-	Gap energy
E_{bg}	-	Energy band gap
Ε	-	Activation energy
$E_{ads, H2O}$	-	Activation energy for H ₂ O adsorption
$E_{des,H2O}$	-	Activation energy for H ₂ O desorption
E_p	-	Energy of photon
f	-	Photon flux
h	-	Planks constant
ΔH	-	Change in enthalpy of reaction (KJ/mole)
h^+	-	Hole
Н	-	Heat of reaction

•	•
VV171	1
XXVI	н

Ι	-	Light intensity (mW/cm ²)
I_p	-	Photon Irradiance
k	-	Reaction rate constant
k_l	-	Reduction rate constant
KJ	-	Kilo Joule
k_2	-	Oxidation rate constant
L	-	Length
M	-	Metal
nm	-	Nanometer
N	-	Nitrogen
S	-	Active Site
TiO_2	-	Titanium dioxide
Ti	-	Titanium
Hg	-	Mercury
V	-	Volt
W	-	Watt
λ	-	Wavelength
$\Phi_{ m overall}$	-	Overall quantum efficiency
ξ	-	Photonic efficiency

LIST OF ABBREVIATIONS

С	-	Concentration
CVD	-	Chemical vapour deposition
CSD	-	Chemical solvent deposition
CPSI	-	Cell per square inch
F-T	-	Fischer-Tropsch
GHG	-	Greenhouse gas
GW	-	Gaga Watt
MTOE	-	Millions tones oil equivalent
MMT	-	Montmorillonite
NHE	-	Normal hydrogen electrode
BET	-	Braunauer-Emmer-Teller
FTIR	-	Fourier Transform Infrared Spectroscopy
FESEM	-	Field Emission Scanning Electron Microscopy
HRTEM	-	High Resolution Transmission Electron Microscopy
L-H	-	Langmuir-Hinshelwood
IUPAC	-	International Union of Pure and Applied Chemistry
SEM	-	Scanning Electron Microscopy
XRD	-	X-ray Diffraction

UV-Vis	-	Ultraviolent-Visible
VLR	-	Visible light responsive
XPS	-	X-ray Photoelectron spectroscopy
TW	-	Terawatt

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	List of Scientific Publications, Book chapter and	280
В	Patents Photographs of Photocatalytic Reactors	284
С	Photographs of Modified Nanocatalysts and Monolith	289
D	Chromatographs Peaks and Gases Analysis	292
Е	Explanation of Matlab Coding and Simulation	300

CHAPTER 1

INTRODUCTION

1.1 Research Background

Global warming, primarily due to increasing level of carbon dioxide (CO₂) emission from fossil fuels combustion, has aroused considerable concerns [1]. Rapid global energy demand has been driven by a growing world population. Energy requirements will roughly be doubled by 2050 and tripled by the end of this century [2]. In current circumstances, 80 % of primary energy consumption is fulfilled by fossil fuels of which 58 % alone is consumed in the transportation sector [5, 6]. Combustion of these fuels generates greenhouse gases (GHG) especially CO₂, leading to global warming [3-5]. Moreover, GHG contribute many negative effects like increase in sea level, occurrence of acid rain and loss in biodiversity [6-8]. Exploring new energy resources are inevitable to overcome pressing environmental issues, shortage in fossil fuels supply and continuous increase in energy demand [9]. Recently, numerous efforts have been endorsed to reduce CO₂ emission through pre and/or post combustions and also capturing and sequestration. However, these processes are energy intensive, thus uneconomical [10, 11].

Utilizing easily available and renewable carbon resource such as CO_2 for development of carbon based fuels is imperative for the sustainability, since CO_2 is green and cheap, totally abundant, as well as a renewable feedstock [12]. However, the biggest obstacle for establishing industrial processes based on CO_2 is its low energy level. CO_2 is a stable molecule that requires high energy to transform it into useful chemicals and/or fuels. During the last few years, various types of technologies have been investigated for CO_2 reforming to carbon based chemicals and fuels namely, thermal reforming, plasma reforming and photoreduction [13].

In thermal reforming, CO_2 can be converted to synthesis gas (CO, H₂) through an endothermic process by supplying 247 KJ/mole of input energy at temperature range of 800-1000 °C and pressure of 8-10 bars over different types of catalysts. The CO₂ reforming of methane (CH₄) is explained by Equation (1.1) [14, 15].

$$CH_4 + CO_2 \rightarrow 2CO + 2H_2 \quad \Delta H = +247 \text{KJ} / \text{mol}$$
 (1.1)

In this reaction Equation (1.1), the yield of syngas could increase with temperature; however, high temperature may affect catalyst stability. At higher temperature, more coke is deposited over the catalyst surface causing catalyst deactivation and reactor clogging. At the commercial level, fixed bed reactors are frequently employed for thermal CO_2 reforming with CH_4 to produce synthesis gas. The input energy required for endothermic reaction is supplied by natural gas combustion according to Equation (1.2).

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 $\Delta H = -800 \text{ KJ/mol}$ (1.2)

Equation (1.2) reveals 1 mole of CH_4 releases 800 KJ of energy but only 70 % of energy can be possibly utilized for efficient process. In this way, 0.44 mole of CH_4 will be necessary to reform 1 mole of CO_2 and 0.44 mole of CO_2 would be released to the atmosphere. Therefore, to produce 2 moles of CO during CO_2 and CH_4 reforming, it would be necessary to utilize 1.44 mole of CH_4 with 0.44 mole of

 CO_2 emitted as greenhouse gas. Thus, a net 0.56 mole of CO_2 will be treated by consuming 1.44 mole of natural gas [16].

 CO_2 reforming of CH_4 by plasma is considered a new technology that offers better alternatives compared to thermal catalytic processes. Contrary to catalytic reforming, plasma technology has advantages, since reaction takes place at lower temperature and pressure [17]. Nevertheless, higher input energy in terms of electrons and radicals production for reforming reactions is still a challenge. The reforming reactions through plasma are very complex as indicated by Equations (1.3-1.5) [16].

$$CH_4 \xrightarrow{e^* or \ pyrolysis} C + 2H_2 \tag{1.3}$$

$$CO_2 \xrightarrow{\text{e'or pyrolysis}} CO + O$$
 (1.4)

$$C+O \longrightarrow CO \tag{1.5}$$

Equations (1.3) and (1.4) are highly endothermic reactions induced by thermochemical pyrolysis, while Equation (1.5) is a radical reaction. In plasma process, electrons, radicals and ions are produced by applying higher voltages using electricity, but on commercial scale this process is energized by combusting natural gas.

As discussed in Equation (1.2), during complete combustion of one mole of CH₄, about 800 KJ of heat energy is released. In efficient process, 42 % of this energy can be converted to electricity and 67 % of electricity is possible to be utilized in plasma reactions [16]. In this way, to get 2 moles of CO during CO₂ reforming, it would be necessary to burn 1.10 mole of CH₄ and 1.10 moles of CO₂ gas should be released to atmosphere. Besides, achieving higher efficiency inside a plasma reactor at the commercial level is quite challenging [18, 19].

Among energy producing possibilities, thermal and plasma technologies can be used to produce synthesis gas efficiently, yet in both cases there is release of CO_2 to atmosphere. Besides, there is additional consumption of CH_4 in terms of providing input energy as heat. Therefore, technologies pertinent to carbon management, which not only mitigate global temperature, but also meet increasing energy demands economically, are high in the priority list [20]. Recently, photocatalytic CO_2 reduction has gained significant importance towards productions of hydrocarbon fuels and value added chemical such as CO, CH_3OH , CH_4 , HCOOH and HCHO. Phototechnology has high potential for reducing CO_2 emissions and partly resolving energy crises [21, 22]. Therefore, CO_2 reduction using UV and/or visible light irradiation could be a potential phototechnology for the sustainability of the society.

1.2 Photocatalytic Carbon Dioxide Reduction

Photocatalytic CO₂ reduction is one of the most promising solutions to both energy crises and global warming, since CO₂ can be reduced to valuable chemicals at relatively low temperature and atmospheric pressure [23, 24]. In recent innovations, the ubiquitous photocatalysis has gained increasing attention as it can operate at normal operating conditions. During photocatalytic CO₂ reduction to hydrocarbon fuels, energy requirement could be provided using sunlight which is a green source of energy. In this technology, stability of catalyst and its performance is affirmed due to mild operating conditions. The photoreduction of CO₂ by using water (H₂O) and/or H₂ as reductant are stated in Equations (1.6) - (1.8).

$$CO_2 + 2H_2O \xrightarrow{hv, catalyst} CH_3OH + 3/2O_2$$
 (1.6)

$$2CO_2 + 2H_2O \xrightarrow{hv, catalyst} CO + CH_4 + 3O_2$$
(1.7)

$$2CO_2 + 2H_2 \xrightarrow{hv, catalyst} 2CO + CH_4 + O_2$$
(1.8)

Equation (1.6) - (1.8) revealed renewable fuels such as CO, CH_4 and CH_3OH can be produced in single step. Hence, these reactions affirmed phototechnology as the most attractive and a future hope for mitigation of greenhouse gas with production of green fuels for sustainable development [25]. Furthermore, Fischer-

Tropsch (F-T) involves catalytic conversion of CO with H_2 into hydrocarbons. Therefore, with appropriate photocatalyst, the F-T process may proceed in single step in the presence of irradiations to form higher hydrocarbons during CO₂ reduction through Equations (1.9) – (1.12).

$$2CO_2 + 12H^+ + 12e^- \longrightarrow C_2H_4 + 4H_2O$$
(1.9)

$$2CO_2 + 14H^+ + 14e^- \longrightarrow C_2H_6 + 4H_2O$$

$$(1.10)$$

$$3CO_2 + 18H^+ + 18e^- \longrightarrow C_3H_6 + 6H_2O$$
 (1.11)

$$3CO_2 + 20H^+ + 20e^- \longrightarrow C_3H_8 + 6H_2O$$
(1.12)

However, there are certain challenges in practicing this technology on commercial level as lower CO_2 reduction, lesser yield rate and selectivity of fuels has been reported [26, 27]. To make CO_2 conversion approach economically practical and industrially scalable, research should focus on increasing the overall CO_2 photo conversion efficiency and selectivity; thus ultimately efficient photocatalysts and reactors are warranted [22, 28, 29].

