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ABSTRACT 

 
 
 
 

Carbon dioxide (CO2) is the largest contributor to global warming and its 
conversion to renewable fuels has stirred interest for greenhouse gas mitigation and 
energy crises alleviations. The photocatalytic CO2 reduction to fuels is promising, yet 
existing technologies registered low CO2 reduction efficiency. The main objective of 
this study was to develop a microchannel system for selective CO2 reduction to fuels.  
Initially, nanocatalysts were investigated using cell type reactor with methane (CH4) 
and carbon monoxide (CO) as the main products during CO2 reduction with water 
vapour (H2O) over indium (In)/TiO2 and montmorillonite (MMT)/TiO2 catalysts. 
Yield of CH4 over TiO2 was 31.25, enhanced to 244 µmole g-catal.-1 h-1 using 10% 
In-doped TiO2. Loading MMT evidently enhanced TiO2 performance with CH4 yield 
rate 441.5 µmole g-catal.-1 h-1.  Next, microchannel monolith photoreactor was 
explored for selective CO2 reduction using H2O and hydrogen (H2) as reducing 
agents. Yield rate of CO attained was 962 µmole g-catal.-1 h-1 and selectivity 95%.  
Performance comparison revealed 183 fold higher yield rate in monolith compared to 
cell type reactor. Significantly higher monolith reactor performance reached using H2 
reducing agent and co-metal-doped TiO2 nanocatalysts. Yield rate of CO over nickel 
(Ni) and In-co-doped TiO2 reached to 12028 µmole g-catal.-1 h-1, higher in order of 
1.8 times than copper (Cu)- In/TiO2, 5.93 times than In/TiO2, 207.4 times than TiO2 
with performance 902 fold higher than the cell type reactor.  Besides, monolith 
geometry, reaction temperature, feed ratios, metals-content and irradiation time 
contributed significantly to enhance reactor performances. Quantum efficiency of 
CO production was 1.04 %, 87 fold higher than reported in literature.  Finally, 
Langmuir-Hinshelwood and kinetic model were developed to investigate adsorption 
behaviors and photocatalytic oxidation and reduction process, fitted well with 
experimental data, and assured efficient adsorption-desorption inside microchannels. 
In conclusion, microchannel monolith photoreactor with modified TiO2 nanocatalysts 
could make possible markedly higher CO2 reduction to fuels with higher selectivity. 
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ABSTRAK 

 
 
 
 

Karbon dioksida (CO2) adalah penyumbang terbesar kepada pemanasan 
global dan penukarannya kepada bahan api diperbaharui telah menimbulkan minat 
dalam pengurangan gas rumah hijau dan peningkatan krisis tenaga.  Terdapat potensi 
bagi pengurangan fotokimia CO2 kepada bahan api, namun teknologi sedia ada 
mendaftarkan ecekapan pengurangan CO2 yang rendah.  Tujuan utama kajian ini 
adalah untuk membangunkan sistem saluran-mikro bagi pengurangan CO2 terpilih 
kepada bahan api.  Kajian dimulakan dengan mengkaji mangkin menggunakan 
reaktor jenis sel dengan gas metana (CH4) dan gas karbon monoksida (CO) sebagai 
produk utama semasa pengurangan CO2 dengan wap air (H2O) terhadap mangkin 
indium (In)/TiO2 dan montmorilonit (MMT)/TiO2.  Hasil CH4  terhadap TiO2 

