
 

PERTURBATION SLIT RECTANGULAR PATCH ANTENNA IN TERAHERTZ 

FOR THERMAL ENERGY HARVESTING 

 

 

 

 

 

 

 

 

 

 

 

 

MOHD KHAIRUL HISHAM BIN ISMAIL 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 



PERTURBATION SLIT RECTANGULAR PATCH ANTENNA IN TERAHERTZ 

FOR THERMAL ENERGY HARVESTING 

 

 

 

 

 

MOHD KHAIRUL HISHAM BIN ISMAIL 

 

 

 

 

 

A thesis submitted in fulfilment of  

requirements for the award of the degree of  

Doctor of Philosophy (Electrical Engineering) 

 

 

 

 

 

Faculty of Electrical Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

NOVEMBER 2014 



 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my family and friends with love and supports. 

 



 iv 

 

ACKNOWLEDGEMENTS 

Sincere thankful goes to my team of supervisors, Prof. Dr. Mazlina Esa, Dr. 

Noor Asniza Murad and Dr. Mohd Fairus Mohd Yusoff for their endless support and 

exceptional inspiration. The work is mainly supported by Fundamental Research 

Grant Scheme vote 4F039 Malaysia Ministry of Education (formerly Ministry of 

Higher Education), Universiti Teknologi Malaysia (UTM), Research University 

Grant votes 04J25, 08J55 and 08J51. The authors would like to acknowledge Faculty 

of Electrical Engineering, UTM for ISAP 2013 conference support. I would also like 

to thank Agensi Angkasa Negara (ANGKASA), Ministry of Science, Technology & 

Innovation, and Public Services Department of Malaysia for supporting my PhD 

studies. Not to forget, my father, Ismail Ali and mother, Mayuni Abu Bakar for their 

untiring motivations given during the duration of the study. 



v 

 

ABSTRACT 

Research in terahertz (THz) technology is now receiving strong attention 

worldwide. Devices using this band are predicted to become important in a very wide 

range of applications. The number of research in this field has increased rapidly in 

applications such as information and telecommunications, ultrafast computing and 

energy harvesting technology. Even with such excellent potentials, investigation to 

explore the properties of devices structure in this band is still lacking. To excite the 

THz band field response, micro or nano structures are required. In this thesis, a patch 

structure with enhanced elements are designed and investigated for energy harvesting 

application at thermal radiation spectrum which lies from 20 THz to 40 THz. A 

conventional rectangular structure is initially designed to understand the behaviour of 

performances in THz region. Then a perturbation slit is introduced at the center of the 

rectangular structure to trap the THz field. Hence, the electrical field is guided into a 

single collection area named slit tunnel for energy conversion purposes. The 

relationship between the structure parameters and performances are then analysed and 

recorded. Through the proposed structure, a broader field bandwidth is achieved 

which can cover most of the thermal radiation spectrum. Importantly, the amplitude 

of the electrical field that concentrates on the perturbation slit is increased up to 110.6 

V/m with receiving field of 1 V/m which can produce an enhancement factor of 

110.6. A promising receiving beamwidth of approximately 85
0
 is also achieved where 

the THz field can be collected from various directions. Next, the proposed structure is 

integrated with a Metal-Insulator-Metal (MIM) diode to form antenna-coupled diode. 

The structure integrates well with the MIM diode to produce approximately 0.495 

A/m of magnetic field. The performances obtained are suitable for the proposed 

structure to be energy harvesting device which can collect the abundant thermal 

radiation and convert it into usable energy.  
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ABSTRAK 

Penyelidikan dalam bidang teknologi terahertz (THz) semakin mendapat 

perhatian seluruh dunia. Peranti yang beroperasi dalam jalur THz dijangka menjadi 

keutamaan dalam pelbagai aplikasi. Bilangan penyelidikan dalam bidang ini 

meningkat dengan pesat seperti dalam aplikasi informasi dan perhubungan, komputer 

ultra-pantas dan teknologi penuaian tenaga. Disebalik mempunyai potensi besar, 

penyelidikan lanjut untuk menyelidik sifat-sifat struktur peranti masih lagi kurang 

mendapat perhatian. Struktur mikro atau nano diperlukan untuk merangsang respon 

medan dalam jalur THz. Struktur tampal dengan elemen penambahbaikan 

dibangunkan dan diselidiki dalam tesis ini untuk aplikasi penuaian tenaga pada 

spectrum radiasi haba yang terletak dalam jalur dari 20 THz hingga 40 THz. Struktur 

segiempat asas dibangunkan terlebih dahulu untuk memahami perihal prestasi 

struktur dalam jalur THz. Seterusnya, elemen alur terganggu dimasukkan di tengah 

struktur segiempat tepat bagi memerangkap medan THz. Jadi medan dipandu ke 

ruang pengumpulan yang dikenali sebagai simpang alur untuk tujuan penukaran 

tenaga. Hubungkait antara parameter struktur dengan prestasi dianalisis dan 

direkodkan. Melalui struktur yang dicadangkan, jalur lebar medan yang besar dapat 