The photocatalytic CO_2 reduction with H_2O to formic acid (HCOOH), formaldehyde (HCHO), CH_3OH and CH_4 as the main products was demonstrated three decades ago by Inoue et al. [30]. Since then, various efforts have been taken to design and develop efficient and selective photocatalytic systems for efficient CO_2 photoreduction to value added chemicals [31-33]. However, lower photocatalytic CO_2 reduction to hydrocarbon fuels has been reported during the last decades. Under such circumstances, efficient photocatalytic reactors that can eminently enhance CO_2 conversion and yield rates are inevitable.

Furthermore, since 1978, H₂O has been used as reducing agent for CO₂ reduction to produce various chemicals and fuels. However, the standard reduction potentials of H₂O to produce H₂ is much lower than the standard reduction potential of CO₂ to generate \cdot CO₂⁻[34]. Thus, in CO₂ photocatalysis with H₂O, photoreactions are supposedly more favourable to reduce H₂O through water

In photocatalytic applications, semiconductor materials also contribute significantly to enhance reduction process. Among various semiconductors, the focus has been on titanium dioxide (TiO_2) as a photocatalyst. TiO_2 has been researched excessively over the past decades due to its encouraging advantages including good photoactivity, relatively low cost, and is abundantly available. It is also chemically/thermally and biologically stable, non-toxic, and possesses higher oxidative potentials [35-37]. In green chemistry, TiO₂ and H₂O are utilized for photocatalytic transformation of CO₂ to hydrocarbon fuels. However, the efficiency of CO₂ reduction with H₂O to CH₄ and higher hydrocarbons over TiO₂ is low due to immediate recombination of photogenerated electron-holes pairs [38-40]. On the other hand, the photocatalytic activity of TiO_2 depends on its crystalline structure, particle size, presence of dopant or charge trapping materials, surface area, and surface hydroxyl groups. Therefore, numerous efforts are attempted to improve its photocatalytic activity for practical applications [41, 42]. The addition of metals and/or sensitizers to TiO_2 could alter TiO_2 band gap to effectively prevent recombination of photogenerated electron-hole pairs [43-45]. Among various dopants, In has ability to produce large number of electrons due to vacant d-orbits and also can hinder photogenerated electron-hole recombination [46, 47]. Poznyak et al. [48] investigated the photo-electrochemical properties of nanocrystalline In_2O_3/TiO_2 composites. It was observed that In_2O_3 in TiO_2 endorsed efficient separation of photogenerated electron-hole pairs. In another study, it was observed that N doped In_2O_3 thin film electrodes were efficient for H_2O splitting [49]. Recently, Kuo et al. [46] reported Ti–In oxy (nitride) with RuO₂ for H₂O splitting and observed higher H₂ yield rate over the In₂O₃/TiO₂ catalyst. Therefore, it is envisaged that In is suitable to improve TiO_2 photocatalytic activity for efficient CO_2 conversion to value added chemicals and fuels.

Furthermore, TiO_2 co-doping with metals has been endorsed as an attractive approach to improve its photoactivity. This is an important research domain in the field of titanium photo activation, even though all the dopants are not always suitable

for this purpose [50]. Thus, in the specific case of photocatalytic CO_2 reduction to hydrocarbon fuels, some metals are more favorable to improve selectivity. Copper and Ni doping are most efficient to enhance selectivity toward higher hydrocarbon and oxygenated compounds [51-53]. Therefore, these metals are considered very important to get the desired product with appropriate selectivity.

On the other hand, mesoporous materials have been considered for improving TiO₂ photocatalytic activity and selectivity because of the high surface area and inhibition of charge particle recombination. The most widely used materials include clay minerals, activated carbon, graphene oxide, carbon nanotubes, zeolites, and silica [54-57]. Abundantly available natural clays and among them, pillared clays, constitute a group of mesoporous materials deemed effective to enhance TiO_2 photocatalytic activity. The clay- TiO_2 heterojunction makes easier for trapping the photogenerated charge particles, improving TiO₂ photoreduction efficiency [58, 59]. The more convincing features of clay materials are; low cost, environmentally friendly, higher surface area and good adsorption capacity [60, 61]. Apart from nanoclays, MMT is a natural layered clay classified as 2:1 groups of phyllosilicates clays in which one octahedral sheet is sandwiched between two silica tetrahedral MMT is widely used as support to manufacture functional sheets [62, 63]. composites as photocatalysts which makes it effective for higher charge trappings. By dispersing MMT into the precursors of the TiO_2 particles, intercalated delaminated clay is formed. This clay-TiO₂ heterojunction not only prepare nano-TiO₂ particles but also immobilize nano- TiO₂ over MMT-clay which is helpful to increase surface activity [64, 65]. The addition of MMT into TiO₂ could also enhance yield rates due to the presence of hydroxyl groups (OH) known to be more suitable for CO₂ adsorption.

During the last 10 years, fixed-bed, catalyst supported and optical fiber reactors have been under investigation for CO_2 photoreduction. The fixed-bed with its lower surface to volume ratio, inefficient light distribution and lower interaction between reactant and catalyst [66] seem not suitable for the photoreduction process. The optical fiber photoreactors, however, fall in the category of efficient photocatalytic reactors. These reactors have been explored for photocatalytic CO_2

reduction, since the exposed surface area to light ratio are larger, delivering light efficiently and uniformly throughout the reactor [67, 68]. However, several disadvantages such as lower adhesion strength, relatively low surface area and only 20-30% of effective total reactor volume hindered the progress of the reactor towards commercialization [69, 70].

Among photocatalytic reactors, the monoliths with large illuminated surface area to reactor volume ratio and efficient light utilization/distribution over the catalyst surface are considerably effective for photocatalytic CO_2 reduction applications. Basically, monolith composed of large number of channels with catalyts usually coated as thin layer along the walls to allow higher surface interaction with irradiation [71, 72]. In addition, higher flow rates in the honeycomb monoliths give lower pressure drops, and its substrate can provide specific surface area 10-100 times more than other types of catalyst supports having the same outer dimensions [66, 73, 74]. In monolith, less dense channels with higher surface area per unit volume are useful for efficient light distribution and increasing mass transfer rate on the catalyst surface. In addition, light distributions along the axial length of the monolith decreases gradually and higher CO_2 mass transfer coefficient can be achieved using shorter monolith length [75].

1.3 Problem Statement

 CO_2 reduction to hydrocarbon fuels provides alternative ways for monitoring energy crises and global warming. However, breaking stable CO_2 molecule through thermal reforming is demanding higher input energy. The main challenges ahead in this field are described as below:

 Conversion of CO₂ with CH₄ to hydrocarbon fuels is a two-step process which required higher input energy. On commercial scale, input energy is provided by combustion of CH₄ which exacerbates more greenhouse gases emission, leading to uneconomical as well as unfriendly process to the environment.

- 2. Although, CO₂ reduction to fuels through photocatalytic reductions have numerous advantages, yet photocatalysts and reactors under investigations are inefficient to produce hydrocarbon fuels with sufficient yield rates and selectivity.
- 3. Among semiconductor materials, TiO_2 is widely investigated due to abundantly availability, comparatively cheap and numerous other advantageous. However, it has lower light absorption efficiency, trivial photoactivity and selectivity for photocatalytic CO_2 reduction to hydrocarbon fuels.
- 4. Existing photoreactors also have lower quantum efficiency due to inefficient harvesting and distribution of light irradiation over the catalyst surface. In addition, such types of reactors have lower exposed surface area, lower catalyst loading, and ineffective adsorption-desorption process and less mass transfer over the catalyst surface, resulting in lower yield rate and selectivity.

1.4 Research Hypothesis

The main focus of this research is on developing new photocatalytic system for efficiently converting stable CO_2 molecule to hydrocarbon fuels and other value added chemicals. In this perspective, nanosized catalysts and micro structured photoreactors could contribute significantly in the field of phototechnology. This research is planned by touching different research fields for solving basic reactor design problems in the way of getting selective CO_2 photoreduction efficiency for a net zero carbon cycle. Therefore, major hypotheses of the research are deliberated as follows:

1. The single step CO₂ reduction to hydrocarbon fuels is possible through photochemical Fischer-Tropsch process. Nanostructured semiconductor

catalyst is planned to be designed in such a way which could enable to cross over barriers by providing higher light absorption capacity, controlling of surface reaction for enhancing selectivity and steps ahead toward higher CO_2 conversion. For this purpose TiO₂ nanoparticles doped and co-doped with metals and modified with micro structured materials can provide thrust to wrestle problems of photocatalysis and would help to improve photoactivity and selectivity.

