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ABSTRACT 

 

 

 

 

A Remotely Operated Vehicle (ROV) is one class of the unmanned underwater vehicles 

that is tethered, unoccupied, highly manoeuvrable, and operated by a person on a 

platform on water surface.  For depth control of ROV, an occurrence of overshoot in the 

system response is highly dangerous.  Clearly an overshoot in the ROV vertical 

trajectory may cause damages to both the ROV and the inspected structure.  

Maintaining the position of a small scale ROV within its working area is difficult even 

for experienced ROV pilots, especially in the presence of underwater currents and 

waves. This project, focuses on controlling the ROV vertical trajectory as the ROV tries 

to remain stationary on the desired depth and having its overshoot, rise time and settling 

time minimized.  This project begins with a mathematical and empirical modelling to 

capture the dynamics of a newly fabricated ROV, followed by an intelligent controller 

design for depth control of ROV based on the Single Input Fuzzy Logic Controller 

(SIFLC).  Factors affecting the SIFLC were investigated including changing the number 

of rules, using a linear equation instead of a lookup table and adding a reference model.  

The parameters of the SIFLC were tuned by an improved Particle Swarm Optimization 

(PSO) algorithm.  A novel adaptive technique called the Adaptive Single Input Fuzzy 

Logic Controller (ASIFLC) was introduced that has the ability to adapt its parameters 

depending on the depth set point used.  The algorithm was verified in MATLAB
®
 

Simulink platform.  Then, verified algorithms were tested on an actual prototype ROV 

in a water tank.  Results show it was found that the technique can effectively control the 

depth of ROV with no overshoot and having its settling time minimized.  Since the 

algorithm can be represented using simple mathematical equations, it can easily be 

realized using low cost microcontrollers. 
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ABSTRAK 

 

 

 

Kenderaan Operasi Kawalan Jauh (ROV), adalah salah satu daripada kenderaan dalam 

air tanpa manusia, mempunyai kabel dan mudah dikendalikan oleh jurumudi daripada 

platform di permukaan air.  Bagi kawalan kedalaman ROV, sekiranya ia terlajak 

daripada had ketetapan kedalaman yang dikehendaki, maka risikonya adalah sangat 

berbahaya. Jelas sekali, sekiranya ia melebihi had kedalaman yang ditetapkan, 

kerosakan pada ROV atau pada struktur yang hendak diperiksa boleh berlaku.  

Penstabilan posisi ROV skala kecil di kawasan kerjanya adalah satu tugas yang sukar, 

terutamanya apabila ada arus dalam air dan ombak, walaupun dikendalikan oleh 

jurumudi ROV yang berpengalaman. Projek ini memberi fokus kepada reka bentuk 

pengawal ROV bagi memastikan ianya stabil dan mengikut kedalaman yang telah 

ditetapkan tanpa wujudnya lajakan, dengan memiliki masa naik dan masa pengenapan 

yang pantas. Projek ini bermula dengan permodelan matematik dan empirikal bagi 

mewakilkan keadaan dinamik sebuah ROV baru dengan diikuti oleh reka bentuk 

pengawal pintar bagi kawalan kedalaman ROV. Pengawal pintar yang digunakan adalah 

berdasarkan Pengawal Logik Kabur Satu Masukkan (SIFLC) dimana faktor-faktor yang 

mempengaruhinya seperti jumlah aturan, penggunaan persamaan linear dan 

penambahan model rujukan telah dikaji. Parameter yang optima bagi SIFLC telah 

ditentukan menggunakan algoritma Pengoptimuman Kumpulan Zarah (PSO). Satu 

kaedah pengawal mudah suai baru telah diperkenalkan iaitu Mudah Suai Pengawal 

Logik Kabur Satu Masukkan (ASIFLC) yang mempunyai kebolehan menyesuaikan 

parameternya bergantung kepada nilai kedalaman yang ditetapkan. Pelaksanaan 

pengawal baru ini telah disahkan menggunakan perisian MATLAB
®
 Simulink. 

Algoritma ini kemudiannya diuji pada prototaip sebenar ROV di dalam tangki air. 