sebanyak 31.25 telah  meningkaf kepada 244 µmol g-catal.-1 h-1 menggunakan 10% 
In-dop TiO2.  Muatan MMT terbukti meningkatkan prestasi TiO2 dengan kadar hasil 
CH4 sebanyak 441.5 µmol g-catal.-1 h-1.  Seterusnya, reaktor-foto monolit saluran-
mikro dikaji lagi untuk penurunan CO2 terpilih menggunakan H2O dan hydrogen 
(H2) sebagai agen penurunan.  Kadar hasil CO yang diperolehi adalah 962 µmol g-
catal.-1 h-1 dengan selektiviti sebanyak 95%.  Perbandingan prestasi menunjukkan 183 
kali ganda kadar hasil yang lebih tinggi dalam reaktor monolit berbanding reaktor 
jenis sel.  Prestasi terbaik reaktor monolit dicapai secara signifikan menggunakan H2 
sebagai agen penurunan dan mangkin nano ko-logam yang didopkan dengan TiO2. 
Kadar hasil CO bagi nikel (Ni) dan In- diko-dopkan dengan TiO2 mencapai sehingga 
12028 µmol g-catal.-1 h-1 iaitu 1.8 kali lebih tinggi berbanding kuprum (Cu)- In/TiO2, 
5.93 kali berbanding In/TiO2, 207.4 kali berbanding TiO2 dengan prestasi sebanyak 
902 kali ganda lebih tinggi berbanding reaktor jenis sel.  Selain itu, geometri 
monolit, suhu tindakbalas, nisbah suapan, kandungan logam, dan masa penyinaran 
menyumbang secara signifikan dalam meningkatkan prestasi reaktor.  Kecekapan 
kuantum bagi penghasilan CO adalah 1.04%, 87 kali lebih tinggi berbanding dengan 
nilai yang dilaporkan dalam literasi. Akhir sekali, model Langmuir-Hinshelwood dan 
kinetik dibangunkan untuk mengkaji sifat penjerapan, proses penurunan dan 
pengoksidaan foto-pemangkin, dilengkapkan dengan data eksperimen dan jaminan 
keberkesanan penjerapan-nyahpenjerapan dalam saluran mikro.  Sebagai kesimpulan, 
reaktor-foto monolit bersaluran mikro dengan mangkin nano TiO2 terubahsuai 
mampu menukarkan CO2 dengan lebih signifikan kepada bahan api dengan 
selektiviti yang lebih tinggi. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Research Background 

 
 

Global warming, primarily due to increasing level of carbon dioxide (CO2) 

emission from fossil fuels combustion, has aroused considerable concerns [1].  Rapid 

global energy demand has been driven by a growing world population.  Energy 

requirements will roughly be doubled by 2050 and tripled by the end of this century 

[2].  In current circumstances, 80 % of primary energy consumption is fulfilled by 

fossil fuels of which 58 % alone is consumed in the transportation sector [5, 6].  

Combustion of these fuels generates greenhouse gases (GHG) especially CO2, 

leading to global warming [3-5]. Moreover, GHG contribute many negative effects 

like increase in sea level, occurrence of acid rain and loss in biodiversity [6-8].  

Exploring new energy resources are inevitable to overcome pressing environmental 

issues, shortage in fossil fuels supply and continuous increase in energy demand [9].  

Recently, numerous efforts have been endorsed to reduce CO2 emission through pre 

and/or post combustions and also capturing and sequestration.  However, these 

processes are energy intensive, thus uneconomical [10, 11].  
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Utilizing easily available and renewable carbon resource such as CO2 for 

development of carbon based fuels is imperative for the sustainability, since CO2 is 

green and cheap, totally abundant, as well as a renewable feedstock [12].  However, 

the biggest obstacle for establishing industrial processes based on CO2 is its low 

energy level.  CO2 is a stable molecule that requires high energy to transform it into 

useful chemicals and/or fuels.  During the last few years, various types of 

technologies have been investigated for CO2 reforming to carbon based chemicals 

and fuels namely, thermal reforming, plasma reforming and photoreduction [13]. 

 
 

In thermal reforming, CO2 can be converted to synthesis gas (CO, H2) 

through an endothermic process by supplying 247 KJ/mole of input energy at 

temperature range of 800-1000 oC and pressure of 8-10 bars over different types of 

catalysts.  The CO2 reforming of methane (CH4) is explained by Equation (1.1) [14, 

15]. 