- 2. Higher CO₂ reduction toward hydrocarbon fuels and improved photoactivity will be possible through introducing metal ions into titanium structure. The metals that would be used are In, Cu and Ni because of their distinguish features and selective production of hydrocarbon fuels through CO₂ recycling. Besides, micro structured material employed would be pillared MMT-clay. The MMT-clay dispersed into TiO₂ would provide higher charges mobility, higher reduction potential, more CO₂ adsorption and prolonged life time of electron-hole pairs.
- 3. The lower quantum efficiency of the photoreactor system because of inefficient light distribution over the catalyst surface is intended to overcome employing microchannel monolith photoreactor. The micro structured photoreactor could provide momentum toward goal by wresting fundamental design problems of photoreactors. Monolith will be productive to provide higher illuminated active surface area, higher adsorption-desorption and efficient mass transfer toward catalyst surface. Higher light distribution and harvesting over the catalyst surface would also be possible utilizing microchannels, ultimately stimulating higher quantum efficiency toward efficient CO₂ reduction to selective hydrocarbon fuels. Besides, selection of an efficient reducing agent and optimizing various operating parameters could contribute significantly to maximize CO₂ reduction efficiency at improved selectivity.

1.5 Research Objectives

The aim of this research is to design a monolith photoreactor having microchannels of higher surface area that could serve as light transfer path over the thin layer of nanosized catalysts and capable of enhancing CO₂ reduction and yield rates. Next co-doped nanocatalysts and process operating parameters are deliberated to maximize CO₂ reduction efficiency. Finally, exploring L-H and kinetic models are planned to understand the role of catalysts and photoreactors. The specific objectives of the research are:

- To synthesize, characterize and test modified titanium nanocatalysts for CO₂ reduction to fuels
- To design and fabricate a monolith photoreactor suitable for efficient CO₂ reduction to fuels
- 3) To investigate the effectiveness of various operating parameters on the photoactivity of nanocatalysts in terms of yield and selectivity
- To study kinetic and reaction rate parameters for understanding the role of nanocatalysts toward optimization of CO₂ reduction.

1.6 Research Scope

This study is focused on resolving some of the fundamental problems pertaining to lower CO_2 reduction efficiency and selectivity. In this perspective, design of monolith and cell type photoreactors, effects of operating parameters on CO_2 reduction efficiency, synthesis and characterization of various doped, co-doped and surface modified nanocatalysts, reaction mechanisms of CO_2 reduction, oxidative-reductive model development and quantum efficiency analysis have been deliberated. Furthermore, the design of photoreactor is limited to the fabricating of monolith photoreactor to maximize yield rates and products selectivity. The CO_2 reduction efficiency is related to maximize yield rates of desired products. Therefore, the specific research scope of this study is as follows:

- TiO₂ nanoparticles, In/TiO₂ nanoparticles, Cu and Ni co-doped TiO₂ nanoparticles and MMT/TiO₂ nanocomposite photocatalysts are synthesized using sol-gel single step method to investigate the route of CO₂ photoreduction to hydrocarbon fuels. Nanocatalysts characterization are conducted using XRD, SEM, FESEM, HRTEM, FTIR, BET, XPS, DR UV-Visible and PL spectroscopy in order to investigate the phase and crystal structure, surface morphology and mesoporosity, surface area and pore size distribution, metals transitions states and optical properties of catalysts.
- 2) The role of nanocatalysts for photochemical reduction of CO₂ to hydrocarbon fuels was firstly explored using cell type photoreactor in which catalyst was distributed at the bottom. The light source used was a flash type 500 W Hg lamp with maximum UV-light irradiation intensity at 365 nm operated using high voltage power supply. The reducing agent employed was H₂O vapors for CO₂ photoreduction in gaseous phase.
- 3) In cell type photoreactor, operating parameters investigated were light intensity, metal loading, reaction temperature, feed ratios, and irradiation times. The reaction mechanism and kinetic model were developed to find out the key parameters in CO₂ reduction applications.
- 4) The microchannel monolith photoreactor of multiple cell density was used. The cell density employed were 100 and 400 CPSI while the microchannels length varied from 0.5 to 5 cm. The monolith microchannels provide higher interaction surface area between reactants and light irradiations to get higher reduction and yield rates. The nanocatalysts were coated over the microchannels using sol-gel dip coating method, while a reflector type 200 W Hg lamp was employed as source of light irradiations. The photochemical reduction of CO₂ to hydrocarbons was investigated using both H₂O vapours and H₂ as reducing agents. The performance comparison between photoreactors was conducted to investigate the efficiency of microchannel monolith photoreactor.

This research work will be helpful to cross over fundamental problems in photocatalysis employing micro structured photoreactor, while providing a new opportunity for future to overcome energy crises. The single step reduction of CO_2 to renewable fuels through photochemical F-T process with higher yield rates and selectivity are bottom-line benefits enables the process efficient. The microchannel monolith photoreactor and nanocatalysts are intended as an efficient photocatalysis systems for sustainable energy production to get low carbon economy derive for the sustainability of the society.

1.7 Research Outcomes

 CO_2 was efficiency reduced to CO, CH_4 and higher hydrocarbons in the presence of different reducing agents and photocatalytic systems, thus confirming sustainable fuel productions. The monolith photoreactor performance was very encouraging while the efficiency found was much higher than ever reported in the literature. However, several outcomes of this research are described below:

- New microchannel monolith photoreactor system to investigate efficient CO₂ reduction to hydrocarbon fuels
- New methods and finding on the development of delaminated TiO₂
 MMT for CO₂ reduction to fuels.
- New methods and findings on the synthesis of TiO₂ nanoparticles, Cu and Ni co-doped In-modified TiO₂ nanocatalyst
- New development in reaction rate and kinetic models
- Low-carbon economy shift through CO₂ recycling
- Alternative solutions to energy crises and global warming

1.8 Outline of Thesis

The research is targeted on the development of modified TiO_2 nanocatalysts suitable for efficient CO_2 reduction to hydrocarbon fuels. The microchannel monolith photoreactor was designed to improve photochemical F-T process for higher CO_2 reduction to value added chemicals and hydrocarbon fuels. The optimization of catalysts compositions, investigation of operating parameters, evaluation of reactor performances for higher yield rate, reaction mechanisms and kinetic rate parameters are discussed in different chapters. This thesis consists of eight chapters.

Background of the research and problem at hand, research hypothesis, objectives and scope of this study is discussed in Chapter 1. Chapter 2 presents literature survey pertaining to possible pathways for CO₂ recycling, fundamentals and progress in CO₂ reduction to hydrocarbon fuels, synthesis and characterization techniques, and description of photocatalytic reactors and development of kinetic models. In Chapter 3, general description of research methodology and detailed experimental strategies are discussed. The characterizations of nanocatalysts and catalysts coated over the microchannels are deliberated in Chapter 4. The description about photocatalytic CO₂ reduction with H₂O vapors over In and MMT modified TiO₂ nanocatalysts using cell type photoreactor is presented in Chapter 5. Chapter 6 explores microchannel monolith photoreactor for photocatalytic CO₂ reduction with H₂O vapors over In and MMT modified TiO₂ nanocatalysts. Chapter 7 investigates the photocatalytic CO_2 reduction with H_2 as reducing agent over doped and co-doped TiO₂ catalysts and employing microchannel monolith photoreactor. Finally, Chapter 8 contains the overall conclusions of this study and recommendations for the future work.

REFERENCES

- De_Richter, R. K., Ming, T. and Caillol, S. Fighting global warming by photocatalytic reduction of CO₂ using giant photocatalytic reactors. *Renewable and Sustainable Energy Reviews*. 2013. 19: 82-106.
- Cook, T. R., Dogutan, D. K., Reece, S. Y., Surendranath, Y., Teets, T. S. and Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. *Chemical Review*. 2010. 110: 6474–6502.
- Mohammed, M. A. A., Salmiaton, A., Azlina, W. A. K. G. W., Amran, M. S. M., Fakhru'l-Razi, A. and Taufiq-Yap, Y. H. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. *Renewable and Sustainable Energy Reviews*. 2011. 15(2): 1258-1270.
- Qin, S., Xin, F., Liu, Y., Yin, X. and Ma, W. Photocatalytic reduction of CO₂ in methanol to methyl formate over CuO-TiO₂ composite catalysts. *Journal* of Colloid and Interface Science. 2011. 356(1): 257-261.
- Demirbas, A. H. and Demirbas, I. Importance of rural bioenergy for developing countries. *Energy Conversion and Management*. 2007. 48(8): 2386-2398.
- 6. Gomes, J., Nascimento, J. and Rodrigues, H. Estimating local greenhouse gas emissions-A case study on a Portuguese municipality. *International Journal of Greenhouse Gas Control*. 2008. 2(1): 130-135.
- Beer, T., Grant, T., Williams, D. and Watson, H. Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles. *Atmospheric Environment*. 2002. 36(4): 753-763.
- Jeon, E. C., Myeong, S., Sa, J. W., Kim, J. and Jeong, J. H. Greenhouse gas emission factor development for coal-fired power plants in Korea. *Applied Energy*. 2010. 87(1): 205-210.

