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ABSTRACT 

 

 

 

 

 Set point method has been typically used for trajectory tracking of 

Autonomous Underwater Vehicle (AUV). However, this method has several 

limitations. In this regard, region based method has been applied in trajectory 

tracking of AUV in order to solve the limitations of set point method. The main idea 

behind the region-based method is the tracking target of an AUV set as a region, so 

that the AUV will maintain its position under weak ocean current. This method uses 

lower energy compared to set point method because the AUV will not turn on its 

thrusters as long as it maintains its position within the region. Realistically, there is 

also strong current that can drift vehicle away from the required region. The purpose 

of the thesis is to develop a robust controller with region-based method. Robust 

control enables an AUV to reject the disturbance and re-enter the region even under 

the influence of external disturbance.  Based on the literature review, adaptive sliding 

mode control was chosen as the proposed controller in this study. Sliding mode 

control is known for its insensitivity towards uncertainty and external disturbance. 

Adaptive component was introduced to replace switching component. This substitute 

enables AUV to reject external disturbance better compared to conventional sliding 

mode control. The stability of the proposed controller was analyzed using Lyapunov 

function. The energy consumption of region based method was compared with the 

set point tracking method. It has been shown from this study that the energy 

consumption for region-based method is indeed lower than set point method. The 

effectiveness of the proposed controller was compared with adaptive controller using 

simulation under the influence of ocean current. Underwater vehicle model used in 

the simulation was Omni Directional Intelligent Navigator (ODIN).  It has been 

proven that the proposed controller performed better compared to adaptive controller. 

The proposed controller had managed to handle ocean current and re-enter the 

region.  
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ABSTRAK 

 

 

 
 

 Kaedah titik set kebiasaannya digunakan di dalam penjejakan trajektori oleh 

kenderaan bawah air automatik (AUV). Akan tetapi, kaedah ini mempunyai beberapa 

batasan. Oleh itu, kaedah berasaskan kawasan telah digunakan dalam penjejakan 

trajektori untuk mengatasai batasan kaedah titik set. Teori di sebalik kaedah kawalan 

berasaskan kawasan ialah sasaran didefinisikan sebagai suatu kawasan, maka AUV 

akan dapat mengekalkan posisinya walaupun dalam arus laut yang lemah. Kaedah ini 

juga dikatakan menggunakan tenaga yang lebih rendah berbanding kaedah titik set 

kerana AUV tidak akan menghidupkan penujah selagi ia dapat mengekalkan posisi di 

dalam kawasan. Secara realistiknya, terdapat juga arus kuat yang berupaya 

menghanyutkan kenderaan dari kawasan dikehendaki. Tujuan tesis ini ialah untuk 

membangunkan pengawal yang tegap menggunakan kaedah berasaskan kawasan. 

Kawalan tegap membolehkan AUV menolak gangguan dan memasuki semula 

kawasan walaupun di dalam pengaruh gangguan luaran. Berdasarkan kajian literatur, 

kawalan mod gelongsor mudah suai telah dipilih sebagai pengawal dalam kajian ini. 

Kawalan mod gelongsor terkenal dengan ketidakpekaannya terhadap ketidaktentuan 

dan gangguan luaran. Komponen mudah suai digunakan bagi menggantikan 

komponen pensuisan. Penggantian ini membolehkan AUV melawan arus yang lebih 

kuat berbanding kawalan mod gelongsor konvensional. Kestabilan pengawal yang 

dicadangkan telah dianalisis menggunakan fungsi Lyapunov. Tenaga yang digunakan 

oleh kaedah kawasan dibandingkan dengan kaedah titik set. Kajian menunjukkan 

bahawa penggunaan tenaga untuk kaedah kawasan adalah lebih rendah berbanding 

kaedah titik set. Keberkesanan pengawal yang dicadangkan telah dibandingkan 

dengan kawalan mudah suai di dalam simulasi di bawah pengaruh arus laut. 