 

  4 2 2CH  CO     2CO 2H    H 247KJ / mol        (1.1) 

 

In this reaction Equation (1.1), the yield of syngas could increase with 

temperature; however, high temperature may affect catalyst stability.  At higher 

temperature, more coke is deposited over the catalyst surface causing catalyst 

deactivation and reactor clogging.  At the commercial level, fixed bed reactors are 

frequently employed for thermal CO2 reforming with CH4 to produce synthesis gas.  

The input energy required for endothermic reaction is supplied by natural gas 

combustion according to Equation (1.2).   

 

 4 2 2 2CH +2O CO + 2H O ΔH=  800 KJ/mol    (1.2) 

 

Equation (1.2) reveals 1 mole of CH4 releases 800 KJ of energy but only 70 

% of energy can be possibly utilized for efficient process.  In this way, 0.44 mole of 

CH4 will be necessary to reform 1 mole of CO2 and 0.44 mole of CO2 would be 

released to the atmosphere.  Therefore, to produce 2 moles of CO during CO2 and 

CH4 reforming, it would be necessary to utilize 1.44 mole of CH4 with 0.44 mole of 
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CO2 emitted as greenhouse gas.  Thus, a net 0.56 mole of CO2 will be treated by 

consuming 1.44 mole of natural gas [16]. 

 
 

CO2 reforming of CH4 by plasma is considered a new technology that offers 

better alternatives compared to thermal catalytic processes.  Contrary to catalytic 

reforming, plasma technology has advantages, since reaction takes place at lower 

temperature and pressure [17].  Nevertheless, higher input energy in terms of 

electrons and radicals production for reforming reactions is still a challenge.  The 

reforming reactions through plasma are very complex as indicated by Equations (1.3-

1.5) [16]. 

 

         4 2CH  C 2He or pyrolysis

      (1.3) 

          
*e orpyrolysis

2CO  CO + O     (1.4) 

      C+ O  CO      (1.5) 

 

Equations (1.3) and (1.4) are highly endothermic reactions induced by 

thermochemical pyrolysis, while Equation (1.5) is a radical reaction.  In plasma 

process, electrons, radicals and ions are produced by applying higher voltages using 

electricity, but on commercial scale this process is energized by combusting natural 

gas. 

 
 
As discussed in Equation (1.2), during complete combustion of one mole of 

CH4, about 800 KJ of heat energy is released.  In efficient process, 42 % of this 

energy can be converted to electricity and 67 % of electricity is possible to be 

utilized in plasma reactions [16].  In this way, to get 2 moles of CO during CO2 

reforming, it would be necessary to burn 1.10 mole of CH4 and 1.10 moles of CO2 

gas should be released to atmosphere.  Besides, achieving higher efficiency inside a 

plasma reactor at the commercial level is quite challenging [18, 19]. 

 
 

Among energy producing possibilities, thermal and plasma technologies can 

be used to produce synthesis gas efficiently, yet in both cases there is release of CO2 
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to atmosphere.  Besides, there is additional consumption of CH4 in terms of 

providing input energy as heat.  Therefore, technologies pertinent to carbon 

management, which not only mitigate global temperature, but also meet increasing 

energy demands economically, are high in the priority list [20].  Recently, 

photocatalytic CO2 reduction has gained significant importance towards productions 

of hydrocarbon fuels and value added chemical such as CO, CH3OH, CH4, HCOOH 

and HCHO.  Phototechnology has high potential for reducing CO2 emissions and 

partly resolving energy crises [21, 22].  Therefore, CO2 reduction using UV and/or 

visible light irradiation could be a potential phototechnology for the sustainability of 

the society.  