- Demirbas, A. Methane hydrates as potential energy resource: Part 2 Methane production processes from gas hydrates. *Energy Conversion and Management*. 2010. 51(7): 1562-1571.
- Li, Y., Wang, W. N., Zhan, Z. L., Woo, M. H., Wu, C. Y. and Biswas, P. Photocatalytic reduction of CO₂ with H₂O on mesoporous silica supported Cu/TiO₂ catalysts. *Applied Catalysis B: Environmental.* 2010. 100(1-2): 386-392.
- Zhang, Q. Y., Li, Y., Ackerman, E. A., Gajdardziska-Josifovska, M. and Li,
 H. L. Visible light responsive iodine-doped TiO₂ for photocatalytic reduction of CO₂ to fuels. *Applied Catalysis A: General*. 2011. 400(1-2): 195-202.
- Indrakanti, V. P., Schobert, H. H. and Kubicki, J. D. Quantum mechanical modeling of CO₂ interactions with irradiated stoichiometric and oxygendeficient anatase TiO₂ surfaces: Implications for the photocatalytic reduction of CO₂. *Energy & Fuels*. 2009. 23(10): 5247-5256.
- VijayaVenkataRaman, S., Iniyan, S. and Goic, R. A review of climate change, mitigation and adaptation. *Renewable and Sustainable Energy Reviews*. 2012. 16(1): 878-897.
- Tao, X., Bai, M., Wu, Q., Huang, Z., Yin, Y. and Dai, X. CO₂ reforming of CH₄ by binode thermal plasma. *International Journal of Hydrogen Energy*. 2009. 34(23): 9373-9378.
- Mei, H., Li, C., Ji, S. and Liu, H. Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling. *Chemical Engineering Science*. 2007. 62(16): 4294-4303.
- Tao, X., Bai, M., Li, X., Long, H., Shang, S., Yin, Y. and Dai, X. CH₄–CO₂ reforming by plasma – challenges and opportunities. *Progress in Energy and Combustion Science*. 2011. 37(2): 113-124.
- Nozaki, T., Ağıral, A., Yuzawa, S., Han Gardeniers, J. G. E. and Okazaki, K. A single step methane conversion into synthetic fuels using microplasma reactor. *Chemical Engineering Journal*. 2011. 166(1): 288-293.
- Long, H., Shang, S., Tao, X., Yin, Y. and Dai, X. CO₂ reforming of CH₄ by combination of cold plasma jet and Ni/[gamma]-Al₂O₃ catalyst. *International Journal of Hydrogen Energy*. 2008. 33(20): 5510-5515.

- Li, D., Li, X., Bai, M., Tao, X., Shang, S., Dai, X. and Yin, Y. CO₂ reforming of CH₄ by atmospheric pressure glow discharge plasma: A high conversion ability. *International Journal of Hydrogen Energy*. 2009. 34(1): 308-313.
- 20. Li, X., Liu, H. L., Luo, D. L., Li, J. T., Huang, Y., Li, H. L., Fang, Y. P., Xu,
 Y. H. and Zhu, L. Adsorption of CO₂ on heterostructure CdS(Bi₂S₃)/TiO₂ nanotube photocatalysts and their photocatalytic activities in the reduction of CO₂ to methanol under visible light irradiation. *Chemical Engineering Journal*. 2012. 180: 151-158.
- Li, X. K., Zhuang, Z. J., Li, W. and Pan, H. Q. Photocatalytic reduction of CO₂ over noble metal-loaded and nitrogen-doped mesoporous TiO₂. *Applied Catalysis A: General*. 2012. 429: 31-38.
- Zhao, Z., Fan, J., Liu, S. and Wang, Z. Optimal design and preparation of titania-supported CoPc using sol-gel for the photo-reduction of CO₂. *Chemical Engineering Journal*. 2009. 151(1-3): 134-140.
- Teramura, K., Okuoka, S.-i., Tsuneoka, H., Shishido, T. and Tanaka, T. Photocatalytic reduction of CO₂ using H₂ as reductant over ATaO₃ photocatalysts (A=Li, Na, K). *Applied Catalysis B: Environmental.* 2010. 96(3-4): 565-568.
- Mori, K., Yamashita, H. and Anpo, M. Photocatalytic reduction of CO₂ with H₂O on various titanium oxide photocatalysts. *RSC Advances*. 2012. 2(8): 3165.
- Carneiro, J. T., Yang, C.-C., Moulijn, J. A. and Mul, G. The effect of water on the performance of TiO₂ in photocatalytic selective alkane oxidation. *Journal of Catalysis*. 2011. 277: 129-133.
- 26. Wang, Z.-Y., Chou, H.-C., Wu, J. C. S., Tsai, D. P. and Mul, G. CO₂ photoreduction using NiO/InTaO₄ in optical-fiber reactor for renewable energy. *Applied Catalysis A: General*. 2010. 380: 172–177.
- Naik, B., Martha, S. and Parida, K. M. Facile fabrication of Bi₂O₃/TiO₂-xNx nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. *International Journal of Hydrogen Energy*. 2011. 36(4): 2794-2802.
- Wang, C., Thompson, R. L., Baltrus, J. and Matranga, C. Visible light photoreduction of CO₂ using CdSe/Pt/TiO₂ heterostructured catalysts. *Journal of Physical Chemistry Letters*. 2010. 1: 48–53.

- Indrakanti, V. P., Schobert, H. H. and Kubicki, J. D. Quantum mechanical modeling of CO₂ interactions with irradiated stoichiometric and oxygendeficient anatase TiO₂ Surfaces: Implications for the photocatalytic reduction of CO₂. *Energy Fuels*. 2009. 23: 5247–5256.
- Inoue, T., Akira, F., Satoshi, K. and Kenichi, H. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. *Nature*. 1979. 277: 637-638.
- Kitano, M., Matsuoka, M., Ueshima, M. and Anpo, M. Recent developments in titanium oxide-based photocatalysts. *Applied Catalysis A: General*. 2007. 325(1): 1-14.
- 32. Centi, G. and Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. *Catalysis Today*. 2009. 148(3-4): 191-205.
- Zhang, Q. H., Han, W. D., Hong, Y. J. and Yu, J. G. Photocatalytic reduction of CO₂ with H₂O on Pt-loaded TiO₂ catalyst. *Catalysis Today*. 2009. 148(3-4): 335-340.
- 34. Indrakanti, V. P., Kubickib, J. D. and Schobert, H. H. Photoinduced activation of CO₂ on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. *Energy and Environmental Science*. 2009. 2: 745–758.
- 35. Wang, X. and Lim, T.-T. Solvothermal synthesis of C–N codoped TiO₂ and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor. *Applied Catalysis B: Environmental*. 2010. 100(1-2): 355-364.
- Chiarello, G. L., Selli, E. and Forni, L. Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO₂ and Au/TiO₂. *Applied Catalysis B: Environmental*. 2008. 84(1-2): 332-339.
- Kleiman, A., Marquez, A., Vera, M. L., Meichtry, J. M. and Litter, M. I.
 Photocatalytic activity of TiO₂ thin films deposited by cathodic arc. *Applied Catalysis B: Environmental*. 2011. 101: 676–681.
- Di Paola, A., Garcia-Lopez, E., Marci, G. and Palmisano, L. A survey of photocatalytic materials for environmental remediation. *Journal of Hazardous Materials*. 2012. 211-212: 3-29.

- Khataee, A. R. and Kasiri, M. B. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. *Journal of Molecular Catalysis A: Chemical*. 2010. 328(1-2): 8-26.
- Dimitrijevic, N. M., Vijayan, B. K., Poluektov, O. G., Rajh, T., Gray, K. A., He, H. and Zapol, P. Role of water and carbonates in photocatalytic transformation of CO₂ to CH₄ on titania. *Journal of the American Chemical Society*. 2011. 133(11): 3964-3971.
- Krejcíkova, S., Matejova, L., Kocí, K., Obalova, L., Matej, Z., Capek, L. and Solcova, O. Preparation and characterization of Ag-doped crystalline titania for photocatalysis applications. *Applied Catalysis B: Environmental*. 2012. 111-112: 119-125.
- 42. Le, T. T., Akhtar, M. S., Park, D. M., Lee, J. C. and Yang, O. B. Water splitting on Rhodamine-B dye sensitized Co-doped TiO₂ catalyst under visible light. *Applied Catalysis B: Environmental*. 2012. 111: 397-401.
- Ismail, A. A., Bahnemann, D. W. and Al-Sayari, S. A. Synthesis and photocatalytic properties of nanocrystalline Au, Pd and Pt photodeposited onto mesoporous RuO₂-TiO₂ nanocomposites. *Applied Catalysis A: General*. 2012. 431: 62-68.
- Shen, Y. D., Foong, T. R. B. and Hu, X. Towards atomic level vanadium doping of TiO₂ via liquid-phase atomic layer deposition. *Applied Catalysis A: General*. 2011. 409: 87-90.
- 45. Truong, Q. D., Le, T. H., Liu, J. Y., Chung, C. C. and Ling, Y. C. Synthesis of TiO₂ nanoparticles using novel titanium oxalate complex towards visible light-driven photocatalytic reduction of CO₂ to CH₃OH. *Applied Catalysis A: General*. 2012. 437: 28-35.
- 46. Kuo, Y., Frye, C. D., Ikenberry, M. and Klabunde, K. J. Titanium–indium oxy(nitride) with and without RuO₂ loading as photocatalysts for hydrogen production under visible light from water. *Catalysis Today*. 2013. 199: 15-21.
- Tomoaki Houzouji, Nobuhiro Saito, Akihiko Kudo and Sakata, T. Electroluminescence of TiO₂ film and TiO₂:Cu²⁺ film prepared by the sol-gel method *Chemical Physics Letters*. 1996. 254: 109-113.
- 48. Poznyak, S. K., Talapin, D. V. and Kulak, A. I. Structural, optical, and photoelectrochemical properties of nanocrystalline TiO₂-In₂O₃ composite

solids and films prepared by sol-gel method. *Journal of Physical Chemistry B*. 2001. 105(21): 4816-4823.