Keputusan membuktikan bahawa teknik ini berjaya mengawal ROV dengan berkesan 

dengan tiada lajakan dan dengan masa pengenapan yang singkat. Oleh kerana algoritma 

pengawal ini dapat diwakilkan menggunakan persamaan matematik yang mudah, ianya 

boleh direalisasikan dengan menggunakan pengawal mikro kos rendah.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Underwater vehicles (UV) can be classified into two basic categories: 

manned underwater vehicles (MUV) and unmanned underwater vehicles (UUV). 

UUV is the term referring to unmanned vehicles for underwater application (e.g. 

remotely operated vehicles (ROV), autonomous underwater vehicles (AUV), 

underwater glider (UG), and hybrid underwater vehicles (HUV). The classification 

of UUV is shown in Figure 1.1. These types of UUVs normally have complex  

vehicle control systems [1- 4]. These UUVs have existed for over 100 years and have 

been known as an interesting area for researchers and industries, especially for 

underwater tasks and works [5]. UUVs can bring an important tool in pilot-free 

underwater operations due to the increased operating range and depth [6]. Typical 

applications of UUVs today include surveying, monitoring, searching, surveillance, 

reconnaissance, inspection, recovery, repair maintenance, and construction [7]. 

Predominantly, in the offshore industry, UUVs have become very important for 

underwater works [8]. 

 

 

The ROV is tethered and sometimes called as unmanned underwater robot 

and sometimes can be called a remotely operated underwater vehicle to distinguish it 

from remote control vehicles operating on an underwater platform. ROVs are 

unoccupied, highly manoeuvrable and operated by a person aboard ship or on an 
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underwater platform [9]. They are linked to the platform by a tether, sometimes 

referred to as an umbilical cable, a group of cables that carry electrical power, video, 

and data signals back and forth between the operator and the ROV. They are 

commonly used in deepwater industries (e.g. oil and gas exploration, 

telecommunications, geotechnical investigations, and mineral exploration) [9]. 

 

 

Modern ROV systems can be categorized by size, depth capability, inboard 

horsepower, and whether they are all-electric or electro-hydraulic. In general, ROVs 

can be grouped as in Table 1.1. Small ROVs include the majority of low-cost ROVs, 

most of which are typically all electric and nominally operate in water depths up to 

300 meters as shown in Table 1.1. The term low cost refers to the pricing range class 

of RM 30,000 to over RM 300,000 [10]. These ROVs are used primarily for 

monitoring, inspection, observation tasks, surveying, and bottom profiling such as 

piping or ship inspection. Working class ROV is normally for heavy-duty work for 

underwater applications that include an important tool for doing a given task (e.g. 

welding, cutting or drilling). Special use ROV is ordinarily for defence and military 

applications. 

 

 

Figure 1.1: Classification of underwater vehicles  
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Table 1.1: Categories of ROV [11] 

Class Application Depth 

(Meters) 

Power 

(HP) 

Low cost small ROV/ mini 

ROV 

Observation <100  <5 

Small ROV (Electric) Observation <300  <10 

Medium (Electro/ Hydraulic)  Light/ Medium Heavy 

Work 

<2,000  <100 

High Capacity Electric Observation/Light Work <3,000  <20 

High Capacity (Electro/ 

Hydraulic) 

Heavy work/Large 

Payload 

 

<3,000  <300 

Ultra-Deep (Electric) Observation/Data 

Collection 

>3,000  <25 

Ultra-Deep (Electro/Hydraulic) Heavy Work/Large 

Payload 

>3,000  <120 

 

 

The advantages and disadvantages of the ROV system in general are 

highlighted below.  Some of the advantages of the ROV are as follows: 

 

 No time constraints because power is supplied from other platform on 

the surface of the water such as from boats or ships. 

 Able to cover wide areas relative to the capability of human divers.  

 Mobility allows close-up inspection of the sea bed. Several models are 

able to collect benthic samples which are the ecological region at the 

lowest level of a body of water such as an ocean or a lake. 

 Deployment areas less controlled than towed video, and can be used in 

areas with obstacles. 

 

The drawbacks of ROV include: 

 

 Depth range is limited by the length of the umbilical cable. 
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 Equipments and sensors need a platform to operate. The ROV may be 

unable to access very shallow water. 