 
 
 
 
1.2 Photocatalytic Carbon Dioxide Reduction  

 
 

Photocatalytic CO2 reduction is one of the most promising solutions to both 

energy crises and global warming, since CO2 can be reduced to valuable chemicals at 

relatively low temperature and atmospheric pressure [23, 24].  In recent innovations, 

the ubiquitous photocatalysis has gained increasing attention as it can operate at 

normal operating conditions.  During photocatalytic CO2 reduction to hydrocarbon 

fuels, energy requirement could be provided using sunlight which is a green source 

of energy.  In this technology, stability of catalyst and its performance is affirmed 

due to mild operating conditions.  The photoreduction of CO2 by using water (H2O) 

and/or H2 as reductant are stated in Equations (1.6) - (1.8). 

 

           ,
2 2 3 2CO 2H O CH OH 3/ 2Ohv catalyst      (1.6) 

  ,
2 2 4 22CO 2H O CO CH 3Ohv catalyst       (1.7) 

  ,
2 42 22CO 2H  2CO CH Ohv catalyst      (1.8) 

 

Equation (1.6) - (1.8) revealed renewable fuels such as CO, CH4 and CH3OH 

can be produced in single step.  Hence, these reactions affirmed phototechnology as 

the most attractive and a future hope for mitigation of greenhouse gas with 

production of green fuels for sustainable development [25].  Furthermore, Fischer-
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Tropsch (F-T) involves catalytic conversion of CO with H2 into hydrocarbons.  

Therefore, with appropriate photocatalyst, the F-T process may proceed in single step 

in the presence of irradiations to form higher hydrocarbons during CO2 reduction 

through Equations (1.9) – (1.12). 

 

+ -
2 2 4 22CO +12H +12e C H +4H O    (1.9) 

  + -
2 2 6 22CO +14H +14e C H +4H O    (1.10) 

  + -
2 3 6 23CO +18H +18e C H +6H O    (1.11) 

  + -
2 3 8 23CO +20H +20e C H + 6H O    (1.12) 

 

However, there are certain challenges in practicing this technology on 

commercial level as lower CO2 reduction, lesser yield rate and selectivity of fuels has 

been reported [26, 27].  To make CO2 conversion approach economically practical 

and industrially scalable, research should focus on increasing the overall CO2 photo 

conversion efficiency and selectivity; thus ultimately efficient photocatalysts and 

reactors are warranted [22, 28, 29]. 

 
 

The photocatalytic CO2 reduction with H2O to formic acid (HCOOH), 

formaldehyde (HCHO), CH3OH and CH4 as the main products was demonstrated 

three decades ago by Inoue et al. [30].  Since then, various efforts have been taken to 

design and develop efficient and selective photocatalytic systems for efficient CO2 

photoreduction to value added chemicals [31-33].  However, lower photocatalytic 

CO2 reduction to hydrocarbon fuels has been reported during the last decades.  Under 

such circumstances, efficient photocatalytic reactors that can eminently enhance CO2 

conversion and yield rates are inevitable.   

 
 
Furthermore, since 1978, H2O has been used as reducing agent for CO2 

reduction to produce various chemicals and fuels.  However, the standard reduction 

potentials of H2O to produce H2 is much lower than the standard reduction potential 

of CO2 to generate 2CO [34].  Thus, in CO2 photocatalysis with H2O, 

photoreactions are supposedly more favourable to reduce H2O through water 
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splitting, instead of CO2 reduction.  Therefore, other reducing agnets such as H2 are 

also need to be explored for CO2 reduction applications [23].   

 
 

In photocatalytic applications, semiconductor materials also contribute 

significantly to enhance reduction process.  Among various semiconductors, the 

focus has been on titanium dioxide (TiO2) as a photocatalyst.  TiO2 has been 

researched excessively over the past decades due to its encouraging advantages 

including good photoactivity, relatively low cost, and is abundantly available.  It is 

also chemically/thermally and biologically stable, non-toxic, and possesses higher 

oxidative potentials [35-37].  In green chemistry, TiO2 and H2O are utilized for 

photocatalytic transformation of CO2 to hydrocarbon fuels.  However, the efficiency 

of CO2 reduction with H2O to CH4 and higher hydrocarbons over TiO2 is low due to 

immediate recombination of photogenerated electron-holes pairs [38-40].  On the 

other hand, the photocatalytic activity of TiO2 depends on its crystalline structure, 

