
i 
 

CHARACTERIZATION OF IRRADIATED EPOXIDIZED NATURAL 

RUBBER/POLYVINYL CHLORIDE/CARBON NANOTUBES 

NANOCOMPOSITES 

 

 

 

 

MOHD SHAHRULNIZAM BIN AHMAD 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Master of Engineering (Polymer) 

 

 

 

 

Faculty of Chemical and Energy Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

JANUARY 2017 

 

 

 

 



iii 
 

 

 

 

 

 

 

I dedicate this dissertation to my family… 

Dad and Mom, 

Ahmad Bin Kadir for opening my eyes to the World; 

Khalijah Binti Siolin for instilling the importance of hard work and higher education 

Sisters and Brothers,  

Siti Rohaidah, Siti Zarina, Norazzah, Norisham,  

Shahbuddin, Amiruddin and Reduwan 

for their supports and encouragement; 

Last but not least, to all my nephews and nieces; 

 

 

I also dedicate this dissertation to all my beloved friends for being a best friend and 

great source of motivation and inspiration 

 

 

Finally, I dedicate this dissertation to all my ex-classmates  

(SKR Batch 2009/2013)… 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGEMENT 

 

 

 

 

 Foremost, I would like to express my deep and sincere gratitude to my 

supervisor, Prof. Madya Dr Zurina Mohamad for the continuous support of my final 

year project, for her patience, motivation, enthusiasm and immense knowledge.  Her 

understanding, encouraging and personal guidance have provided a good basis for 

presenting this thesis.  Thank for patiently correcting my writing and financially 

supported my research.  Not forgetting Dr Chantara Thevy Ratnam who has helped 

me a lot in guidance me at Malaysian Nuclear Agency. 

 

 

 This thesis would be incomplete without special thanks to En Wan and Kak 

Juju who are from Malaysian Nuclear Agency for their kind advice and support 

during the research is conducted.  I wish to express my warmest thanks also to all 

Department Polymer Engineering members for all their support and friendship over 

the year.  In particular, Cik Haslinda, En Hasnol, En Hafiz and En Falah.  Thanks to 

all mates at Malaysian Nuclear Agency for helping me a lot to finish this project.  

 

 

 I owe my loving thanks to my parents and my siblings for their patient and 

loving advice to me.  Without their encouragement and understanding it has been 

impossible for me to finish this postgraduate project.  They were always supporting 

me with their best wishes.   

 

 

 

 



v 
 

ABSTRACT 

 

 

The effects of carbon nanotubes addition and irradiation modification on the 

characterization and properties of epoxidized natural rubber (ENR-50)/poly(vinyl 

chloride) (PVC)/multi-walled carbon nanotubes (MWNTs) nanocomposites were 

investigated.  ENR-50/PVC/MWNTs nanocomposites were prepared by melt mixing 

in a Brabender Plastigraph at 150 °C with a rotor speed of 50 rpm followed by 

compression molding at 160 °C.  The samples were irradiated in a 2 MeV electron 

beam machine in a dose range from 50 to 200 kGy.  The functional groups, gel 

content, morphology, dynamic mechanical properties, volume resistivity and tensile 

properties of the resulting composites were investigated as a function of MWNTs 

contents, functionalized MWNTs and irradiation dose.  Gel content confirmed the 

existence of irradiation-induced crosslinking.  The highest gel content value was 

recorded at 8 phr of MWNTs content in nanocomposites.  At 0 kGy (up to 6 phr), the 

MWNTs-COOH had higher gel content value.  However, after irradiation (150 kGy), 

MWNTs nanocomposites recorded the highest gel content value.  The x-ray 

diffraction  pattern showed that 2 phr MWNTs content nanocomposites had a better 

degree of  crystallinity than 8 phr MWNTs content and the degree of crystallinity 

was enhanced after irradiation.  The addition of 8 phr of all MWNTs led to the 

increase of storage modulus and glass transition temperature,  and was further 

enhanced after irradiation (200 kGy).  Based on dynamic mechanical analysis results, 