 Equipments or sensors for underwater are very expensive and not 

widely available. 

 It may be difficult to employ in areas with strong water currents or big 

waves. 

 Areas for observation are selected by the operator. 

 

 

 

 

1.2 Research Background 

 

 

The control system of an ROV is an interesting and challenging problem. 

This is primarily due to the difficult and unpredictable environmental conditions that 

existed underwater [12].  During operation, the ROV undergoes a complex multi-axis 

motion trajectories that are highly nonlinear because the subsystems in the ROV are 

ill-defined and strongly coupled with one another [13].  Furthermore, the ROV 

dynamics can change considerably with the changes in surrounding conditions and 

external disturbances (e.g. wind velocity, ocean currents and waves) [14]. The 

hydrodynamic coefficients are difficult to measure or predict accurately [15]. 

Effective control schemes require relevant signals in order to accomplish the desired 

positions and velocities for the ROV. Designing a suitable controlling method of the 

ROV is challenging due to the unpredictable nature of underwater dynamics and 

difficulty in measuring ROV parameters [16].  In this research, the focused area was 

controlling an ROV in a heave-axis motion trajectory sometimes called depth motion 

to maintain its desired position. The function of heave-axis motion is to maintain the 

ROV position at a specific depth and ensuring its stability, which is also called 

station keeping or auto-depth control. This auto- depth control approach is used to 

maintain a position in relation to other moving ROV as it tries to remain stationary at 

a certain depth in automatic control after this depth is set by the operator.  
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For vertical trajectory, overshoot in the system response will be one of the 

factors to be measured because overshoot is particularly dangerous in the ROV 

vertical trajectory and may cause damages to both the ROV and the inspected 

structure (e.g. operating in cluttered environments).  To limit the overshoot, a first 

possibility is to pre-filter the input signal [17].  In [18 - 19], they proposed a station 

keeping method based on direct method to compute the ROV motion directly from 

spatio-temporal image derivatives.  In [20], methods to stabilize underwater ROV 

movement’s parameter under the presence of environment disturbance are 

highlighted.  The design of the controller is to keep the amplitude of the overshoot in 

the system response drastically limited to a depth set point change, while keeping the 

system response time reasonably contained.  Reasons for that are, as already pointed 

out, the necessity of assuring ROV integrity while operating near to bottom or in 

proximity of submersed installations and the need to prevent possible cable stress 

(for ROV), without compromising the system efficiency. 

 

 

The control system of an ROV can be divided into two different groups as 

shown in Figure 1.2.  The first group is focused on thrusters control system design 

and modelling.  The second group is based on overall ROV control system design 

and modelling.  In this work, the modelling of these two different groups of control 

systems will be by using system identification technique.  The model will then be 

compared with its mathematical model derived from fundamentals.  There are two 

types of the controller scheme to be investigated in this research: conventional, 

followed by an intelligent control scheme.  The conventional approach considered PI 

and PID techniques, and optimal control linear-quadratic regulator (LQR) approach.  

While the intelligent one will focus on adaptation of Fuzzy Logic Controller (FLC) 

to control the overall system dynamics.  The control algorithm  was implemented and 

simulated using MATLAB
®
 Simulink.  
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Figure 1.2: Unmanned Underwater Vehicle Control system 

 

 

Single input fuzzy logic controller (SIFLC) adaptation from the conventional 

fuzzy logic controller (CFLC) was used for auto depth control of underwater ROV in 

this research.  The advantage of SIFLC is that the number of tuning parameters is 

greatly decreased [21].  Hence, tuning of rules, membership functions, and scaling 

factors are much easier than CFLCs using two or more input variables.  The control 

rule table for SIFLC consists of a 1-D rule table, and the computational complexity is 

reduced because the number of control rules has been considerably decreased.  The 

SILFC will be improved based on the number of rules, using a linear equation to 

represent its lookup table, optimisation of the slope of the linear equation, and 

utilizing a model reference.  The details of SIFLC will be elaborated in this research.  