Kenderaan bawah air yang digunakan dalam simulasi adalah pengemudi cerdas 

semua arah (ODIN). Telah dibuktikan bahawa pengawal yang dicadangkan 

memberikan keputusan yang lebih baik berbanding pengawal mudah suai. Pengawal 

yang dicadangkan dapat menolak arus dan memasuki semula ke dalam kawasan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

   

 

The oceans cover more than half of the earth surface compared to land and  it 

has huge source of mineral resources.  Ocean also could be linked to tropical storm, 

tsunami and earthquake.  These two reasons could initiate the curiosity of mankind to 

investigate and explored the abyssal world.  Spaces, on the hand, have been 

successfully intruded by man and man already have stepped on the moon and 

scientists have already sending their robot as far as Mars.  However, journey to 

undiscovered world of ocean is remaining elusive in the hand of researcher.    

 

 

Using aircraft or satellite to collect the data of ocean can only work on the 

surface scope and it is far from the meeting the need for ocean investigation, 

exploration and exploitation (Zhou, 2004). A manned voyage to deep sea would 

caused extreme risk as the unknown environment and oceanic environment is not 

ideal for human as the pressure increases with the depth.  On the bright side, if 

underwater vehicle is used, making it is possible to go far beneath the ocean surface 

and collect the data firsthand about the unknown ocean world. 

 

 

Although mankind earliest design of underwater vehicle dated back decades 

ago, the first unmanned underwater vehicle (UUV) was design in 1958 by US Army 

(Vervoot, 2008).  UUV in the case mention nowadays known as remote operate 

vehicle (ROV).  ROV is used extensively in offshore work however the risk working 
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in ROV is considered working in a hostile situation and also with expensive cost 

(Zhao and Yuh, 2005).  

 

 

Therefore, Autonomous Underwater Vehicle (AUV) has been steadily 

stepped in front of deepwater sea exploration to overcome the deficiencies of ROV.  

This is crucial since the need of the autonomy in robots and vehicles is becoming 

more prevalent matter in many situations and environments worldwide (Gonzales, 

2004).  AUVs are untethered, fully automated submersible platform capable of 

performing underwater tasks and missions with their onboard sensor, navigation and 

payload equipments (Xu, 2004).  The goal for underwater robotics is to create fully 

self-contained, intelligent, decision-making AUVs (Yuh, 2000).   

 

   

 

 

 

 

 

Figure 1.1: Essential part of underwater vehicle system 

 

 

 

 

Figure 1.1 shows the essential part of underwater vehicle system.  First part is 

the trajectory planning.  In order to generate reference trajectory, one must first 

define the path or path planning.  Path planning is how ones determined the curve in 

task space from the initial position until the final position of underwater vehicle 

while avoiding obstacle if any.  Parameterized the curve with time will get us the 

reference trajectory as it will become the input for underwater vehicle motion.  

However, before the reference trajectory became the input for motion control, 

inverse kinematic is used to get time-parameterized for joint space or in this case, 

underwater vehicle space.  The motion controller using the input trajectory to get the 

forces needed for the underwater vehicle to follow the reference trajectory.  In 

addition, the input or the control variable can be position, velocity and acceleration. 

Trajectory 

planning 

Kinematic 

transformation 

Motion 

control 

Autonomous 

Underwater Vehicle 
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However acceleration seldom used as control variable as the feedback for 

acceleration usually contains noise.  

 

 

Usually in underwater vehicle world, there are two control task which is 

trajectory tracking and regulation control.  In trajectory tracking or ones may refer it 

as motion control, underwater vehicle has to follows the reference trajectory.  The 

reference trajectory is a time-parameterized in joint space or task-space. Regulation 

control refers as position control or point to point control.  In this control task, 

underwater vehicle has to be in specific point regardless of its initial position and the 

trajectory to the specific point.  The underwater vehicle also has to be at the specific 

point even in case of external disturbance acted on it. However, the conventional 

method is consuming a lot of energy. Therefore,  Cheah and Sun (2004)  suggested a 

method  in order to solve the disadvantages of set point control which is region 

method.  This method will be discussed in detail in Chapter 2. 

