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ABSTRACT 

 Sand has the characteristics of low bending and tensile strength. One of the 

methods to improve the bearing capacity of sand is using geocell, in which the sand 

is improved through the interaction between the sand and geocell, and through the 

sand mattress effects as a result of sand filling the pockets of geocell. The aim of this 

research is to determine the effect of geocell reinforcement on the bearing capacity of 

circular footing on sand deposit under static and low frequency cyclic loading 

through the laboratory physical model tests and numerical simulations using 

ABAQUS 3-D finite element software. The laboratory physical model tests had been 

carried out using 75 mm diameter (D) circular footing on sand reinforced with 

geocell, placed at various depth ratio (u/D). The geocell had a 450 mm length, 

various width (b) and height (h). Homogeneous sand was formed in box models of 

620 mm length, 620 mm width and 500 mm height. The relative densities of sand 

used were 30% and 70%. The ultimate bearing capacity (qu) obtained at the 

settlement (s) equals to 10%D was used as the basis for calculating the cyclic stress 

amplitude in the cyclic tests. The frequency of 0.067 Hz and three cyclic stress 

amplitudes of 0.15qu, 0.25qu and 0.4qu were used. Three patterns of geocell were 

tested; honeycomb, diamond and chevron. In the numerical simulation, the infill sand 

was modeled using the Mohr-Coulomb and the geocell was modeled using linear 

elastic. The optimum u/D was found as 0.1. The settlement ratio (s/D) increased with 

the number of cycles and reached a sensibly constant maximum value of less than 

10% at high number of load cycles. The s/D correlates linearly with the cyclic stress 

amplitude and relative density. The correlation equations obtained can be used as 

preliminary design charts. There were good agreements between the results from 

numerical and experimental models indicating high reliability for prediction of low 

frequency of cyclically loaded behavior of footing. The static extra safety factor, Fe 

of between 1.1 to 1.17 was suggested to be used together with the global factor of 

safety when calculating the safe bearing capacity. Fe depends on relative density and 

pattern of geocell. The cyclic extra safety factor, Fc is recommended to be used if 

utilising the settlement obtained from numerical modelling to calculate the expected 

settlement to be achieved. The range of Fc for unreinforced sand deposits is between 

0.8 and 0.9 while it is 0.9 to 0.93 for geocell reinforced sand deposits. The values 

depend on the pattern of geocell reinforcement, relative density and cyclic stress 

amplitude. The results revealed that all patterns of geocell increased the bearing 

capacity of sand under static load and reduced the settlement under cyclic loading, 

but with more significant improvement in dense sand. The chevron pattern gives the 

most beneficial effect compared to the honeycomb and diamond pattern of geocell.  
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ABSTRAK 

 Pasir mempunyai ciri-ciri lenturan dan kekuatan tegangan yang rendah. Salah 

satu kaedah untuk meningkatkan keupayaan galas pasir adalah menggunakan geosel, 

yang mana kekuatan pasir dipertingkatkan melalui interaksi antara pasir dan geosel, 

dan melalui kesan tilam pasir akibat pasir yang mengisi poket geosel. Tujuan kajian 

ini adalah untuk menentukan kesan tetulang geosel pada keupayaan galas tapak bulat 

di atas pasir di bawah pembebanan statik dan berkitar berfrekuensi rendah melalui 

ujikaji model fizikal makmal dan simulasi berangka menggunakan perisian unsur 

terhingga 3-D ABAQUS. Ujikaji model fizikal makmal dilakukan menggunakan 75 

mm diameter (D) tapak bulat di atas pasir diperkukuhkan dengan geosel, yang 

diletakkan pada pelbagai nisbah kedalaman (u/D). Geosel mempunyai panjang 450 

mm, pelbagai lebar (b) dan ketinggian (h). Pasir homogen telah disediakan dalam 

kekotak model 620 mm panjang, 620 mm lebar dan 500 mm tinggi. Ketumpatan 

relatif pasir yang digunakan ialah 30% dan 70%. Keupayaan galas muktamad (qu) 