The optimum parameters for the scaling factors of the SIFLC, tuned using the PSO 

techniques is one of the contribution of this research.  Here, an improved PSO 

approach based on a priority-based fitness and binary priority-based fitness approach 

was implemented to find the optimal SIFLC parameters.  Based on the optimum 

parameter obtained by PSO for every changing set point, a novel method called 

Adaptive Single Input Fuzzy Logic Controller (ASIFLC) design for underwater ROV 

was introduced in this research.  
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1.3 Problem Statement and Significance of the Research 

 

 

The problem statement was found after a lot of investigations done in recent 

and existing works and several case studies based on journals, conference papers, 

thesis, books and other literature. In this research, the major problem considered in 

the ROV is in designing its depth control system. All UUV faced the same problem 

when controlling the vehicle since underwater environment is unexpected and 

unpredictable.  The list of problems for ROV control include pose recovery or station 

keeping, under actuated condition, coupling issues and also communication 

technique.  As the scope of study is limited to the control system for station keeping 

(depth control), the other problems will not be discussed further except in future 

work’s recommendation.  The aim of this project is more on controlling an ROV to 

maintain its depth. 

 

 

In most ROV, its pitch and roll motion are stabilized through the inherent 

hydrostatic characteristic of the construction itself.  The control system should deal 

only with the depth, z-axis, the Cartesian positions x- and y-axis, and with the yaw 

angle.  In general the uncontrolled angles for roll and pitch motions remain small and 

the depth can be decoupled from the other coordinates [22].  Maintaining the position 

of the small scale ROV within the working area is a difficult task especially in the 

presence of underwater currents, wave and wind even for experienced pilots [22].  

ROV has been designed to be passively stable in pitch and roll (its centre of gravity 

is below the centre of buoyancy).  For this reason, rolling and pitching motion of the 

ROV are very small, and therefore better results are obtained with a similarity 

motion model. 

 

 

The function of depth control is to maintain the ROV position at a specific 

depth and ensuring its stability, which is also called station keeping mode.  For depth 

control, overshoot in the system response will be one of the issues occurred because 

overshoot is particularly dangerous for the ROV in its vertical trajectory and may 

cause damages to both the ROV and the inspected structure.  Overshoot reduction is 
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actually achieved at the expense of increased rise time [23].  In general, the control 

objective is to obtain a limited or no overshoot in system response without penalizing 

the rise time. This is difficult to achieve since normally,  the limitation of overshoot 

in system response can be obtained but the rise time will be slower.  From the review 

of existing works, there seems to be very few literatures that look at optimizing ROV 

controller parameters at different operating conditions and then derive an adaptation 

law for the ROV to allow automatic change of optimum sets of parameters 

depending on different situations (see Section 2.3).  One main motivation of this 

research is in the areas of optimization and adaptation of controller parameters.  

Adapting the optimized ROV controller parameters at different set point conditions 

may very well improve its performance in terms of reducing its overshoot and 

response time for depth control.  This seems a problem worthy of further 

investigation. 

 

 

The derivation of mathematical model of a UUV is a complex problem.  It is 

difficult to delimitate or calculate many parameters, which has to be well known to 

solve the dynamic equations of UUV movement.  Accurate dynamic model are 

crucial to the realization of ROV simulators, precision autopilots and for prediction 

of performances. Control of underwater vehicles is not easy, mainly due to the 

nonlinear and coupled characters of plant equations and also the lack of precise 

models of underwater vehicle hydrodynamics and uncertainty parameters, as well as 

the appearance of environmental disturbances [24] such as wind, current and wave. 

Many of the researchers have to ignore some uncertainties in the parameters to 

reduce the difficulty in designing the controller.  The assumptions on the dynamics 

of ROV in deriving its mathematical model are the most common approach.    

Implementation of the controller on the ROV using FLC itself poses its own level of 

complexity.  Consequently, implementation of FLC also demands for fast and high-

performance processors.  For SIFLC approach, there are many parameters to be 

tuned manually in the literature [21].  Trial an error method will be used to find the 

optimum parameter.  In [21], the parameters has been reduced to two, to be tuned 

manually using trial and error.  Consequently, it will take more execution time to 

find the optimum parameters.  Another issue is that the SIFLC has never been tested 

experimentally on any  UUV.  
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1.4  Objectives of the Research 

 

 

The objectives of this research are: 

 

1) Development and modelling of thrusters for a prototype ROV using 

system identification technique for vertical trajectory. Then, the 

system identification model will be compared with its mathematical 

model derived using ROV fundamentals.  

