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ABSTRACT

In real engineering problems, regression plays an important role as a tool to
approximate an unknown target function. One of the primary regression problems
is the insufficient number of training samples during regression of a model to find
the relationship between input and output of samples. These samples do not provide
enough information which leads to difficulty in the regression. Current techniques
focusing on the selection of appropriate model parameters use several data-driven
techniques and none of these techniques offer generalized and better solutions to the
problems. Incorporation of prior knowledge is a plausible technique to improve the
quality of the regression for data-driven techniques but this technique is based on pre-
selection of coefficients in solving the problem, thus ignoring the consequence of the
selection. To improve regression quality for small training samples problems, this
thesis explored a new technique known as Weighted Kernel Regression (WKR) based
on the Nadaraya-Watson Kernel Regression (NWKR) when solving small training
samples problems. Besides WKR, the study introduced the incorporation of prior
knowledge based on Pareto-optimality concept that utilizes the genetic algorithm-
based multi-objective optimization technique to compute the Pareto optimal solutions.
Instead of relying on pre-selection of coefficients to incorporate the knowledge, the
proposed technique uses post-selection of solutions as it is less subjective, especially
when used for solving small sample problems. The experimental results of the
proposed technique using several benchmark problems were evaluated and compared
with existing techniques. The findings showed that the proposed technique not only
can offer better regression accuracy but also flexibility in generalizing the solution,
especially when the available training samples are insufficient.
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ABSTRAK

Dalam masalah kejuruteraan, regresi memainkan peranan yang penting sebagai
alat untuk menentukan fungsi sasaran yang tidak diketahui. Salah satu masalah
utama regresi adalah bilangan sampel yang tidak mencukupi untuk mencari hubungan
antara masukan dan keluaran sampel. Sampel ini tidak memberi maklumat yang
mencukupi dan mengakibatkan kesukaran dalam regresi. Kebanyakan teknik
semasa menggunakan teknik bersandarkan data dengan hanya memberi tumpuan
kepada pemilihan parameter model, namun tiada teknik yang mampu menawarkan
penyelesaian umum dan memberi keputusan yang lebih baik kepada masalah yang
dikaji. Penggabungan pengetahuan awal adalah teknik yang mampu meningkatkan
kualiti regresi tetapi teknik-teknik ini hanya berdasarkan kepada pra pemilihan pekali
yang mengabaikan kesan pemilihan pekalinya. Untuk meningkatkan kualiti regresi
bagi masalah sampel yang kecil, tesis ini meneroka teknik baru yang dikenali
sebagai Weighted Kernel Regression (WKR) berdasarkan Nadaraya-Watson Kernel

Regression (NWKR) dalam menyelesaikan masalah sampel yang kecil. Selain
WKR, kajian ini juga memperkenalkan satu teknik baru penggabungan pengetahuan
awal yang berasaskan konsep Pareto-optimality dengan menggunakan algoritma
genetik berasaskan teknik multi-objective optimization untuk mengira penyelesaian
Pareto yang optimum. Dari bergantung kepada pra pemilihan pekali dalam
penggabungan pengetahuan awal, teknik yang diperkenalkan menggunakan pasca
pemilihan penyelesaian yang lebih mudah dan sesuai bagi masalah sampel yang
kecil. Keputusan eksperimen dari teknik yang dicadangkan dinilai dan dibandingkan
dengan menggunakan beberapa masalah penanda aras kepada teknik-teknik yang
sedia ada. Hasil kajian menunjukkan bahawa teknik yang dicadangkan bukan
hanya boleh menawarkan ketepatan regresi yang lebih baik tetapi juga kefleksibelan
dalam menawarkan penyelesaian umum, terutamanya apabila sampel yang ada tidak
mencukupi.
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ŷi – Estimated i-th number of output space for training samples
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CHAPTER 1

INTRODUCTION

1.1 Brief Overview of Small Sample Problems

The application of learning from small samples has gained increasing attention
in many fields, such as pulp and paper industry [1], scheduling for manufacturing
environment [2], assembly process in semiconductor manufacturing [3], engine control
problem [4], and biological activities [5]. In real-world applications, usually, it
is difficult to obtain sufficient training samples as it is too expensive [6, 7], not
informative and redundant [8, 9]. Since the existing techniques focus on large and
sufficient training samples problems, researchers have been searching for various
methods to address the limitation of learning from small training samples by filling
up the information between samples [10, 11].