- 49. R., R.-G. K., A., R.-G. E. and R., D. Nitrogen-doped In₂O₃ thin film electrodes for photocatalytic water splitting. *Journal of Physical Chememistry C*. 2007. 111: 14579-14588.
- 50. Gombac, V. TiO₂ nanopowders doped with boron and nitrogen for photocatalytic applications. *Chemical Physics*. 2007. 339: 111-123.
- Varghese, O. K., Paulose, M., Latempa, T. J. and Grimes, C. A. High-rate solar photocatalytic conversion of CO₂ and water vapor to hydrocarbon fuels. *Nano Letters*. 2009. 9(2): 731-737.
- Wu, J. C. S., Lin, H. M. and Lai, C. L. Photoreduction of CO₂ to methanol using optical-fiber photoreactor. *Applied Catalysis A: General*. 2005. 296(2): 194-200.
- 53. Liou, P.-Y., Chen, S.-C., Wu, J. C. S., Liu, D., Mackintosh, S., Maroto-Valer, M. and Linforth, R. Photocatalytic CO₂ reduction using an internally illuminated monolith photoreactor. *Energy & Environmental Science*. 2011. 4(4): 1487-1494.
- Damardji, B., Khalaf, H., Duclaux, L. and David, B. Preparation of TiO₂pillared montmorillonite as photocatalyst Part I. Microwave calcination, characterisation, and adsorption of a textile azo dye. *Applied Clay Science*. 2009. 44(3-4): 201-205.
- 55. Yang, C.-C., Vernimmen, J., Meynen, V., Cool, P. and Mul, G. Mechanistic study of hydrocarbon formation in photocatalytic CO₂ reduction over Ti-SBA-15. *Journal of Catalysis*. 2011. 284(1): 1-8.
- 56. Takeuchi, M., Dohshi, S., Eura, T. and Anpo, M. Preparation of titaniumsilicon binary oxide thin film photocatalysts by an ionized cluster beam deposition method. Their photocatalytic activity and photoinduced superhydrophilicity. *Journal of Physical Chemistry B*. 2003. 107(51): 14278-14282.
- 57. Min, Y., Zhang, K., Zhao, W., Zheng, F., Chen, Y. and Zhang, Y. Enhanced chemical interaction between TiO₂ and graphene oxide for photocatalytic decolorization of methylene blue. *Chemical Engineering Journal*. 2012. 193-194: 203-210.

- Kameshima, Y., Tamura, Y., Nakajima, A. and Okada, K. Preparation and properties of TiO₂/montmorillonite composites. *Applied Clay Science*. 2009. 45(1-2): 20-23.
- Wang, C., Shi, H., Zhang, P. and Li, Y. Synthesis and characterization of kaolinite/TiO₂ nano-photocatalysts. *Applied Clay Science*. 2011. 53(4): 646-649.
- 60. Bhattacharyya, K. G. and Gupta, S. S. Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: Kinetic and thermodynamic study. *Chemical Engineering Journal*. 2008. 136(1): 1-13.
- Bhattacharyya, K. Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. *Applied Clay Science*. 2008. 41(1-2): 1-9.
- 62. W.E, W. *Clays and ceramic raw materials*, London: Elsevier Scientific. 1986.
- Younssi, I. E., Rhadfi, T., Atlamsani, A., Quisefit, J.-P., Herbst, F. and Draoui, K. K-10 montmorillonite: an efficient and reusable catalyst for the aerobic C–C bond cleavage of α-substituted ketones. *Journal of Molecular Catalysis A: Chemical.* 2012. 363-364: 437-445.
- Yoshikazu Kameshima, Yoshihiro Tamura, Akira Nakajima and Okada, K. Preparation and properties of TiO₂/montmorillonite composites. *Applied Clay Science*. 2009. 45: 20–23.
- Yuan, L. L., Huang, D. D., Guo, W. N., Yang, Q. X. and Yu, J. TiO₂/montmorillonite nanocomposite for removal of organic pollutant. *Applied Clay Science*. 2011. 53(2): 272-278.
- Usubharatana, P., McMartin, D., Veawab, A. and Tontiwachwuthikul, P. Photocatalytic process for CO₂ emission reduction from industrial flue gas streams. *Industrial & Engineering Chemistry Research*. 2006. 45(8): 2558-2568.
- 67. Wang, Z. Y., Chou, H. C., Wu, J. C. S., Tsai, D. P. and Mul, G. CO₂ photoreduction using NiO/InTaO₄ in optical-fiber reactor for renewable energy. *Applied Catalysis A: General*. 2010. 380(1-2): 172-177.
- Nguyen, T. V. and Wu, J. C. S. Photoreduction of CO₂ to fuels under sunlight using optical-fiber reactor. *Solar Energy Materials and Solar Cells*. 2008. 92(8): 864-872.

- Liou, P.-Y., Chen, S.-C., Wu, J. C. S., Liu, D., MacKintosh, S., Maroto-Valer, M. and Linforth, R. Photocatalytic CO₂ reduction using an internally illuminated monolith photoreactor. *Energy and Environmental Science*. 2011. 4(4): 1487-1494
- 70. Du, P., Cameiro, J. T., Moulijn, J. A. and Mul, G. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis. *Applied Catalysis A: General.* 2008. 334(1-2): 119-128.
- Huang, X., Meng, Y., Liang, P. and Qian, Y. Operational conditions of a membrane filtration reactor coupled with photocatalytic oxidation. *Separation and Purification Technology*. 2007. 55(2): 165-172.
- 72. McCullagh, C., Robertson, P. K. J., Adams, M., Pollard, P. M. and Mohammed, A. Development of a slurry continuous flow reactor for photocatalytic treatment of industrial waste water. *Journal of Photochemistry* and Photobiology A: Chemistry. 2010. 211(1): 42-46.
- Gonzalez, C. A., Ardila, A. N., Correa, M. d., Martinez, M. A. and Fuentes-Zurit, G. Pd/TiO2 Washcoated Cordierite Minimonoliths for Hydrodechlorination of Light Organochlorinated Compounds. *Ind. Eng. Chem. Res.* 2007. 46: 7961-7969.
- Liu, H., Zhao, J. D., Li, C. Y. and Ji, S. F. Conceptual design and CFD simulation of a novel metal-based monolith reactor with enhanced mass transfer. *Catalysis Today*. 2005. 105(3-4): 401-406.
- Harriott, P. *Chemical Reactor Design*, Cornell University Ithaca, New York, U.S.A: Marcel Dekker, Inc. 2003.
- Ghoniem, A. F. Needs, resources and climate change: Clean and efficient conversion technologies. *Progress in Energy and Combustion Science*. 2011. 37(1): 15-51.
- Gill, S. S., Tsolakis, A., Dearn, K. D. and Rodríguez-Fernández, J. Combustion characteristics and emissions of Fischer–Tropsch diesel fuels in IC engines. *Progress in Energy and Combustion Science*. 2010. 37: 503-523.
- 78. Balat, H. and Elif, K. Hydrogen from biomass e Present scenario and future prospects. 2010(International Journal of Hydrogen Energy): 7416-7426.
- Roy, S. C., Varghese, O. K., Paulose, M. and Grimes, C. A. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. *ACS Nano*. 2010. 4(3): 1259-1278.

- Le, T. H. N., Tran, Q. V., Nguyen, T. T. L., Van, D. S. T., Yang, X. Y. and Su, B. L. Preparation of bio-fuels by catalytic cracking reaction of vegetable oil sludge. *Fuel.* 2011. 90(3): 1069-1075.
- Yan, X. Y. and Crookes, R. J. Energy demand and emissions from road transportation vehicles in China. *Progress in Energy and Combustion Science*. 2010. 36(6): 651-676.
- 82. Nigam, P. S. and Singh, A. Production of liquid biofuels from renewable resources. *Progress in Energy and Combustion Science*. 2011. 37(1): 52-68.
- Peng, J., Lu, L. and Yang, H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. *Renewable and Sustainable Energy Reviews*. 2013. 19: 255-274.
- Chew, T. and Bhatia, S. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. *Bioresource Technology*. 2008. 99(17): 7911-7922.
- Centi, G., Lanzafame, P. and Perathoner, S. Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. *Catalysis Today*. 2011 167(1): 14-30.
- Varun, Prakash, R. and Bhat, I. K. Energy, economics and environmental impacts of renewable energy systems. *Renewable and Sustainable Energy Reviews*. 2009. 13(9): 2716-2721.
- 87. George, A. O., Alain, G. and Prakash, G. K. S. *Beyond Oil and gas: The Methanol Economy*, Los Angeles: Wiley-Vch. 2009.
- Xiaoding, X. and Moulijn, J. A. Mitigation of CO₂ by chemical conversion: Plausible chemical reactions and promising products. *Energy and Fuels*. 1996. 10(2): 305-325.
- Panwar, N. L., Kaushik, S. C. and Kothari, S. Role of renewable energy sources in environmental protection: A review. *Renewable & Sustainable Energy Reviews*. 2011. 15(3): 1513-1524.
- 90. Whipple, D. T. and Kenis, P. J. A. Prospects of CO₂ utilization via direct heterogeneous electrochemical reduction. *Journal of Physical Chemistry Letters*. 2010. 1(24): 3451-3458.
- 91. Kuramochi, T., Ramírez, A., Turkenburg, W. and Faaij, A. Techno-economic prospects for CO₂ capture from distributed energy systems. *Renewable and Sustainable Energy Reviews*. 2013. 19: 328-347.