8 phr of functionalized MWNTs had better crosslinking as compared with 

unfunctionalized MWNTs.  Volume resistivity increased with increasing MWNTs 

contents and irradiation dosage.  The functionalized  MWNTs  showed higher 

resistivity at 0 and 150 kGy of irradiation doses.  The tensile strengths of the 

irradiated  nanocomposites increased up to 8 phr of unfunctionalized MWNTs, 6 phr 

of MWNTs-COOH and 10 phr of MWNTs-OH above 50 kGy.  The modulus 100 

(M100) increased and elongation at break (Eb) decreased with increasing of  

MWNTs content and irradiation doses.  Functionalized MWNTs showed higher 

M100 and lower Eb at 0 kGy.  However at 200 kGy of irradiation dose, the M100 

was lowered and Eb was higher for functionalized MWNTs nanocomposites. 
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ABSTRAK 

 

 

Kesan penambahan tiub nano karbon dan  pengubahsuaian penyinaran ke atas 

ciri-ciri dan sifat getah asli terepoksida (ENR-50)/poli(vinil klorida) (PVC)/tiub nano 

karbon pelbagai dinding (MWNTs) komposit nano telah dikaji.  ENR-

50/PVC/MWNTs komposit nano telah disediakan melalui campuran leburan 

menggunakan Brabender Plastigraph pada suhu 150 °C dengan kelajuan rotor 50 rpm 

diikuti dengan pengacuan mampatan pada suhu 160 °C.  Seterusnya, sampel 

disinarkan di dalam mesin alur elektron 2 MeV dalam julat dos di antara 50-200 

kGy.  Kumpulan berfungsi, kandungan gel, morfologi, sifat mekanikal dinamik, 

isipadu kerintangan dan sifat regangan bagi komposit yang terhasil telah dikaji 

sebagai fungsi kepada kandungan MWNTs, MWNTs berfungsi dan dos penyinaran.  

Kandungan gel telah mengesahkan kehadiran sambung silang teraruh-penyinaran.  

Nilai kandungan gel pada 8 phr kandungan MWNTs adalah tertinggi.  Pada 0 kGy 

(sehingga 6 phr), MWNTs-COOH mempunyai nilai kandungan gel yang paling 

tinggi.  Walau bagaimanapun, selepas penyinaran (150 kGy), komposit nano 

MWNTs merekodkan nilai kandungan gel yang paling tinggi.  Analisis pembelauan 

sinar-x menunjukkan komposit nano dengan kandungan MWNTs 2 phr mempunyai 

tahap penghabluran yang lebih baik berbanding 8 phr kandungan MWNTs dan 

struktur penghabluran dipertingkatkan selepas penyinaran.  Penambahan 8 phr pada 

kesemua MWNTs membawa kepada peningkatan modulus simpanan dan suhu 

peralihan kaca dan dipertingkatkan lagi selepas penyinaran (200 kGy).  Berdasarkan 

keputusan analisa mekanikal dinamil,  untuk 8 phr MWNTs berfungsi, komposit 

nano mempunyai sambung silang yang lebih baik daripada MWNTs tanpa fungsi.  

Isipadu kerintangan meningkat dengan penambahan MWNTs dan dos penyinaran.  

Selain itu, MWNTs berfungsi mempunyai isipadu kerintangan yang tinggi pada dos 

penyinaran 0 dan 150 kGy.  Sifat regangan komposit nano yang disinarkan telah 

meningkat pada 8 phr MWNTs, 6 phr MWNTs-COOH dan 10 phr MWNTs-OH 

selepas 50 kGy penyinaran.  Modulus 100 (M100) meningkat dan pemanjangan pada 

takat putus (Eb) menurun dengan kenaikan kandungan MWNTs dan dos penyinaran.  

MWNTs berfungsi merekodkan M100 yang tinggi dan Eb yang rendah pada 0 kGy.  

Walau bagaimanapun, pada dos penyinaran 200 kGy, M100 menjadi rendah dan Eb 

menjadi tinggi untuk komposit nano MWNTs yang berfungsi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

Polymer blending is a common technology, frequently applied in order to 

produce a product with superior mechanical properties of inexpensive polymer 

material and small amounts of compatibilizers.  The large diversity of commercially 

available elastomers and thermoplastics offers huge opportunities for blending of 

thermoplastic elastomers (TPEs). 