 

2) Designing an intelligent auto-depth control algorithm in the ROV 

vertical trajectory that can guarantee no overshoot in the system 

response and having faster rise and settling time.  

 

3) Optimizing the parameters of improved SIFLC using PSO techniques 

based on Priority-based Fitness PSO (PFPSO) and Binary Priority-

based Fitness PSO (BPFPSO) approach. 

 

4) Designing an Adaptive Single Input Fuzzy Logic Controller 

(ASIFLC) for depth control of a newly fabricated underwater ROV to 

improve overall performance for different set points and test the 

algorithm experimentally. 

 

 

 

 

1.5  Research Scopes 

 

 

The k-chart
TM

 of the research can be referred to in Appendix 1.  From the k-

chart
TM

, the focus and aim to of this research can be identified so that they are 

aligned with research objectives as explained in the previous section.  The focus of 

this work has been highlighted in this chart which mainly deals in the area of control 

input for ROV.  In this project, the focus was in controlling an ROV in a heave-axis 
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motion to maintain its desired position.  The objective was to develop an intelligent 

controller that can guarantee the suppression or at least the limitations of overshoot 

in the system response.  This project identified an empirical model of a newly 

designed ROV and then developed an intelligent controller to stabilize the ROV.  

This project began with mathematical and empirical modelling to illustrate the 

dynamics of the underwater vehicle followed by an intelligent controller design. 

Empirical modelling refers to any kind of computer modelling based on experimental 

observations rather than on mathematical describable relationships of the system.  

Mathematical modelling is a description of a system using mathematical concepts.  

Development of mathematical modelling of this research was based on several 

assumptions made by [15] on the dynamics equation of ROV to reduce the 

complexity and simplify the dynamics motion equation of ROV.  The 

implementation phase was verified through MATLAB
®
 and Simulink platform.  The 

verified algorithms were then tested on the actual prototype ROV.  

 

 

The emphasis of this project is on the aspect of controlling the ROV to 

investigate the problem of depth control system as mentioned before.  The objective 

in modelling a depth controller is to develop an accurate model representing the 

actual system dynamics.  The motion of the underwater vehicle consists of two 

movements; vertical and horizontal motion.  However, the scope of this project is 

only concerned on the dynamics in the vertical motion considered in the auto-depth 

control approach.  Open frame ROV design was developed because this 

configuration has been widely adopted by commercial ROV.  This is because of its 

simplicity, robustness, easy to maintain, more stable compared with closed hull and 

cheaper.  Although the hydrodynamics of the open frame vehicles are known to be 

less efficient than that of closed hull type’s ROVs, the open frame ROV is suitable 

for applications that does not require movements at high velocities or travelling long 

distance.  This open frame ROV design also focused on auto-depth control operation 

modes.  This auto-depth control approach was used to maintain a position in relation 

to other moving ROV as it tries to remain stationary at a certain depth so that the 

ROV can do a task (e.g. monitoring pipe crack, welding, and pick and place) at a 

certain time.  The ROV maintained a fixed position in relation to a fixed object.  The 

depth of testing conducted is within the available water depth of 1-5 meter (e.g. lab 
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test and pool test).  For depth control, overshoot in the system response are 

particularly dangerous.  Clearly an overshoot in the ROV vertical trajectory may 

cause damages to both the ROV and the inspected structure especially when 

operating in a cluttered environment.  Control objective is to eliminate overshoot and 

reduce rise time and settling time in the system response. 

 

 

 

 

1.6 Contribution of the Research Work 

 

 

The contributions of this research are: 

 

1) Development and modelling of thrusters and ROV using the system 

identification technique for vertical trajectory of a newly fabricated ROV. 

Validation between mathematical modelling and system identification of 

the prototype ROV has been done in simulation and in actual 

experimental works. 