- 92. Mani, F., Peruzzini, M. and Stoppioni, P. CO₂ absorption by aqueous NH₃ solutions: speciation of ammonium carbamate, bicarbonate and carbonate by a 13C NMR study. *Green Chemistry*. 2006. 8(11): 995.
- 93. Graves, C., Ebbesen, S. D., Mogensen, M. and Lackner, K. S. Sustainable hydrocarbon fuels by recycling CO₂ and H₂O with renewable or nuclear energy. *Renewable and Sustainable Energy Reviews*. 2011. 15(1): 1-23.
- 94. Yahaya, A. H., Gondal, M. A. and Hameed, A. Selective laser enhanced photocatalytic conversion Of CO₂ into methanol. *Chemical Physics Letters*. 2004. 400(1-3): 206-212.
- 95. Zhou, Y., Tian, Z., Zhao, Z., Liu, Q., Kou, J., Chen, X., Gao, J., Yan, S. and Zou, Z. High-yield synthesis of ultrathin and uniform Bi₂WO₆ square nanoplates benefitting from photocatalytic reduction of CO₂ into renewable hydrocarbon fuel under visible light. ACS Applied Matererials and Interfaces. 2011. 3(9): 3594-3601.
- 96. Zhao, C., Krall, A., Zhao, H., Zhang, Q. and Li, Y. Ultrasonic spray pyrolysis synthesis of Ag/TiO₂ nanocomposite photocatalysts for simultaneous H₂ production and CO₂ reduction. *International Journal of Hydrogen Energy*. 2012. 37(13): 9967-9976.
- 97. Yang, X. Y., Xiao, T. C. and Edwards, P. P. The use of products from CO₂ photoreduction for improvement of hydrogen evolution in water splitting. *International Journal of Hydrogen Energy*. 2011. 36(11): 6546-6552.
- S.M. Aliwi and Al-Jubori, K. F. Photoreduction of CO₂ by metal sulphide semiconductors in presence of H₂S. *Solar Energy Materials*. 1989. 18: 223-229.
- 99. Inoue, H., Moriwaki, H., Maeda, K. and Yoneyama, H. Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals. *Journal of Photochemistry and Photobiology A: Chemistry*. 1995. 86(1-3): 191-196.
- 100. Kavita Kabra, Rubina Chaudhary and Sawhney, R. L. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review. *Industrial Engineering Chemistry Resources*. 2004. 43: 7683-7696.
- Lasa, H. d., Serrano, B. and Salaices, M. *Photocatalytic Reaction Engineering*, New York: Springer. 2005.

- Arakawa, H., Aresta, M., Armor, J. N., Barteau, M. A., Beckman, E. J., Bell, A. T., Bercaw, J. E., Creutz, C., Dinjus, E., Dixon, D. A., Domen, K., DuBois, D. L., Eckert, J., Fujita, E., Gibson, D. H., Goddard, W. A., Goodman, D. W., Keller, J., Kubas, G. J., Kung, H. H., Lyons, J. E., Manzer, L. E., Marks, T. J., Morokuma, K., Nicholas, K. M., Periana, R., Que, L., Rostrup-Nielson, J., Sachtler, W. M., Schmidt, L. D., Sen, A., Somorjai, G. A., Stair, P. C., Stults, B. R. and Tumas, W. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. *Chemical Review*. 2001. 101(4): 953-996.
- 103. Centi, G. and Santen, R. A. V. *Catalysis for Renewables*, Weimheim: WILEY-VCH. 2007.
- Linsebigler, A. L., Lu, G., Yates, J. T. and Jr Photocatalysis on TiO₂ Surfaces: Principles, Mechanisms, and Selected Results. *Chemical Reviews*. 1995. 95(3): 735-758.
- 105. Rayner, C. M. The potential of carbon dioxide in synthetic organic chemistry. *Organic Process Research & Development*. 2007. 11(1): 121-132.
- 106. Sakakura Toshiyasu , Choi Jun-Chul and Yasuda Hiroyuki Transformation of carbon dioxide. *Chemical Reviews*. 2007. 107(6): 2365-2387.
- Clark, J. H. and Tavener, S. J. Alternative solvents: shades of green. Organic Process Research & Development. 2007. 11(1): 149-155.
- Halmann, M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. *Nature*. 1978. 275: 115 - 116.
- Canfield, D. and Frese, K. W. Reduction of carbon-dioxide to methanol on n-GaAs and p-GaAs and p-InP: Effect of crystal-face, electrolyte and currentdensity. *Journal of The Electrochemical Society*. 1983. 130: 1772–1773.
- 110. Blajeni, B. A., Halmann, M. and Manassen, J. Electrochemical measurements on the photo-electrochemical reduction of aqueous carbon-dioxide on pgallium phosphide and p-gallium arsenide semiconductor electrodes. *Solar Energy Materials*. 1983. 8: 425–440.
- 111. Ichikawa, S. and Doi, R. Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis. *Catalysis Today*. 1996. 27(1-2): 271-277.

- Halmann, M., Ulman, M. and Blajeni, B. A. Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. *Solar Energy*. 1983.
 31: 429–431.
- 113. Anpo, M. and Chiba, K. Photocatalytic reduction of CO₂ on anchored titanium-oxide catalysts. *Journal of Molecular Catalysis*. 1992. 74: 207–212.
- Hiromi, Y., Akira, S., Kawasaki, S.-i., Yuichi, I., Shaw, E. and Masakazu, A.
 Photocatalytic Synthesis of CH₄ and CH₃OH From CO₂ and H₂O on Highly
 Dispersed Active Titanium Oxide Catalysts. *Energy Conversion and Management*. 1995. 36(6-9): 617-620.
- 115. Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y. and Honda, M. Photocatalytic reduction of CO₂ with H₂O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. *Journal of Physical Chemistry B*. 1997. 101(14): 2632-2636.
- Smith, A. M. and Shuming, N. Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. *Accounts of Chemical Research*. 2010. 43(2): 190-200.
- Yacobi, B. G. Semiconductor Materials: An Introduction to Basic Principles, New York: Kluwer Academic Publishers. 2003.
- 118. Wang, J., Uma, S. and Klabunde, K. J. Visible light photocatalysis in transition metal incorporated titania-silica aerogels. *Applied Catalysis B: Environmental*. 2004. 48(2): 151-154.
- 119. Wanbayor, R. and Ruangpornvisuti, V. Adsorption of CO, H₂, N₂O, NH₃ and CH₄ on the anatase TiO₂ (0 0 1) and (1 0 1) surfaces and their competitive adsorption predicted by periodic DFT calculations. *Materials Chemistry and Physics*. 2010. 124(1): 720-725.
- 120. Liu, Y., Li, J., Wang, M., Li, Z., Liu, H., He, P., Yang, X. and Li, J. Preparation and properties of nanostructure anatase TiO₂ monoliths using 1-Butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquids as template solvents. *Crystal Growth & Design*. 2005. 5(4): 1643-1649.
- 121. Zhang, Y.-Q., Zhou, W., Liu, S. and Navrotsky, A. Controllable morphology of engelhard titanium silicates ETS-4: synthetic, photocatalytic, and calorimetric studies. *Chemistry of Materials*. 2012, 19(8): 675-678.

- 122. Kočí, K., Matějů, K., Obalová, L., Krejčíková, S., Lacný, Z., Plachá, D., Čapek, L., Hospodková, A. and Šolcová, O. Effect of silver doping on the TiO₂ for photocatalytic reduction of CO₂. *Applied Catalysis B: Environmental.* 2010. 96(3-4): 239-244.
- 123. Du, K.-F., Yang, D. and Sun, Y. Controlled Fabrication of Porous Titania Beads by a Sol–Gel Templating Method. *Industrial & Engineering Chemistry Research*. 2008. 48(2): 755-762.
- 124. Taranto, J., Frochot, D. and Pichat, P. Photocatalytic treatment of air: comparison of various TiO₂, coating methods, and supports using methanol or n-Octane as test pollutant. *Industrial and Engineering. Chemistry Research* 2009. 48: 6229–6236.
- 125. Maomingren, Ravikrishna and Valsaraj, K. Photocatalytic degradation of gaseous organic species on photonic band-gap titania. *Environmental Science Technology* 2006. 40: 7029-7033.
- 126. Nolan, N. T. Sol-gel synthesis and characterisation of novel metal oxide nanomaterials for photocatalytic applications. Dublin Institute of Technology; 2010.
- 127. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K. Titania nanotubes prepared by chemical processing. *Advanced Materials*. 1999. 11(15): 1307-13011.
- 128. Liang, Y. Q., Zhen, C. G., Zou, D. C. and Xu, D. S. Preparation of freestanding nanowire arrays on conductive substrates. *Journal of the American Chemical Society*. 2004. 126(50): 16338-16339.
- Shi, J. A. and Wang, X. D. Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. *Crystal Growth & Design*. 2011. 11(4): 949-954.
- 130. Wang, P., Zakeeruddin, S. M., Comte, P., Charvet, R., Humphry-Baker, R. and Gratzel, M. Enhance the performance of dye-sensitized solar cells by Co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO₂ nanocrystals. *Journal of Physical Chemistry B*. 2003. 107(51): 14336-14341.
- Kocı, K., Obalova, L., Matejova, L., Placha, D., Lacny, Z., Jirkovsky, J. and Solcov, O. Effect of TiO₂ particle size on the photocatalytic reduction of CO₂. *Applied Catalysis B: Environmental*. 2009. 89: 494–502.