particle size, presence of dopant or charge trapping materials, surface area, and 

surface hydroxyl groups.  Therefore, numerous efforts are attempted to improve its 

photocatalytic activity for practical applications [41, 42].  The addition of metals 

and/or sensitizers to TiO2 could alter TiO2 band gap to effectively prevent 

recombination of photogenerated electron-hole pairs [43-45].  Among various 

dopants, In has ability to produce large number of electrons due to vacant d-orbits 

and also can hinder photogenerated electron-hole recombination [46, 47].  Poznyak 

et al. [48] investigated the photo-electrochemical properties of nanocrystalline 

In2O3/TiO2 composites.  It was observed that In2O3 in TiO2 endorsed efficient 

separation of photogenerated electron-hole pairs. In another study, it was observed 

that N doped In2O3 thin film electrodes were efficient for H2O splitting [49].  

Recently, Kuo et al. [46] reported Ti–In oxy (nitride) with RuO2 for H2O splitting 

and observed higher H2 yield rate over the In2O3/TiO2 catalyst.  Therefore, it is 

envisaged that In is suitable to improve TiO2 photocatalytic activity for efficient CO2 

conversion to value added chemicals and fuels.   

 
 

Furthermore, TiO2 co-doping with metals has been endorsed as an attractive 

approach to improve its photoactivity.  This is an important research domain in the 

field of titanium photo activation, even though all the dopants are not always suitable 
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for this purpose [50].  Thus, in the specific case of photocatalytic CO2 reduction to 

hydrocarbon fuels, some metals are more favorable to improve selectivity.  Copper 

and Ni doping are most efficient to enhance selectivity toward higher hydrocarbon 

and oxygenated compounds [51-53].  Therefore, these metals are considered very 

important to get the desired product with appropriate selectivity.  

 
 

On the other hand, mesoporous materials have been considered for improving 

TiO2 photocatalytic activity and selectivity because of the high surface area and 

inhibition of charge particle recombination.  The most widely used materials include 

clay minerals, activated carbon, graphene oxide, carbon nanotubes, zeolites, and 

silica [54-57].  Abundantly available natural clays and among them, pillared clays, 

constitute a group of mesoporous materials deemed effective to enhance TiO2 

photocatalytic activity.  The clay-TiO2 heterojunction makes easier for trapping the 

photogenerated charge particles, improving TiO2 photoreduction efficiency [58, 59].  

The more convincing features of clay materials are; low cost, environmentally 

friendly, higher surface area and good adsorption capacity [60, 61].  Apart from 

nanoclays, MMT is a natural layered clay classified as 2:1 groups of phyllosilicates 

clays in which one octahedral sheet is sandwiched between two silica tetrahedral 

sheets [62, 63].  MMT is widely used as support to manufacture functional 

composites as photocatalysts which makes it effective for higher charge trappings.  

By dispersing MMT into the precursors of the TiO2 particles, intercalated 

delaminated clay is formed.  This clay-TiO2 heterojunction not only prepare nano-

TiO2 particles but also immobilize nano- TiO2 over MMT-clay which is helpful to 

increase surface activity [64, 65].  The addition of MMT into TiO2 could also 

enhance yield rates due to the presence of hydroxyl groups (OH) known to be more 

suitable for CO2 adsorption.   

 
 

During the last 10 years, fixed-bed, catalyst supported and optical fiber 

reactors have been under investigation for CO2 photoreduction.  The fixed-bed with 

its lower surface to volume ratio, inefficient light distribution and lower interaction 

between reactant and catalyst [66] seem not suitable for the photoreduction process.  

The optical fiber photoreactors, however, fall in the category of efficient 

photocatalytic reactors. These reactors have been explored for photocatalytic CO2 
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reduction, since the exposed surface area to light ratio are larger, delivering light 

efficiently and uniformly throughout the reactor [67, 68].  However, several 

disadvantages such as lower adhesion strength, relatively low surface area and only 

20-30% of effective total reactor volume hindered the progress of the reactor towards 

commercialization [69, 70]. 