yang diperolehi pada enapan (s) bersamaan 10%D telah diguna sebagai asas bagi 

mengira amplitud tegasan berkitar dalam ujian berkitar. Frekuensi 0.067 Hz dan tiga 

amplitud tegasan berkitar iaitu 0.15 qu, 0.25 qu dan 0.4 qu telah digunakan. Tiga 

corak geosel telah diuji; sarang lebah, berlian dan chevron. Untuk simulasi berangka, 

pasir isian telah dimodelkan menggunakan Mohr-Coulomb, dan geosel telah 

dimodelkan sebagai anjal lelurus. u/D optimum didapati sebagai 0.1. Nisbah enapan 

(s/D) meningkat dengan bilangan kitaran dan mencapai nilai maksimum malar yang 

kurang daripada 10% pada bilangan kitaran beban yang tinggi. s/D berhubungkait 

secara lelurus dengan amplitud tegasan berkitar dan ketumpatan relatif. Persamaan 

korelasi yang diperolehi boleh digunakan sebagai carta reka bentuk awal. Terdapat 

kesamaan yang baik antara keputusan model berangka dan eksperimen, yang 

menunjukkan kebolehpercayaan yang tinggi untuk ramalan bagi tingkah laku tapak 

dibawah pembebanan berkitar berfrekuensi rendah. Faktor keselamatan statik 

tambahan, Fe antara 1.1 hingga 1.17 dicadang untuk diguna bersama dengan faktor 

keselamatan global apabila mengira keupayaan galas selamat. Fe bergantung kepada 

ketumpatan relatif dan corak geosel. Faktor keselamatan tambahan kitaran, Fc disyor 

untuk diguna jika menggunakan enapan yang diperolehi daripada model berangka 

dalam mengira enapan jangkaan. Julat Fc untuk endapan pasir tanpa tetulang adalah 

antara 0.8 dan 0.9 manakala ianya adalah 0.9 hingga 0.93 untuk endapan pasir 

bertetulang geosel. Nilai bergantung pada corak tetulang geosel, ketumpatan relatif 

dan amplitud tegasan berkitar. Keputusan menunjukkan semua corak geosel 

meningkatkan keupayaan galas pasir dibawah pembebanan statik dan mengurangkan 

enapan dibawah pembebanan berkitar, tetapi dengan peningkatan lebih ketara untuk 

pasir padat. Corak chevron memberikan kesan yang paling bermanfaat berbanding 

dengan corak geosel sarang lebah dan berlian. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

Nowadays, for large projects in addition to the technical principles, cost 

reduction and environmental conservation are important. For projects such as silos, 

water tanks and oil tanks, there is the need for large flat surface. Hence excavation 

work and embankment construction may be necessary to achieve large flat surface. 

For oil tank, silo and water tank, the most common shape is cylindrical. Hence the 

best foundations for these structures will be the circular type. 

Several studies (Moghaddas and Dawson, 2010, Boushehrian et al., 2010 and 

El Sawwaf and Nazir, 2012) have reported the successful use of reinforcement as a 

cost-effective method to improve the ultimate bearing capacity of a footing on the 

sand deposit and to decrease the settlement values to acceptable limits. Most of the 

previous studies deal with the behaviour of reinforced sands under cyclic vertical 

loads simulating either train and vehicle loads or sum of static loads and cyclic loads 

of high frequencies (El Sawwaf and Nazir, 2012). 

The settlement of reinforced sand bed subjected to slow repeated load 

simulating a loading condition, for example the case of petrol tank has not been 

investigated (El Sawwaf and Nazir, 2012 and Boushehrian et al., 2011). Hence, 
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many questions still remain on the effect of such repeated loads on the performance 

of sand, in particular the permanent cumulative settlement. 

In petroleum tanks, petrol is transferred and stored in the tanks until it need to 

be taken back and distributed to the petroleum stations. Therefore, the supporting soil 

is subjected to repeated load in which the frequency and load amplitude are 

dependent on the rate of filling and emptying the tanks. In some structures, the live 

loads are greater than the dead loads of the structure itself and change with time, 

such as the loads of petroleum tank and silo (El Sawwaf and Nazir, 2010). 