- Kocí, K., Obalova, L., Matejova, L., Placha, D., Lacny, Z., Jirkovsky, J. and Solcova, O. Effect of TiO₂ particle size on the photocatalytic reduction of CO₂. *Applied Catalysis B: Environmental*. 2009. 89(3-4): 494-502.
- 133. Ni, M., Leung, M. K. H., Leung, D. Y. C. and Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO₂ for hydrogen production. *Renewable and Sustainable Energy Reviews*. 2007. 11(3): 401-425.
- 134. Osamu Ishitani, Chieko Inoue, Suzuki, Y. and Ibusuki, T. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metaldeposited TiO₂. *Journal of photochemistry and Photobiology A: Chemistry*. 1993. 72: 269-271.
- Wu, J. C. S. Photocatalytic Reduction of Greenhouse Gas CO₂ to Fuel. *Catalysis Surveys Asia*. 2009. 13(1): 30-40.
- Hou, W., Hung, W. H., Pavaskar, P., Goeppert, A., Aykol, M. and Cronin, S.
 B. Photocatalytic conversion of CO₂ to hydrocarbon fuels via plasmonenhanced absorption and metallic interband transitions. *ACS Catalysis*. 2011. 1(8): 929-936.
- 137. Yui Tatsuto , Kan Akira , Saitoh Chieko , azuhide, K., Ibusuki Takashi and Osamu, I. Photochemical Reduction of CO₂ Using TiO₂: Effects of Organic Adsorbates on TiO₂ and Deposition of Pd onto TiO₂. ACS Applied Material Interfaces. 2011. 3: 2594–2600.
- Adachi, K., Ohta, K. and Mizuno, T. Photocatalytic reduction of carbon dioxide to hydrocarbons using copper loaded titanium dioxide *Solar Energy Materials and Solar Cells*. 1994. 53(2): 187-190.
- Tseng I-Hsiang , Chang Wan-Chen and C.S., W. J. Photoreduction of CO₂ using sol–gel derived titania and titania-supported copper catalysts. *Applied Catalysis B: Environmental*. 2002. 37: 37-48.
- 140. Slamet, Nasution, H. W., Purnama, E., Kosela, S. and Gunlazuardi, J. Photocatalytic reduction of CO₂ on copper-doped Titania catalysts prepared by improved-impregnation method. *Catalysis Communications*. 2005. 6(5): 313-319.
- 141. Tsai, C. W., Chen, H. M., Liu, R. S., Asakura, K. and Chan, T. S. Ni@NiO core-shell structure-modified nitrogen-doped InTaO₄ for solar-driven highly

efficient CO₂ reduction to methanol. *Journal of Physical Chemistry C*. 2011. 115(20): 10180-10186.

- 142. Srinivasan, S. S., Wade, J., Stefanakos, E. K. and Goswami, Y. Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO₂. *Journal of Alloy and Compounds*. 2006. 424(1-2): 322–326.
- 143. Cong, Y., Zhang, J. L., Chen, F., Anpo, M. and He, D. N. Preparation, photocatalytic activity, and mechanism of nano-TiO₂ co-doped with nitrogen and Iron (III). *Journal of Physical Chemeistry C*. 2007. 111: 10618–10623.
- 144. Yen, C. C., Wang, D. Y., Chang, L. S. and Shih, H. C. Characterization and photocatalytic activity of Fe- and N-co-deposited TiO₂ and first-principles study for electronic structure. *Journal of Solid State Chemistry*. 2011. 184(8): 2053-2060.
- Thampi, K. R., Kivi, J. and Gratzel, M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. *Nature*. 1987. 327: 506 - 508.
- 146. Anpo, M. Approach to photocatalysis at the molecular level Design of photocatalysts, detection of intermediate species, and reaction mechanisms. *Solar Energy Materials and Solar Cells*. 1995. 38((1-4)): 221-238.
- 147. Ikeue, K., Yamashita, H., Anpo, M. and Takewaki, T. Photocatalytic reduction of CO₂ with H₂O on Ti-beta zeolite photocatalysts: Effect of the hydrophobic and hydrophilic properties. *Journal of Physical Chemistry B*. 2001. 105(35): 8350-8355.
- 148. Anpo, M., Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S. G., Ichihashi, Y., Park, D. R., Suzuki, Y., Koyano, K. and Tatsumi, T. Photocatalytic reduction of CO₂ with H₂O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. *Catalysis Today*. 1998. 44(1-4): 327-332.
- Paul, D. R. and Robeson, L. M. Polymer nanotechnology: Nanocomposites. *Polymer*. 2008. 49(15): 3187-3204.
- 150. Chen, K., Li, J., Li, J., Zhang, Y. and Wang, W. Synthesis and characterization of TiO₂-montmorillonites doped with vanadium and/or carbon and their application for the photodegradation of sulphorhodamine B under UV–Vis irradiation. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*. 2010. 360(1-3): 47-56.

- 151. Li Puma, G., Bono, A., Krishnaiah, D. and Collin, J. G. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. *Journal of Hazardous Materials*. 2008. 157(2-3): 209-219.
- 152. Wu, C.-G., Tzeng, L.-F., Kuo, Y.-T. and Shu, C. H. Enhancement of the photocatalytic activity of TiO₂ film via surface modification of the substrate. *Applied Catalysis A: General*. 2002. 226: 199–211.
- 153. Leary, R. and Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO₂ photocatalysis. *Carbon.* 2011. 49(3): 741-772.
- 154. Demyodv, D. V. Nanosized alkaline earth metal titanates: effects of size on photocatalytic and dielectric properties. Kansasa State University; 2006.
- 155. Akpan, U. G. and Hameed, B. H. The advancements in sol-gel method of doped-TiO₂ photocatalysts. *Applied Catalysis A: General*. 2010. 375: 1-11.
- Yin, S., Li, R., He, Q. and Sato, T. Low temperature synthesis of nanosize rutile titania crystal in liquid media. *Materials Chemistry and Physics*. 2002. 75: 76-80.
- 157. YANG, X. Sol-gel synthesized nanomaterials for environmental applications. Kansas State University; 2008.
- Leofanti, G., Tozzola, G., Padovan, M., Petrini, G., Bordiga, S. and Zecchina,
 A. Catalyst characterization: Applications. *Catalysis Today*. 1997. 34: 329-352.
- 159. Wu, J., Lin, H. and Lai, C. Photo reduction of CO₂ to methanol using opticalfiber photoreactor. *Applied Catalysis A: General*. 2005. 296(2): 194-200.
- Galinska, A. and Walendziewski, J. Photocatalytic Water Splitting over Pt-TiO₂ in the Presence of Sacrificial Reagents. *Energy & Fuels*. 2005. 19(3): 1143-1147.
- 161. G.R. Dey, Belapurkar, A. D. and Kishore, K. Photo-catalytic reduction of carbon dioxide to methane using TiO₂ as suspension in water. *Journal of Photochemistry and Photobiology A: Chemistry*. 2004. 163: 503–508.
- 162. Dey, G. R. Chemical Reduction of CO₂ to Different Products during Photo Catalytic Reaction on TiO₂ under Diverse Conditions: an Overview. *Journal* of Natural Gas Chemistry. 2007. 16: 217-226.

- 163. Lo, C. C., Hung, C. H., Yuan, C. S. and Hung, Y. L. Parameter effects and reaction pathways of photoreduction of CO₂ over TiO₂/SO₄²⁻ photocatalyst. *Chinese Journal of Catalysis*. 2007. 28(6): 528-534.
- 164. Lo, C.-C., Hung, C.-H., Yuan, C.-S. and Wu, J.-F. Photoreduction of carbon dioxide with H₂ and H₂O over TiO₂ and ZrO₂ in a circulated photocatalytic reactor. *Solar Energy Materials & Solar Cells*. 2007. 91: 1765–1774.
- M. Halmann and Katzir, V. Photoassisted carbon dioxide reduction on aqueous suspensions of titanium dioxide. *Solar Energy Materials*. 1984. 10: 85-91.
- Shi, D., Feng, Y. and Zhong, S. Photocatalytic conversion of CH₄ and CO₂ to oxygenated compounds over Cu/CdS–TiO₂/SiO₂ catalyst. *Catalysis Today*. 2004. 98: 505–509.
- Imoberdorf, G. E., Cassano, A. E., Irazoqui, H. A. and Alfano, O. M. Optimal design and modeling of annular photocatalytic wall reactors. *Catalysis Today*. 2007. 129(1-2): 118-126.
- 168. Ling, C. M., Mohamed, A. R. and Bhatia, S. Performance of photocatalytic reactors using immobilized TiO₂ film for the degradation of phenol and methylene blue dye present in water stream. *Chemosphere*. 2004. 57(7): 547-554.
- Tomašić, V., Jović, F. and Gomzi, Z. Photocatalytic oxidation of toluene in the gas phase: Modelling an annular photocatalytic reactor. *Catalysis Today*. 2008. 137(2-4): 350-356.
- 170. Vincent, G., Marquaire, P. M. and Zahraa, O. Abatement of volatile organic compounds using an annular photocatalytic reactor: Study of gaseous acetone. *Journal of Photochemistry and Photobiology A: Chemistry*. 2008. 197(2-3): 177-189.
- 171. Kočí, K., Reli, M., Kozák, O., Lacný, Z., Plachá, D., Praus, P. and Obalová,
 L. Influence of reactor geometry on the yield of CO₂ photocatalytic reduction. *Catalysis Today*. 2011. 176(1): 212-214.
- 172. Guizard, C. and Princivalle, A. Preparation and characterization of catalyst thin films. *Catalysis Today*. 2009. 146(3-4): 367-377.
- 173. Joo, H. and Lee, J.-h. Polyaniline nanofiber coated monolith reactor for enzymatic bioconversion. *Journal of Molecular Catalysis B: Enzymatic*. 2010. 67(3-4): 179-183.