There are very few small training samples definitions, yet there is no agreed
definition on this matter. Vapnik and Chervonenkis [12] consider the samples is small
if the ratio size-of-training-set over Vapnik-Chervonik (VC) dimension is smaller than
20. In general, VC dimension is a measure of how many different kinds of function
can be modeled from hypothesis class. The VC dimension is considerably difficult
to determine [13]. In algorithmic information theory, the samples are considered
small based on the Kolmogorov complexity. The Kolmogorov complexity refers to the
length of the strings shortest description in some fixed universal description language.
Hence, if the string whose Kolmogorov complexity is small relative to the strings size
are defined to have small information content [14]. Andonie [10] in his work defined
the training samples are small if the number of samples, n, and the dimensionality size
of samples, d, are comparable. Meanwhile, a few authors did not define the definition
of small samples but they simply used several numbers of training samples in building
the model. Jang and Cho have defined the adequacy of samples must be greater than 40
based on their proposed technique called Observational Learning Algorithm [15]. The
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Diffusion Neural Network (DNN) [6] approximates non-linear function with training
samples less than nine. The model with training samples of less than 12 to improve the
process modeling in pulp industry is carried out by Robert Lanouette et. al [1]. [16]
has proposed a method to approximate high-order non-linear function employed as
small as 10 training samples to develop a model. Bloch et. al [4] employed at most 6
experimental data to model the in-cylindrical residual gas fractions in Spark Ignition
engine with Variable Camshaft Timing for engine control. With very limited literature
in defining the size of small dataset and assuming that all the observed samples are
sparse, the training samples with less than 30 is considered regardless number of
dimensionality as small for regression problem for this study as given by [17].

In general, there are two branches of research areas when solving small samples
problems. The first is classification problems, and the second is regression problems. A
classification problem is the problem of assigning data to one of a set of pre-determined
categories in which it refers the output of the data is in a discrete form. Meanwhile,
the regression problem refers to a method of finding relationship between the input
and the output of data where the output is in a continuous form. In other words, a
classification problem deals with discrete output and a regression problem deal with
continuous output. In general, there is a certain amount of works have been done in the
past decade to solve small samples problem for classification problem [18]. However,
only few works have been presented in literature when solving regression problem
and all the techniques available in solving classification problems cannot be directly
implemented within a regression framework [7].

1.2 Problem Statements

Insufficient training samples may introduce a conflict between the number of
samples and the model complexity [9]. Therefore, insufficient training samples cannot
provide enough information as there may exist a gap between samples [16]. Hence, the
available training samples do not cover the desired input space where the built model
may fail to generalize to new unseen samples.

Most of the studies on this problem focus on finding and choosing a different
type of hypothesis’s classes, F, by using several data-driven techniques such as
artificial neural network (ANN), Gaussian process (GP), and support vector regression
(SVR). The most important issue when solving small training samples problems is
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how the technique can generalize to new unseen samples. However, there is no
optimal solution for this problem as it is difficult [5]. For instance, in Tsai and Lis
proposed method [16], the technique to find an unknown target function, f, is by
introducing artificial samples to reduce the number of possible of hypothesis’s class.
However, relying on ANN as a technique to solve small sample problems may cause a
difficult problem in determining the model structure, especially the number of hidden
nodes. Moreover, in SVR and GP, the selection of models parameter to appropriately
determine the hypotheses classes, F, is chosen arbitrarily when solving small training
samples problem as the focus of the study only to provide an approach to solve small
samples problem.

Incorporating a prior knowledge is a plausible method in facilitating the data-
driven techniques to improve the quality of the regression. In general, prior knowledge
refers to available information about the problem being solved in addition to the
training samples [7]. The incorporation of prior knowledge can be used to limit the
hypotheses classes, F, when only few training samples is available [19] and also when
fast computational time is required [8]. In fact, prior knowledge is present in most
research fields such as from domain experts [20], and simulation models [4].

In general, the existing approaches in incorporating prior knowledge rely
on one optimal solution which is carried out as a single-objective optimization
problem [4, 21, 9]. Hence, it requires the pre-selection of coefficients in formulating
the learning function of the regression algorithms. Moreover, most of the existing
approaches introduce several variables in the formulated learning function in order
to finely obtain a good model. Hence, it requires a non-trivial tuning mechanism to
achieve the objective. As a result, the existing approaches may simply ignore the
possible consequences of the pre-selection of coefficients as limited knowledge is
accessible. In general, the selection of coefficients controls the fitness of the learning
function either closely approximates to the training samples or prior knowledge,
respectively. As the nature of the prior knowledge is considered as less accurate [8]
and bias to prior model [7], relying on a single-objective optimization problem which
requires a precise selection of the coefficients is difficult.