 
 
Among photocatalytic reactors, the monoliths with large illuminated surface 

area to reactor volume ratio and efficient light utilization/distribution over the 

catalyst surface are considerably effective for photocatalytic CO2 reduction 

applications.  Basically, monolith composed of large number of channels with 

catalyts usually coated as thin layer along the walls to allow higher surface 

interaction with irradiation [71, 72].  In addition, higher flow rates in the honeycomb 

monoliths give lower pressure drops, and its substrate can provide specific surface 

area 10-100 times more than other types of catalyst supports having the same outer 

dimensions [66, 73, 74].  In monolith, less dense channels with higher surface area 

per unit volume are useful for efficient light distribution and increasing mass transfer 

rate on the catalyst surface.  In addition, light distributions along the axial length of 

the monolith decreases gradually and higher CO2 mass transfer coefficient can be 

achieved using shorter monolith length [75].  

 
 
 
 

1.3 Problem Statement 

 
 
 CO2 reduction to hydrocarbon fuels provides alternative ways for monitoring 

energy crises and global warming.  However, breaking stable CO2 molecule through 

thermal reforming is demanding higher input energy.  The main challenges ahead in 

this field are described as below: 

 
1. Conversion of CO2 with CH4 to hydrocarbon fuels is a two-step process 

which required higher input energy.  On commercial scale, input energy is 

provided by combustion of CH4 which exacerbates more greenhouse 

gases emission, leading to uneconomical as well as unfriendly process to 

the environment.  
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2. Although, CO2 reduction to fuels through photocatalytic reductions have 

numerous advantages, yet photocatalysts and reactors under 

investigations are inefficient to produce hydrocarbon fuels with sufficient 

yield rates and selectivity. 

 
3. Among semiconductor materials, TiO2 is widely investigated due to 

abundantly availability, comparatively cheap and numerous other 

advantageous.  However, it has lower light absorption efficiency, trivial 

photoactivity and selectivity for photocatalytic CO2 reduction to 

hydrocarbon fuels.  

 
4. Existing photoreactors also have lower quantum efficiency due to 

inefficient harvesting and distribution of light irradiation over the catalyst 

surface.  In addition, such types of reactors have lower exposed surface 

area, lower catalyst loading, and ineffective adsorption-desorption process 

and less mass transfer over the catalyst surface, resulting in lower yield 

rate and selectivity. 

 
 
 
 
1.4 Research Hypothesis 

 
 

The main focus of this research is on developing new photocatalytic system for 

efficiently converting stable CO2 molecule to hydrocarbon fuels and other value 

added chemicals.  In this perspective, nanosized catalysts and micro structured 

photoreactors could contribute significantly in the field of phototechnology.  This 

research is planned by touching different research fields for solving basic reactor 

design problems in the way of getting selective CO2 photoreduction efficiency for a 

net zero carbon cycle.  Therefore, major hypotheses of the research are deliberated as 

follows:  

 
 
1. The single step CO2 reduction to hydrocarbon fuels is possible through 

photochemical Fischer-Tropsch process.  Nanostructured semiconductor 
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catalyst is planned to be designed in such a way which could enable to cross 

over barriers by providing higher light absorption capacity, controlling of 

surface reaction for enhancing selectivity and steps ahead toward higher CO2 

conversion. For this purpose TiO2 nanoparticles doped and co-doped with 

metals and modified with micro structured materials can provide thrust to 

wrestle problems of photocatalysis and would help to improve photoactivity 

and selectivity. 