dihasilkan meliputi hampir keseluruhan jalur spekra radiasi haba. Penemuan penting 

di sini ialah kekuatan medan elektrik yang tertumpu pada alur terganggu meningkat 

kepada 110.6 V/m dengan medan penerima sebanyak 1 V/m yang menghasilkan 

faktor peningkatan bernilai 110.6. Pancaran jalurlebar yang baik juga dapat 

dihasilkan dengan nilai 85
0
 di mana medan elektrik THz dapat dikumpulkan dari 

pelbagai arah. Selepas itu, struktur yang dicadangkan,  digabungkan dengan diod 

logam-penebat-logam (MIM) untuk menghasilkan diod terganding antena. Didapati 

bahawa struktur diod MIM tergabung antena menghasilkan medan magnetik bernilai 

0.495 A/m. Prestasi yang dihasilkan daripada struktur yang dicadangkan adalah amat 

berpontensi untuk aplikasi penuaian tenaga di mana ia dapat mengumpulkan radiasi 

haba terbuang dan menukarkan kepada tenaga yang berguna. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Back Ground 

In this thesis, the development of a new structure for energy harvesting at 

Terahertz (THz) region is presented. The new structure performs a high field 

enhancement factor with good radiation properties for better energy conversion. It is 

designed using established radio frequency (RF)/microwave design analogy and 

modelling. Fresh relationship between the geometrical structure and performances is 

successfully developed that adds new knowledge to improve the design 

methodology.  

 

 

Terahertz (THz) technology has received a lot of attention around the world. 

The devices manipulating this waveband are set to become increasingly important in 

a very broad range of applications. However, today’s technology is still far away 

from enabling the terahertz devices for commercial use. THz technology is finding 

usage in many sectors such as information and communications technology, satellite 

communications, global environmental monitoring and astronomy. Despite such a 

great potential, the analytical means to describe the properties of THz devices is still 

lacking and hence calls for thorough investigations to be performed. Towards that, 

the studies to translate establish RF/microwave device theories into the terahertz 

region are rapidly increased. 



2 
 

In RF and microwave regions, an antenna is an electrical device which 

converts electric currents into radio or microwave, and vice versa. In THz region, it 

is defined as a device that converts freely propagating THz radiation into localized 

energy, and vice versa. The devices that are working at THz region is primarily 

associated with their small scale size which lie in the range of micro-meter and nano-

meter. The devices normally require fabrication accuracies of a few nano meters. 

Although many properties and parameters of THz devices are similar to their radio 

wave and microwave counterparts, they have important differences due to their small 

size and resonant properties of metal nanostructure.  

 

 

Throughout the thesis, the antenna device operating at THz band is the main 

subject to be discussed. In 1985, John Wessel proposed for the first time that a gold 

particle can function as an antenna [1]. The first experimental demonstration of this 

is followed in 1995 by Dieter Pohl and Ulrich Fischer who used gold-coated 

polystyrene particle [2]. The studies continued, and since then, various infrared 

antenna geometries have been systematically investigated for various ranges of 

applications. 

 

 

 

1.2 Problem Statement 

 

This research intends to investigate and improve the performance of energy 

harvesting application by using modified transmission-line model (TLM). 

Nowadays, not many modeling have been established in THz band especially for 

energy collector applications. The implementation of TLM into THz for thermal 

harvesting energy has a great potential due to its simplicity. However, the use of 

TLM for rectangular patch into THZ band cannot be applied directly and its invites 

new studies to be carried out. The use of established TLM into THz design is 

expected to simplify the demanding design modelling in THz technology 

 

 



3 
 

An electrical field enhancement factor is vital characteristic that needs to be 

considered for thermal harvesting energy applications. An electrical field 

enhancement factor greater than 70 is acceptable value for thermal energy harvesting 

applications for more energy collection. Furthermore, the field enhancement 

excitation is a concerning collection location.  The biggest challenge of this work is 

to provide a convenient location from which it collects energy and transport it to 

other rectifier circuitry for conversion. An appropriate design modification and 

techniques are required to drive all excited field into a single location. The field 

enhancement excitation larger than 70 which concentrated at a single location is 

proposed to be design in this work.  

 

 

Moreover, the field bandwidth causes the success of receiving thermal energy 

from full radiation spectrum which lies from 20 THz to 40 THz. The energy 

harvesting antenna that can generate field bandwidth over thermal radiation spectrum 

is critical to be designed. The parametric studies need to be performed in order to 

find the relationships which control the field bandwidth performances.  