 

 

The basis of epoxidized natural rubber (ENR) is from the chemical alteration 

of natural rubber (NR).  In obtaining ENR, carbon-carbon double bond on the NR 

molecular chains being converted into the polar epoxy group, when the free volumes 

of chain phases is decreased and the density and polarity of the derivates are 

increased, which can provide the ENR with excellent impermeability of air, oil and 

organics solvent proofness and performance of wet road grip (Yu et al., 2008). 
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Characteristics of polyvinyl chloride (PVC) can improve ozone and resistance 

of mechanical in some applications such as conveyor, fuel hose, belt covers and 

printing roll covers (Ismail and Supri., 2004).  Ratnam et al. (2001) reported that 

ENR forms miscible blends with PVC in which PVC is expected to impart high 

tensile strength and good chemical resistance whereas ENR acts as a permanent 

plasticizer to PVC, induces good tear strength and enhances the resistance against 

hydrocarbon  oils. 

 

 

Studies on the blends between ENR-50/PVC had been reported (Ratnam, 

2002).  Various researchers have reported on the attainment of miscible, well – fused 

and homogenous ENR-50/PVC blends in relation to the improvement in mechanical 

and physical properties of the blend.  Properties of ENR-50/PVC blends can be 

improved by electron beam irradiation.  The studies revealed by Ratnam et al. (2006) 

that they can be crosslinked by irradiation. 

 

 

 ENR-50/PVC blends were found to be miscible over the entire composition 

ranges.  ENR-50/PVC blends have many potential areas of usage such as cable 

jackets, conveyer belt covers, hose linings and covers, cellular sporting surfaces and 

footwear.  High energy irradiation (gamma and electron beam) is a well-known 

technique for polymer modification (Ratnam and Zaman, 1999).  Electron beam 

processing needs high energy electrons from an accelerator for crosslink reactions 

and initiate polymerization in suitable matrices, thus improving their specific 

physical and also chemical properties. 

 

 

Nanocomposites exhibit important enhancement in mechanical and physical 

properties in relation to the polymer host.  The stiffness and strength with a minimal 

loss in ductility and impact resistance can be enhanced by adding of the minimum 

percentage of nanofiller.  Other than that,  it also can help in increasing of 

permeability and swelling in solvents, abrasion improvement, flame resistance and 

thermal endurance, with an improvement optical properties and electrical 

conductivity (Arroyo et al., 2007). 
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There are many uses of carbon nanotubes in engineering application and 

electronics such as photovoltaic devices, nanoelectronic, superconductors, 

electrochemical actuators, nanowires and electrochemical capacitors. This nanotube 

can be divided into several types such as single-walled carbon nanotubes (SWNTs), 

double-walled carbon nanotubes (DWNTs) and multi-walled carbon nanotubes 

(MWNTs).  Sahoo et al. (2010) reported that the presence of carbon nanotubes can 

enhance the properties of polymer composites including tensile strength, tensile 

modulus, toughness, glass transition temperature, electrical conductivity, thermal 

conductivity, optical properties, solvent resistance, etc.  

 

 

SWNTs and DWNTs compose cylinders of one or two (concentric), 

respectively, graphene sheets, whereas MWNTs consists several concentric 

cylindrical shells of graphene sheets (Sahoo et al., 2010).  Sahoo et al. (2010) also 

reported that production of CNTs has variety of methods such as laser ablation, arc 

discharge, high pressure carbon monoxide (HiPCO) and chemical vapor deposition 

(CVD). 

 

 

Irradiation can be utilized to strengthen the characteristics of polymer blends 

and composites.  Irradiation also can help to induce crosslinking like those obtained 

by sulphur curing, but the net effects, while similar, are not identical.  The type of 

carbon-carbon crosslink formed in this method enhances the mechanical properties at 

higher temperature.  Also, it can lead to greater resistance of abrasion and superior 

ozone resistance (Khalid et al., 2010). 