 
2. Higher CO2 reduction toward hydrocarbon fuels and improved photoactivity 

will be possible through introducing metal ions into titanium structure.  The 

metals that would be used are In, Cu and Ni because of their distinguish 

features and selective production of hydrocarbon fuels through CO2 

recycling.  Besides, micro structured material employed would be pillared 

MMT-clay.  The MMT-clay dispersed into TiO2 would provide higher 

charges mobility, higher reduction potential, more CO2 adsorption and 

prolonged life time of electron-hole pairs. 

 
3. The lower quantum efficiency of the photoreactor system because of 

inefficient light distribution over the catalyst surface is intended to overcome 

employing microchannel monolith photoreactor.  The micro structured 

photoreactor could provide momentum toward goal by wresting fundamental 

design problems of photoreactors.  Monolith will be productive to provide 

higher illuminated active surface area, higher adsorption-desorption and 

efficient mass transfer toward catalyst surface.  Higher light distribution and 

harvesting over the catalyst surface would also be possible utilizing 

microchannels, ultimately stimulating higher quantum efficiency toward 

efficient CO2 reduction to selective hydrocarbon fuels. Besides, selection of 

an efficient reducing agent and optimizing various operating parameters 

could contribute significantly to maximize CO2 reduction efficiency at 

improved selectivity. 
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1.5 Research Objectives 

 
 

The aim of this research is to design a monolith photoreactor having 

microchannels of higher surface area that could serve as light transfer path over the 

thin layer of nanosized catalysts and capable of enhancing CO2 reduction and yield 

rates.  Next co-doped nanocatalysts and process operating parameters are deliberated 

to maximize CO2 reduction efficiency. Finally, exploring L-H and kinetic models are 

planned to understand the role of catalysts and photoreactors. The specific objectives 

of the research are: 

 

1) To synthesize, characterize and test modified titanium nanocatalysts for 

CO2 reduction to fuels 

2) To design and fabricate a monolith photoreactor suitable for efficient CO2 

reduction to fuels 

3) To investigate the effectiveness of various operating parameters on the 

photoactivity of nanocatalysts in terms of yield and selectivity 

4) To study kinetic and reaction rate parameters for understanding the role of 

nanocatalysts toward optimization of CO2 reduction. 

 
 
 
 
1.6 Research Scope  

 
 
This study is focused on resolving some of the fundamental problems 

pertaining to lower CO2 reduction efficiency and selectivity.  In this perspective, 

design of monolith and cell type photoreactors, effects of operating parameters on 

CO2 reduction efficiency, synthesis and characterization of various doped, co-doped 

and surface modified nanocatalysts, reaction mechanisms of CO2 reduction, 

oxidative-reductive model development and quantum efficiency analysis have been 

deliberated. Furthermore, the design of photoreactor is limited to the fabricating of 

monolith photoreactor to maximize yield rates and products selectivity.  The CO2 

reduction efficiency is related to maximize yield rates of desired products.  

Therefore, the specific research scope of this study is as follows: 
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1) TiO2 nanoparticles, In/TiO2 nanoparticles, Cu and Ni co-doped TiO2 

nanoparticles and MMT/TiO2 nanocomposite photocatalysts are synthesized 

using sol-gel single step method to investigate the route of CO2 

photoreduction to hydrocarbon fuels.  Nanocatalysts characterization are 

conducted using XRD, SEM, FESEM, HRTEM, FTIR, BET, XPS, DR UV-

Visible and PL spectroscopy in order to investigate the phase and crystal 

structure, surface morphology and mesoporosity, surface area and pore size 

distribution, metals transitions states and optical properties of catalysts.  

 
2) The role of nanocatalysts for photochemical reduction of CO2 to hydrocarbon 

fuels was firstly explored using cell type photoreactor in which catalyst was 

distributed at the bottom.  The light source used was a flash type 500 W Hg 

lamp with maximum UV-light irradiation intensity at 365 nm operated using 

high voltage power supply.  The reducing agent employed was H2O vapors 

for CO2 photoreduction in gaseous phase.   

 
3) In cell type photoreactor, operating parameters investigated were light 

intensity, metal loading, reaction temperature, feed ratios, and irradiation 

times.  The reaction mechanism and kinetic model were developed to find out 

the key parameters in CO2 reduction applications.   