- 174. Perry, R. H. and Green, D. *Chemical Engineers' Handbook*, 6 ed. New York.: McGraw-Hill. 1984.
- 175. Chen, J., Yang, H., Wang, N., Ring, Z. and Dabros, T. Mathematical modeling of monolith catalysts and reactors for gas phase reactions. *Applied Catalysis A: General.* 2008. 345(1): 1-11.
- 176. Anzola, A. M., Bruschi, Y. M., Lopez, E., Schbib, N. S., Pedernera, M. N. and Borio, D. O. Heat Supply and Hydrogen Yield in an Ethanol Microreformer. *Industrial & Engineering Chemistry Research*. 2010. 45: 456-462.
- 177. Joo, H. and Lee, J.-h. Polyaniline nanofiber coated monolith reactor for enzymatic bioconversion. *Journal of Molecular Catalysis B: Enzymatic*. 2010. 67: 179-183.
- 178. Chen, J., Yang, H., Wang, N., Ring, Z. and Dabros, T. Mathematical modeling of monolith catalysts and reactors for gas phase reactions. *Applied Catalysis A: General.* 2008. 345: 1-11.
- 179. Du, P., Carneiro, J. T., Jacob A. Moulijn and Guido Mul A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis. *Applied Catalysis A: General.* 2008(334): 119–128.
- 180. Bitschlarsen, A., Degenstein, N. and Schmidt, L. Effect of sulfur in catalytic partial oxidation of methane over Rh–Ce coated foam monoliths. *Applied Catalysis B: Environmental*. 2008. 78(3-4): 364-370.
- 181. Haakana, T., Kolehmainen, E., Turunen, I., Mikkola, J. and Salmi, T. The development of monolith reactors: general strategy with a case study. *Chemical Engineering Science*. 2004. 59(22-23): 5629-5635.
- Cybulski, A. and Moulijn, J. A. *Structured Catalysts and Reactors*, Vol. 110, 2nd ed. New York: Taylor and Francis. 2006.
- 183. Bitsch-Larsen, A., Degenstein, N. J. and Schmidt, L. D. Effect of sulfur in catalytic partial oxidation of methane over Rh–Ce coated foam monoliths. *Applied Catalysis B: Environmental.* 2008. 78: 364–370.
- Nicolella, C. and Rovatti, M. Mathematical modeling of monolith reactors for photocatalytic oxidation of air contaminants. *Chemical Engineering Journal*. 1998. 69: 119-126.

- 185. Chong, S. H., Wang, S. B., Tade, M., Ang, H. M. and Pareek, V. Simulations of photodegradation of toluene and formaldehyde in a monolith reactor using computational fluid dynamics. *AIChE Journal*. 2011. 57(3): 724-734.
- 186. Morris, A. J., Meyer, G. J. and Fujita, E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. *Accounts of Chemical Research*. 2009. 42(12): 1983-1994.
- 187. Wang, Z.-Y., Chou, H.-C., Wu, J. C. S., Tsai, D. P. and Mul, G. CO₂ photoreduction using NiO/InTaO₄ in optical-fiber reactor for renewable energy. *Applied Catalysis A: General*. 2010. 380(1-2): 172-177.
- 188. Nasution, H., Purnama, E., Kosela, S. and Gunlazuardi, J. Photocatalytic reduction of CO on copper-doped Titania catalysts prepared by improved-impregnation method. *Catalysis Communications*. 2005. 6(5): 313-319.
- 189. Praus, P., Kozak, O., Koci, K., Panacek, A. and Dvorsky, R. CdS nanoparticles deposited on montmorillonite: preparation, characterization and application for photoreduction of carbon dioxide. *International Journal of Nanoscience*. 2011. 360(2): 574-579.
- 190. Tahir, M. and Amin, N. S. Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO₂ nanocomposites. *Applied Catalysis B: Environmental.* 2013. 142-143: 512-522.
- 191. Yanlong Yu, Enjun Wang, Jixiang Yuan and Cao, Y. Enhanced photocatalytic activity of titania with unique surface indium and boron species. *Applied Surface Science*. 2013. 273: 638-644.
- 192. Enjun Wang, Wensheng Yang and Cao, Y. Unique surface chemical species on indium doped TiO₂ and their effect on the visible light photocatalytic activity. *Journal of Physical Chemistry: C.* 2009. 113: 20912-20917.
- 193. Huihu Wang, Fariab, J. L., Shijie Donga and Chang, Y. Mesoporous Au/TiO₂ composites preparation, characterization, and photocatalytic properties. *Materials Science and Engineering B*. 2012. 177: 913-919.
- 194. Bouna, L., Rhouta, B., Amjoud, M., Maury, F., Lafont, M. C., Jada, A., Senocq, F. and Daoudi, L. Synthesis, characterization and photocatalytic activity of TiO₂ supported natural palygorskite microfibers. *Applied Clay Science*. 2011. 52(3): 301-311.
- M. Hinojosa-Reyes, S. Arriaga, L.A. Diaz-Torres and Rodríguez-González,
 V. Gas-phase photocatalytic decomposition of ethylbenzene over perlite

granules coated with indium doped TiO₂. *Chemical Engineering Journal*. 2013. 224: 106-113.

- 196. Wu, T. S., Wang, K. X., Li, G. D., Sun, S. Y., Sun, J. and Chen, J. S. Montmorillonite-supported Ag/TiO₂ nanoparticles: an efficient visible-light bacteria photodegradation material. ACS Applied Materials and Interfaces. 2010. 2(2): 544-550.
- Rodríguez-González, V., Gómez, R., Moscosa-Santillan, M. and Amouroux, J. Synthesis, characterization, and catalytic activity in the n-heptane conversion over Pt/In–Al₂O₃ sol–gel prepared catalysts. *Journal of Sol-Gel Science and Technology*. 2007. 42(2): 165-171.
- 198. Ikeue, K., Nozaki, S., Ogawa, M. and Anpo, M. Characterization of selfstanding Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO₂ with H₂O. *Catalysis Today*. 2002. 74: 241– 248.
- 199. Tan, S. S., Zou, L. and Hu, E. Kinetic modelling for photosynthesis of hydrogen and methane through catalytic reduction of carbon dioxide with water vapour. *Catalysis Today*. 2008. 131(1-4): 125-129.
- 200. Saladin, F. and Alxneit, I. Temperature dependence of the photochemical reduction of CO₂ in the presence of H₂O at the solid/gas interface of TiO₂. *Journal of the Chemical Society, Faraday Transactions*. 1997. 93(23): 4159-4163.
- 201. Anpo, M., Yamashita, H., Ichihashi, Y. and Ehara, S. Photocatalytic reduction of CO₂ with H₂O on various titanium-oxide catalysts. *Journal of Electroanalytical Chemistry*. 1995. 396(1-2): 21-26.
- Tan, S. S., Zou, L. and Hu, E. Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO₂ pellets. *Catalysis Today*. 2006. 115(1-4): 269-273.
- 203. Zhao, D., Budhi, S., Rodriguez, A. and Koodali, R. T. Rapid and facile synthesis of Ti-MCM-48 mesoporous material and the photocatalytic performance for hydrogen evolution. *International Journal of Hydrogen Energy*. 2010. 35(11): 5276-5283.
- 204. Xia Yang, Yonghui Wang, Leilei Xu, Xiaodan Yu and Guo, Y. Silver and indium oxide co-doped TiO₂ nanocomposites with enhanced photocatalytic activity. *Journal of Physical Chemistry: C.* 2008. 112: 11481-11489.

- 205. Nakagawa, S., Kudo, A., Azuma, M. and Sakata, T. Effect of pressure on the electrochemical reduction of CO₂ on Group VIII metal electrodes. *Journal of Electroanalytical Chemistry*. 1991. 308: 339-343.
- 206. Camera-Roda, G., Santarelli, F. and Martin, C. A. Design of photocatalytic reactors made easy by considering the photons as immaterial reactants. *Solar Energy*. 2005. 79(4): 343-352.
- 207. Ola, O., Maroto-Valer, M., Liu, D., Mackintosh, S., Lee, C.-W. and Wu, J. C.
 S. Performance comparison of CO₂ conversion in slurry and monolith photoreactors using Pd and Rh-TiO₂ catalyst under ultraviolet irradiation. *Applied Catalysis B: Environmental*. 2012. 126: 172-179.
- 208. Nguyen, T. V. and Wu, J. C. S. Photoreduction of CO₂ in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier. *Applied Catalysis A: General.* 2008. 335(1): 112-120.
- 209. Liu, L., Gao, F., Zhao, H. and Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO₂ catalysts for enhanced CO₂ photoreduction efficiency. *Applied Catalysis B: Environmental.* 2013. 134-135: 349-358.
- 210. Teramura, K., Tsuneoka, H., Shishido, T. and Tanaka, T. Effect of H₂ gas as a reductant on photoreduction of CO₂ over a Ga₂O₃ photocatalyst. *Chemical Physics Letters*. 2008. 467(1-3): 191-194.
- 211. Teramura, K., Tanaka, T., Ishikawa, H., Kohno, Y. and Funabiki, T. Photocatalytic reduction of CO₂ to CO in the presence of H₂ or CH₄ as a reductant over MgO. *Journal of Physical Chemistry B*. 2004. 108(1): 346-354.
- 212. Zhang, Q. Y., Gao, T. T., Andino, J. M. and Li, Y. Copper and iodine comodified TiO₂ nanoparticles for improved activity of CO₂ photoreduction with water vapor. *Applied Catalysis B: Environmental.* 2012. 123: 257-264.
- 213. Indarto, A., Choi, J., Lee, H. and Song, H. Methane conversion using dielectric barrier discharge: Comparison with thermal process and catalyst effects. *Journal of Natural Gas Chemistry*. 2006. 15(2): 87-92.
- Dey, G. R. Chemical reduction of CO₂ to different products during photo catalytic reaction on TiO₂ under diverse conditions: an overview. *Journal of Natural Gas Chemistry*. 2007. 16(3): 217-226.