 

 

 In this study the irradiation effect on the properties of ENR-50/PVC blends 

filled with functionalized and unfuntionalized MWNTs will be investigated. 
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1.2 Problem Statement 

 

 

 The use of ENR/PVC blends is commonly used in conveyer belt covers, hose 

linings and covers, cable jackets, cellular sporting surfaces and footwear (Ratnam 

and Zaman, 1999).  From these applications, this blend is also expected very suitable 

to use in interior part of car such as gasket and o-ring which are exposed to the 

higher temperature and dynamic movement.  Otherwise, work on ENR/PVC blend 

might be has some weaknesses such as low in mechanical strength, electrical 

conductivity and also thermal properties as compared with addition of nanofiller and 

irradiation modification.  Moreover, the ENR/PVC blend had found its commercial 

applications, work on the improvement of its properties still become the subject of 

interest.  Broza et al. (2007) reported that in the presence of MWNTs the electrical 

conductivity had increased with increasing of MWNTs in the PVC matrix.  This was 

due to MWNTs are homogenously distributed in the PVC matrix.  Study on 

polyurethane (PU)/CNTs nanocomposites that had done by Sahoo et al. (2006) 

reported that adding of CNTs into PU had drastically increased the tensile strength 

and also modulus.  So et al. (2007) also reported that in-situ polymerized PI 

containing MWNTs-COOH showed increment in tensile strength and modulus as 

compared to that of the neat PI.  Hence, the modification of this blend is needed in 

order to enhance its overall properties.  The main aim of this research is to enhance 

the current properties of ENR/PVC blends with incorporation of multi-walled carbon 

nanotubes (MWNTs) and functionalized MWNTs.  This is due to the superior 

properties of MWNTs are not limited to electrical and thermal conductivities, and 

also included mechanical properties (Sahoo et al., 2010).  Furthermore, enhancement 

is expected when the use of MWNTs is along with irradiation.  This is because 

ionising irradiation can induce crosslinks of the blends. 
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1.3 Objective of the Study 

 

 

 In this research, the main objective is to characterize ENR-50/PVC/MWNTs 

nanocomposites.  This can be further divided into: 

 

 

(i) To investigate the effect of  MWNTs loading on the properties of the ENR-

50/PVC/MWNTs nanocomposites. 

(ii) To investigate the effect of functionalized MWNTs (MWNTs-COOH and 

MWNTs-OH) on the properties of the ENR-50/PVC/MWNTs 

nanocomposites. 

(iii)To investigate the effect of irradiation dose on the properties of the 

functionalized and unfunctionalized ENR-50/PVC/MWNTs nanocomposites. 

 

 

 

 

1.4 Scope of the Study 

 

 

In this research, the materials required are epoxidized natural rubber, ENR-50 

(rubber), polyvinyl chloride, PVC (thermoplastic), multi-walled carbon nanotubes,  

MWNTs (nanofiller).  Equipments used are Brabender Plastigraph W 50 E-3 Zones, 

Hot and Cold Press Machine Scientific Laboratory Hydraulic Press Type LP-S-50 

and 2 MeV electron beam accelerator Model EPS 3000 (Cockroft Walton).  

Moreover, compounding of ENR-50/PVC/CNT by using Brabender Plastigraph and 

the compound subjected to Hot Press Machine in order to produce samples 1-, 2-, 

and 2.5- mm thick sheet form.  In this research, there are a few aspects of testing 

involved such as physical, mechanical, thermal, electrical and also morphological 

tests.  Firstly, Fourier transform infrared spectroscopy (FTIR) is to determine the 

interaction between the components in nanocomposites.  In aspect of physical 

properties, gel content is to measure the crosslinking percentage of nanocomposites.  

Other than that, there are a few of morphological which are scanning electron 
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microscopy (SEM), to observe the morphology behavior of polymer phase in 

nanocomposites, transmission electron microscope (TEM), to observe the dispersion 

of MWNTs filler and its functionalized in polymer matrix and characterization on 

XRD-pattern, to investigate the interaction between MWNTs filler and ENR-50/PVC 

matrix and to access the effect of MWNTs content on the crystallinity of polymer 

matrix.  Dynamic mechanical analysis (DMA), the parameters that measured is glass 

transition temperature (Tg), storage modulus and loss modulus.in order to investigate 

thermal properties of nanocomposites.  For electrical properties, volume resistivity is 

to quantify how strongly a given material opposes the flow of electric current.  

Lastly, the measurement of tensile properties included in calculation of tensile 

strength (Ts), modulus 100 (M100) and elongation at break (Eb). 
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