 
4) The microchannel monolith photoreactor of multiple cell density was used.  

The cell density employed were 100 and 400 CPSI while the microchannels 

length varied from 0.5 to 5 cm.  The monolith microchannels provide higher 

interaction surface area between reactants and light irradiations to get higher 

reduction and yield rates.  The nanocatalysts were coated over the 

microchannels using sol-gel dip coating method, while a reflector type 200 W 

Hg lamp was employed as source of light irradiations.  The photochemical 

reduction of CO2 to hydrocarbons was investigated using both H2O vapours 

and H2 as reducing agents.  The performance comparison between 

photoreactors was conducted to investigate the efficiency of microchannel 

monolith photoreactor.   
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This research work will be helpful to cross over fundamental problems in 

photocatalysis employing micro structured photoreactor, while providing a new 

opportunity for future to overcome energy crises.  The single step reduction of CO2 

to renewable fuels through photochemical F-T process with higher yield rates and 

selectivity are bottom-line benefits enables the process efficient.  The microchannel 

monolith photoreactor and nanocatalysts are intended as an efficient photocatalysis 

systems for sustainable energy production to get low carbon economy derive for the 

sustainability of the society. 

 
 
 
 

1.7 Research Outcomes 

 
 
 CO2 was efficiency reduced to CO, CH4 and higher hydrocarbons in the 

presence of different reducing agents and photocatalytic systems, thus confirming 

sustainable fuel productions.  The monolith photoreactor performance was very 

encouraging while the efficiency found was much higher than ever reported in the 

literature.  However, several outcomes of this research are described below:  

 

o New microchannel monolith photoreactor system to investigate efficient 

CO2 reduction to hydrocarbon fuels 

o New methods and finding on the development of delaminated TiO2 

MMT for CO2 reduction to fuels. 

o New methods and findings on the synthesis of TiO2 nanoparticles, Cu 

and Ni co-doped In-modified TiO2 nanocatalyst  

o New development in reaction rate and kinetic models 

o Low-carbon economy shift through CO2 recycling 

o Alternative solutions to energy crises and global warming 
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1.8 Outline of Thesis 

 
 
 The research is targeted on the development of modified TiO2 nanocatalysts 

suitable for efficient CO2 reduction to hydrocarbon fuels.  The microchannel 

monolith photoreactor was designed to improve photochemical F-T process for 

higher CO2 reduction to value added chemicals and hydrocarbon fuels.  The 

optimization of catalysts compositions, investigation of operating parameters, 

evaluation of reactor performances for higher yield rate, reaction mechanisms and 

kinetic rate parameters are discussed in different chapters.  This thesis consists of 

eight chapters. 

 
 
 Background of the research and problem at hand, research hypothesis, 

objectives and scope of this study is discussed in Chapter 1. Chapter 2 presents 

literature survey pertaining to possible pathways for CO2 recycling, fundamentals 

and progress in CO2 reduction to hydrocarbon fuels, synthesis and characterization 

techniques, and description of photocatalytic reactors and development of kinetic 

models. In Chapter 3, general description of research methodology and detailed 

experimental strategies are discussed.  The characterizations of nanocatalysts and 

catalysts coated over the microchannels are deliberated in Chapter 4.  The description 

about photocatalytic CO2 reduction with H2O vapors over In and MMT modified 

TiO2 nanocatalysts using cell type photoreactor is presented in Chapter 5.  Chapter 6 

explores microchannel monolith photoreactor for photocatalytic CO2 reduction with 

H2O vapors over In and MMT modified TiO2 nanocatalysts.  Chapter 7 investigates 

the photocatalytic CO2 reduction with H2 as reducing agent over doped and co-doped 

TiO2 catalysts and employing microchannel monolith photoreactor.  Finally, Chapter 

8 contains the overall conclusions of this study and recommendations for the future 

work. 
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