Due to many advances made during past decades in science, technology, and 

laboratory equipment, there are many studies focusing not only on new procedure for 

soil improvement through natural and synthetics materials, but also on the 

reinforcement of sand deposit under cyclic loading. 

Hejazi et al. (2012) reported that the natural and synthetic materials widely 

used for increasing the bearing capacity of soils under static loads are as follows: 

1. Natural materials such as Bamboo, Coconut fiber, Palm fiber and Jute.  

2. Synthetic materials (geosynthetics) such as Geotextile, Geogrid and 

Geocell.  

The use of geosynthetics for reinforcing soil is becoming a rapidly growing 

technology. The use of geosynthetics can improve soil performance, increase the 

safety factor, and reduce the construction cost for a project. This is why geosynthetic 

research has become a more common topic in the field of geotechnical engineering 

(Ketchart and Wu, 1996).  

Geocell is one of the geosynthetic products used primarily for soil 

reinforcement. It  was  originally  developed  by  the  US  Army  Corps  of Engineers  

in  1970s  for quick  reinforcement  of  cohesion less  soil  in  the  military  field.   

Like other geosynthetic products, geocell is usually made from polymeric materials. 

Figure 1.1 shows two examples of geocell reinforcement under   load.   In  these 
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cases,  geocell  is  used  to improve  the  bearing  capacity  of  soil  and also reduce  

the settlement.     

  

(a) Embankment foundation                    (b) Spread footing foundation 

Figure 1.1 Examples of geocell application (Yang, 2010) 

 

The mechanism of geocell reinforcement has not been well understood, 

especially for load-supporting applications. In the past, most of the researchers 

(Steward et al., 1977, Giroud and Noiray, 1981, Giroud and Han, 2004) studied on 

the load-supporting geosynthetic reinforcement focused on planar geosynthetic 

products such as geogrid and geotextile. Limited number of researchers (Yang and 

Han, 2013, Moghaddas Tafreshi and Dawson, 2012, Boushehrian et al., 2010 and El 

Sawwaf and Nazir, 2010) studied the design methods for the geocell reinforcement. 

However, widely accepted design methods for different applications of geocell are 

still unavailable. Such  a  gap  between  theory  and  application  limited  the  usage  

of geocell. To facilitate the development of design methods for geocell reinforcement 

for load-supporting purposes, the behaviour of geocell-reinforced soil, under both 

static and repeated loading conditions, has to be studied. 

1.2 Problem Statement 

The advancement of works in bearing capacity studies has led to further 

works on the use of reinforcement in soils.  A much cheaper solution will probably 

be the use of synthetic material to increase the bearing capacity of the soil.  During 

recent years reinforced sand deposit has been studied under static and cyclic loading. 
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But most of the previous studies deal with the behaviour of reinforced sands under 

cyclic vertical loads simulating either train and vehicle loads or sum of static loads 

and cyclic loads of high frequencies. The factors influencing the behaviour of 

geocell-reinforced sand deposit under low frequency cyclic loading are therefore not 

well understood. Hence this research will investigate the problem through laboratory 

physical model and to simulate with numerical modelling in determining the 

response of circular footing constructed on geocell-reinforced as well as unreinforced 

sand deposit subjected to low frequency cyclic loading.  This could demonstrate the 

benefits of introducing geocells beneath the circular footing and to determine the 

parameters controlling best usage under low frequency cyclic loading. 

1.3 Objectives of Study 

The aim of this research is to determine and evaluate the effect of geocell 

reinforcement on the performance of circular footing placed on sand deposits 

subjected to static and low frequency cyclic loadings. Thus, the objectives of this 

research are: 

1.  To determine the effect of various geocell parameters such as width, height 

and its pattern arrangement on the bearing capacity and settlement of circular 

footing placed on the reinforced sand deposit under static loading.   