 

 

 

 

1.2  Problem Statement 

 

 

 In early years of AUV control, the desired position is always specified as a 

point which called the set point control. The conventional set point can be seen in 

Aguiar and Pascoal (2002), Soylu et al. (2008), and Sun et al. (2012). However, 

conventional set point method cannot be applied to all AUV applications. There are 

also AUV applications where the desired position can be specified as a region rather 

than a point. Thus, Cheah and Sun (2004) proposed a method best suit these 

applications which called region method.  Cheah and Sun (2004) also claims that this 

method is more energy saving compared to conventional method. This is because the 

propeller of AUV will not activated in the region even with small current act onto it. 

In the previous studies using region control scheme, for example in Sun and Cheah 

(2003), the controller is formulated by only considered the restoring force and in 

Cheah and Sun (2004) and Li et al. (2010), the external disturbance is not even 

considered. Therefore, this study propose robust control with region formulation as 

an alternative. Figure 1.2 shows the illustration on the problem statement. The sphere 
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is the required region that the AUV needs to track. However, when ocean current 

pull out the AUV, if the AUV does not has robust controller, it could not reenter the 

region under the influence of ocean current. 

 

 

t = t0

t = t1 (t1 > t0) 

t = t2 (t2 > t1 > t0) 

Ocean current

 

Figure 1.2: Illustration on problem statement 

 

 

 

 

1.3  Objective of Research 

 

 

The objectives of this research are: 

 

 1) To apply adaptive sliding mode control in the proposed dynamic region  

  based  control scheme under the influence of ocean current. 

2) To formulate dynamic region control schemes with the stability analysis 

performed using Lyapunov-like function. 

 

3) To investigate the energy usage of the proposed  in 1) and compare with 

set point tracking controller. 
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1.4  Scope of Research 

 

 

 The scopes of this research covers following aspect. Simulation studies on a 

spherical shape, omni-directional and fully actuated 6 degree of freedom (DOF) 

underwater vehicle, Omni Directional Intelligent Navigator (ODIN) will be carried 

out in order to illustrate the performance of the tracking controller by using Matlab 

Simulink.  Also, the platform of underwater is simulated in controlled environment 

(e.g swimming pool) where the current also can be controlled and determined. The 

current of water flowing for this research is assumed to be laminar current. The 

laminar current refers as movement of the fluid moving in the straight line and in the 

same direction. The ocean current is assumed unidirectional and constant in the 

inertial-fixed frame, then the body-fixed current disturbance can be obtained by 

projecting the constant inertial-fixed current disturbance onto the body-fixed frame 

in the form of velocity. The stability of proposed controller is analyzed using 

Lyapunov-like function. The force is calculated using norm method only  for XYZ-

axis thruster. In this thesis, the term underwater vehicle may refer to both AUV and 

ROV, however, UUV with manipulator is excluded and not discussed in this thesis. 

 

 

 

 

1.5 Significance of Study 

  

 

 Energy efficiency is very important part in designing AUV as  the AUV only 

have limited supply of energy supply. Most of AUV used various type of battery for 

power and propulsion. Therefore, the power usage of AUV depending on the limit of 

the chosen battery. In this thesis, a robust control method is presented that consumed 

lower energy usage compare to the conventional method. A method that can lower 

the power usage of limited supply of power in AUV.  Knowledge gained from this 

study will benefit unmanned underwater vehicle industry as it will consume less 

energy for an AUV to perform the tracking task. 
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1.6  Thesis Organisation 

 

 

 This thesis is structured in the following manner. The literature review is 

presented in Chapter 2. The concept of inertial-fixed based and body-fixed based 

control is briefly introduced. This chapter also highlights the literature review of 

several control method proposed on underwater vehicle control. The review consist 

of several type of controller such as adaptive, robust and others such as fuzzy and 

neural network. The mathematical model of underwater vehicle and novel control 

designs of task-space tracking control are presented in Chapter 3. The kinematics and 

dynamics model of underwater vehicle is covered in this chapter along with the 

related properties. The purpose of this chapter is to give an insight to underwater 

vehicle and is used in simulation part of this thesis. The related properties is used in 

designing task-space tracking control. The effectiveness of the proposed controllers 

is presented using Matlab simulation in Chapter 4 with the discussion. The last 

chapter, Chapter 5 summarize the whole research with the suggestion for future 

work.  
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