 

2) Designing an intelligent depth control algorithm for the ROV model in 

MATLAB.  The focus was on an improved Single Input Fuzzy Logic 

Controller (SILFC). Investigations on the number of rules, lookup table, 

slope of the linear equation, and model reference to give best 

performances for ROV depth control having no overshoot in system 

response and faster rise time and settling time has been done. 

 

3) Optimizing the SIFLC parameters using Particle Swarm Optimization 

(PSO) techniques. An improved PSO algorithm is based on a Priority-

based Fitness PSO (PFPSO) and Binary Priority-based Fitness PSO 

(BPFPSO) approach is implemented for finding optimal SIFLC 

parameters. 
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4) Adaptive Single Input Fuzzy Logic Controller (ASIFLC) has been 

designed and tested to account for the different optimum parameters 

based on different depth set point.  A method to dynamically combine the 

result of different optimized parameter settings obtained from PSO 

optimisation for different set point values has been suggested and tested.  

ASIFLC design for auto-depth control of the ROV was found to give 

better performance in system responses and can adapt to changes in the 

set point. 

 

 

 

 

1.7 Organization of the Thesis  

 

 

This thesis is organized into five chapters. Their contents are outlined as 

follows:  

 

 

Chapter 1 provides an introduction to the ROV system and research 

background.  In this chapter,  the objectives, scopes and contribution of this research 

are provided.  The problem statement of this study is also covered under this chapter. 

 

 

Chapter 2 provides an extensive review of modelling and control techniques 

used to control the UUVs especially the ROV.  The details of depth control of UUV 

are covered in this chapter which include a critical review of ROV depth control 

from existing works.  In this chapter, the fundamentals of system identification 

techniques, fuzzy logic and the Single Input Fuzzy Logic Controller were discussed.  

Next, the stochastic optimization approach, namely the particle swarm optimization 

approach was discussed. Finally, the specification of the underwater platform used in 

this research will be explained briefly in this chapter. 

 

 

Chapter 3 discusses the methodology of the project including the modelling 

of the thrusters and the ROV using system identification approach.  The factors 
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affecting the control design of ROV is covered within this chapter.  It also contains 

the overview of the ROV system and the derivation of the mathematical model of 

system dynamics based on the several assumptions made of the dynamics equation of 

the ROV.  In this chapter, the design of SIFLC and an improved SIFLC for ROV 

using MATLAB
®
/Simulink was also described. The focus is on improved SILFC 

where it investigates the effects of scaling factor tuning for SIFLC to improve the 

performances of system response for depth control.  Also, the optimization method 

for tuning SIFLC by using Particle Swarm Optimization (PSO) approach is 

introduced for finding optimal SIFLC parameters. Furthermore, it includes the 

comparison of SIFLC with conventional PID controller and Output Feedback 

Observer tuning using Linear-Quadratic Regulator (LQR).  The controller design 

focused on depth control of the ROV and performance evaluation is presented.  

Finally, a new method called Adaptive Single Input Fuzzy Logic Controller 

(ASIFLC) was proposed.  The ASIFLC was designed for depth control of the ROV 

and this technique gives best performances in system response and can adapt to any 

changing values of set point.  This chapter also includes the comparison with real 

time application and other ROV with the same class. 

 

 

 Chapter 4 analyze thoroughly the results based on the methodologies 

described and implemented in Chapter 3.  The results of system identification and 

mathematical modelling were covered in this chapter.  Also, the results of 

investigations in improving SIFLC and the parameters of SIFLC by tuning using 

priority based fitness PSO and binary priority based fitness PSO was reported here. 

Finally, the results of using a new method called the ASIFLC was discussed and 

found to give better performances in system response.  The method is suitable to be 

implemented in real time system due to its reduced complexity and can easily be 

realized using a low cost microprocessor or microcontroller. 

 

 

Chapter 5 concludes the work undertaken by summarizing the system, 

highlighting the results and contributions and providing several suggestions for 

future work.  
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1.8 Summary 

 

 

 This chapter gives an introduction of the ROV and also research background 

of the ROV in section 1.2. Also discussed a problem statement and significant of the 

research in section 1.3. In this chapter objectives, scopes and contributions of the 

research work was provided (section 1.4 -1.6).  
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