2.  To determine the effect of low frequency cyclic loading on the bearing 

capacity and settlement of circular footing founded on geocell reinforced sand 

deposit.   

3.  To predict the bearing capacity of unreinforced and geocell reinforced 

circular footing under static load and the settlement ratio under cyclic load of 

different amplitudes through numerical simulation.  
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1.4 Scope and Limitation of Study 

The scope and limitation of the research are as follows: 

1. The study focuses on the bearing capacity of circular footings founded on 

geocell reinforced dry sand deposit under low frequency cyclic loading. 

2. For cyclic loading; the frequency chosen is 0.067 Hz, the monotonic load is 

0.5qu and the cyclic loadings are 0.25qu and 0.40qu (qu is the ultimate bearing 

capacity under static load). 

3. The sand used in this research is obtained from the Iskandar Development 

Region, Johor, Malaysia, and the geocell produced from geogrid is supplied 

by Ten Cate Geosynthetics Malaysia Sdn. Bhd. 

4. The engineering properties of sand are determined using the British Standard 

(BS) 1377 while the properties of geocell are provided by the supplier.  

5. The experimental modelling is carried out using a box model of 62 cm length, 

62 cm width and 50 cm height.  

6. The commercial 3D finite element software called “ABAQUS” Version 6.8 

was used in numerical simulation to evaluate and compare the results 

obtained from experimental model tests. The elasto-plastic Mohr-Coulomb 

soil model was used in the simulation work.  

1.5 Significance of the Study  

The significance of the study includes: 
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1. The performance of circular footing on geocell reinforced sand, predicted 

through numerical modelling for various relative densities of sand and 

different cyclic stress amplitudes, could save the time and cost of performing 

laboratory tests particularly the cyclic loading tests.    

2. Information on the improvement factor, as a result of using different pattern 

of geocell at different relative density of sand, could help the engineer to 

decide on the respective geocell to be used based on the bearing capacity to 

be achieved for specific project.   

3. The known performance of circular footing placed on geocell reinforced sand 

deposits subjected to low frequency cyclic loadings could help the engineer to 

make decision on alternative reinforcement system for sand under vertical 

cyclic load. 

4. The outcome of this study can help to reduce the costs in controlling the 

settlement and increase the bearing capacity of sand if using other expensive 

methods such as pile foundation. 

5. The design charts developed in this study could be used easily and quickly by 

the engineers in preliminary design work.  

1.6 Thesis Organization 

This thesis consists of six chapters. The essence of each chapter is as follows:  

Chapter  1 describes  the  background  of  problems  associated  with  sand  

under static and cyclic loading, and  brief description on some improvement methods 

was presented. The research philosophy, including problem statement, objectives of 

study, scope of study and significance of study, was also discussed. 
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Chapter 2 presents the review of literature in this study. The review 

encompasses the properties of geocell, and their applications in construction, in 

particular, as soil reinforcement material. A review on bearing capacity of soil is also 

carried out. Previous researches on the physical and numerical simulation of bearing 

capacity of shallow foundation are also discussed briefly. Based on the current 

scientific knowledge on sand improvement, a research framework is developed 

taking into consideration the gap in the current research. 

Chapter 3 discusses research methodology that includes testing programmes 

and laboratory experimental work and numerical simulation on small scale model 

tests to study on bearing capacity of geocell reinforced sand deposit. Details on the 

design of the experimental and numerical test, fabrication of testing frame and 

construction of reinforcement models are discussed in this chapter.  

Chapter 4 discusses the properties of research materials used in this research 

that are obtained from laboratory tests. It includes the basic properties and 

classification of sand, shear strength and also the density of sand. The properties of 

geocell, given by the supplier are also discussed. Also in this chapter evaluates and 

discusses the results from experimental work of unreinforced and geocell reinforced 

sand deposit under static load and low frequency cyclic load. 

Chapter 5 discusses and summarises the results obtained from numerical 

simulation tests and compares with experimental results.  

Finally, Chapter 6 gives the conclusion of this study and recommendations 

for future studies are specified. 
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