In general, there are several questions arose based on the given statement from
the previous paragraphs.

1. What techniques can offer a better solution when solving regression problem
with insufficient samples?
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2. How to incorporate prior knowledge for regression problem based on post-
selection approach?

1.3 Objectives

The objectives of this research in solving regression problem with small
training samples are given as follows:

1. To enhance the existing NWKR to solve the regression problem when the
available training samples are non-noisy and insufficient.

2. To improve the technique in (1) in order to solve the regression problem with
noisy and limited samples.

3. To incorporate prior knowledge based on Pareto optimality concept using the
technique in (1) to solve a complex regression problem with noisy and limited
samples.

1.4 Scope of Work

In designing and developing the proposed WKR and its extension, the scopes
of the research are defined as follows:

1. The regression problem with insufficient sample where the input is in continuous
value and its limit only to univariate regression problem. The univariate problem
refers to the problem with only one output variable, v = f (U1, U2, ..., Um),
where v is the only output variable, f is the target function and U’s are the input
variables.

2. The problem is also limited to batch data problem. The batch data problem does
not concern on the sequence of samples as compared to time-series data when
building the model. Hence, the proposed technique treats the available training
samples equally as it is independent from the sequence.

3. In incorporating prior knowledge, the proposed technique only focuses on the
approach of incorporation. In general, the proposed technique does not consider
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the source of the prior knowledge or how to generate a good and reliable prior
knowledge.

1.5 Thesis Contribution

The main contribution of this thesis is the enhancement of NWKR, which
known as WKR. The proposed WKR comes with the generalized models parameter
by inheriting one important feature of NWKR when determining the smoothing
parameter. The experiment results, which will be shown and discussed in Chapter
3, are the main evidence in terms of generalization and feasibility of the proposed
technique. In general, the main aim of introducing the proposed technique is to
establish a new technique which can offer a better generalization capability when
solving small training samples problems. However, the WKR suffers from certain
disadvantage, especially it only limits to non-noisy sample problems.

The second contribution is the extension of WKR when addressing noisy
and small training samples problems. In general, the extension employed some
existing features that to be associated in the framework of WKR such as a frame
based cross-validation technique, new formulation learning functions, and several
learning techniques. This extension is not only focused on solving noisy training
samples problems but more important as a technique in initializing the population when
introducing a new approach of incorporating prior knowledge.

The third contribution is a new approach in incorporating prior knowledge.
In general, the existing approach in incorporating prior knowledge is based on one
optimal solution. Hence, the need of precise information in defining the coefficients
involved is difficult and critically important. This can be considered as pre-selection
approach in which ignoring the consequence of the coefficients selection. In this thesis,
a new approach is introduced based on Pareto-optimality concept in multi-objective
optimization environment. Hence, a multi-objective optimization technique known
as non-dominated sorting genetic algorithm II (NSGA-II) is employed. The entire
proposed framework can be considered as post-selection approach. The post-selection
involves with the selection of solutions instead of the selection of coefficients. This
new technique of incorporating prior knowledge is proved to be less subjective, and it
offers more generalized model when solving the small samples problems. Also, three
challenges when implementing the new approach of incorporating prior knowledge is
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highlighted. Hence, the contribution is further scrutinized into three small divisions,
which include (1) the technique to initialize the population (2) the technique to address
uncertainty and (3) the technique to avoid over-fitting. The technique also could be
further research especially in terms of the selection the best solution.

1.6 Thesis Organization

This thesis is organized as follows. The literature review of the problem in
regression with small samples and the employed techniques is placed in Chapter 2.
Chapter 3 focuses on the development and experiment of WKR for solving non-noisy
and small samples problems. On the other hand, the extension of WKR with several
conducted experiments for solving noisy and small samples problems is explained
in Chapter 4. Chapter 5 explains the concept of Pareto optimality in a view of
new technique when incorporating prior knowledge in multi-objective environment.
Chapter 6 ends this thesis with conclusion as well as some research directions based
on this research. Finally, the references are placed at the back of this thesis.
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