 

 

In addition, an efficient rectification circuit needs to be designed for optimum 

energy conversion at thermal radiation spectrum. The lack of design and method for 

designing THz rectification circuit required a lot of effort and challenge to the 

proposed antenna design.  To date, the dipole and the flare monopole are among the 

designs that were published to convert the electrical field energy into current at 30 

THz. Those designs use a metal-insulator-metal (MIM) diode for energy conversion 

where it can be integrated with the antenna structure to form antenna coupled 

rectifier. The integration between antenna and MIM diode is very difficult and 

required a very intense research work. The size area that locates higher field is 

needed to be design accordingly with diode contact size to produce optimum energy 

conversion. 
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1.3` Research Objective 

The objective of the research is to design parametric modelling of 

perturbation slit at terahertz rectangular patch antenna for thermal energy harvesting. 

The proposed antenna shall deliver higher than 70 field enhancement factor and field 

bandwidth that cover thermal radiation spectrum which lies from 20 THz to 40 THz 

for optimum thermal energy conversion.  

1.4 Research Scope 

The scope of the research is outlined as below: 

 

i. Study and understand the concept of antenna structure for thermal energy 

harvesting, the theory and design of transmission line mode and review 

the usage of materials in THz antenna. 

ii. Design, simulate and optimize a rectangular patch antenna at THz band. 

iii. Design, simulate and optimize a perturbation slit rectangular patch 

antenna for field enhancement. 

iv. Design, simulate and optimize a perturbation slit rectangular patch 

antenna integrated with metal-insulator-metal diode for energy 

conversion. 

v. Finalize the optimum design, pile up reports and publish regional and 

international conference and journal papers. 
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1.5  Significant Contributions to New Knowledge 

There is an urgent need to contribute in pursuing RF/microwave design 

analogy and modeling into the THz region that is able to support and simplify 

structure design development. Exploration into higher frequency region is needed 

due to high technology demands where the lower frequency technologies are 

saturated. The possible contributions are as follows: 

(a) Modified Transmission Line model – The Transmission Line model cannot 

be used directly in THz band. This resulted from different values of effective 

dielectric and wave penetration effect into the antenna patch metal layer. A 

modified Transmission Line model for rectangular antenna is proposed. The 

model is designed to operate between 5 THz to 60 THz that covers thermal 

radiation spectrum which lies between 20 THz to 40 THz.  

 

(b) Rectangular antenna with perturbation slit - The configuration exhibits 

electrical field being excited at the perturbation slit with enhancement factor 

that is higher than that of a dipole structure. Strong electrical field intensity is 

targetted to cover most of the thermal radiation spectrum and it offers broad 

half-field strength bandwidth (HFSB) that is controllable.  The proposed 

structure is a potential candidate for energy harvesting devices that requires 

high electrical field and broader electrical field bandwidth for efficient energy 

conversion. 

 

(c) Rectangular antenna with perturbation slit tunnel - By introducing a tunnel at 

the slit edge, the electrical field intensity is guided out through the tunnel. 

Hence, the proposed structure is a potential candidate for energy harvesting 

devices. 

 

(d) Rectangular antenna with perturbation slit integrated with MIM diode – The 

configuration allows simple but practical conversion of the electrical field 

into usable energy. Verification results provided show that this design 

analogy is able to add a new foundation of knowledge for future development 

of energy harvesting devices. 
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1.6 Thesis Organisation 

The thesis comprises of seven chapters. The remaining chapters are organised 

as described. In Chapter 2, related literatures studied intensely are reviewed. The 

basic theories of designing an antenna structure at THz region which focuses on 

establishing an RF/microwave design analogy is discussed in this chapter. Initially, 

the basic of dipole structure is discussed before involving a complex structure. Then, 

the critical and important aspects of designing a structure that operates in THz region 

are investigated. It is important to note that the application can be applied to benefit 

the mankind.  

 

 

The design of dipole structure is first discussed in Chapter 3. Then, the 

enhancement technique for field enhancement is proposed. The performance between 

basic dipole structure and with enhancement technique is compared and discussed. 

The important factor for the design has been studied and reported. Furthermore, the 

performances of field enhancement are analysed and discussed.  

 

 

The transmission line model for designing a rectangular structure is discussed 

in Chapter 4. The effect of using transmission line model at THz range is discussed 

further in this chapter. In addition, the transmission line model is then modified to 

consider the effect of antenna at THz frequency and related formula is plotted and 

discussed.  

 

 

In Chapter 5, the rectangular antenna patch with perturbation slit is discussed 

in details. The performance results by inserting perturbation slit have been analysed 

and compared with published design to show the significant improvement of the 

proposed design. The required performance for energy harvesting application is 

achieved. Meanwhile, all the results involved are deliberated and explained for future 

reference.  
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A variation of diode platform for energy conversion is proposed and discussed 

in Chapter 6. The platform is arranged from the perturbation slit parameters to 

examine the energy conversion performances. The optimum performances are 

discussed in depth.  

 

 

The final chapter concludes the thesis and suggestions for future work are 

proposed. The advantages and originality of the design are also discussed.  
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