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ABSTRACT

Networked Control System (NCS) is a feedback control system which dynamic

process is running via the communication channel. Surrounded by many choices of

network types that can be used to establish an NCS, Controller Area Network (CAN) is

a popular choice widely used in most real-time applications. Under harsh environment,

fault at transmission line for CAN-based NCS is more prominent compared to fault in

network nodes. Fault in bus line of CAN will induce data error which will result in

data dropout or/and time delay which consequently lead to performance degradation

or system instability. In this thesis, strategies to handle fault occurrence in CAN

bus are proposed in order to properly analyse the effect of fault to CAN-based NCS

performance. To implement the strategies, first, fault occurrences are modelled based on

fault inter-arrival time, fault bursts duration and Poisson law. By using fault and message

attributes, Response Time Analysis (RTA) is performed and the probability of NCS

message that misses its deadline is calculated based on Homogeneous Poisson Process

(HPP). A new error handling algorithm per-sample-error-counter (PSeC) is introduced

to replace native error handling of CAN. PSeC mechanism is designed based on online

monitoring and counting of erroneous sensor and control signal data at every sampling

instance and it gives a bound parameters known as Maximum Allowable Number of Data

Retransmission (MADR). If the number of retransmission for NCS message violates the

value of MADR, the data will be discarded. With the utilization of PSeC mechanism

to replace the Native Error Handling (NEH) of CAN, the probability of NCS message

that misses its deadline can be translated to the probability of data dropout of NCS

message. Despite the PSeC has prevented network from congestion which can lead to

prolonged loop delay, it also introduces one-step loop delay and data dropout. Therefore,

the controller that is able to compensate the effect of delay and data dropout should be

introduced. Thus, a control algorithm is designed based on Lyapunov stability theory

formulated in Linear Matrix Inequality (LMI) form by taking into account network

delay and data dropout probability. In order to proof the efficacy of the strategies,

Steer-by-Wire (SbW) system is used and simulated in TrueTime MATLAB R©/Simulink

environment. Simulation results show that the strategies of introducing PSeC mechanism

and the designed controller in this work have superior performance than NEH mechanism

for CAN-based NCS environment in terms of integral of the absolute error (IAE) and

energy consumption.
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ABSTRAK

Sistem Pengawal Rangkaian (NCS) adalah sistem kawalan suapbalik di mana

proses dinamiknya berfungsi melalui saluran telekomunikasi. Dengan pelbagai

pilihan jenis rangkaian yang boleh diguna untuk membentuk sebuah NCS, Rangkaian

Pengawalan Kawasan (CAN) adalah pilihan popular yang telah digunakan secara meluas

dalam kebanyakan aplikasi masa sebenar. Dalam keadaan getir, kerosakan talian

CAN akan menyebabkan ralat data yang menyebabkan keciciran data dan lengah

masa seterusnya menyebabkan kemerosotan prestasi atau ketidakstabilan pada sistem.

Dalam tesis ini, strategi untuk mengendalikan kerosakan dalam CAN telah dicadangkan

untuk menganalisa secara wajar kesan kegagalan pada NCS berasaskan CAN. Untuk

melaksanakan strategi ini, kerosakan dimodel berdasarkan masa tiba kerosakan, tempoh

ledakan kerosakan dan hukum Poisson. Dengan menggunakan sifat mesej dan kerosakan,

Analisa Masa Tindak Balas (RTA) dilakukan dan kebarangkalian mesej NCS terlepas

batas waktu boleh dikira menggunakan sifat Proses Homogen Poisson (HPP). Satu

algoritma baru yang iaitu pembilang-ralat-setiap-sampel (PSeC) telah diperkenalkan

untuk menggantikan Pengendali Ralat Natif (NEH) untuk CAN. Mekanisme PSeC ini

direka berdasarkan pemantauan atas talian dan pengiraan ralat data penderia dan isyarat

pengawal pada setiap sampel, juga memberikan satu parameter dikenali sebagai Bilangan

Maksimum Penghantaran Semula Data (MADR). Jika bilangan penghantaran data

melebihi nilai MADR, data tersebut akan dicicirkan. Dengan penggunaaan mekanisme

PSeC untuk menggantikan NEH pada CAN, kebarangkalian mesej NCS terlepas batas

waktu boleh diterjemahkan kepada kebarangkalian keciciran data NCS. Walaupun

mekanisme PSeC telah mengelakkan dari berlakunya kesesakan talian, ia juga telah

menghasilkan satu-langkah lengah masa gelung dan keciciran data. Maka, satu pengawal

yang boleh menampung kesan lengah masa gelung dan keciciran data hendaklah direka.

Dengan itu, satu algoritma pengawal direka berdasarkan sifat Lyapunov diformulasikan

dalam Ketidaksamaan Matriks Linear (LMI) dengan mengambil kira lengah rangkaian

dan kebarangkalian keciciran data. Untuk mengesahkan keberkesanan strategi yang

dicadangkan, sistem Kemudi Menggunakan Wayar (SbW) telah diguna dan disimulasi

dalam persekiratan TrueTime berasaskan MATLAB R©/Simulink. Keputusan simulasi

menunjukkan strategi menggunakan mekanime PSeC dan pengawal yang telah direka itu

menunjukkan keunggulan prestasi berbanding mekanisme NEH dalam persekitaran NCS

yang berasaskan CAN dari segi kamiran ralat mutlak (IAE) dan penggunaan tenaga.
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CHAPTER 1

INTRODUCTION

1.1 Background of Research

Networked Control System (NCS) is a system where the control loops

are closed via network. NCS provides alternative to traditional point-to-point

communication by introducing communication line, network nodes and protocols of

data handling, which significantly improves the structure of system, thus making

the NCS now gaining a popularity in recent years. However, the introduction of

a communication network into an NCS can also degrade the overall control system

performance due to time delay, data dropout, sampling jitter, data quantization

problem, data disorder and messages scheduling problems. Among these problems,

time delay and data dropout are more prominent in affecting NCS performance.

Even with many constraints and challenges toward achieving good

performance for high end application of NCS, the advantages offered outweigh

the difficulties which make the work in this area remains significant. Due to the

advantages, such as low cost, simple installation and maintenance, increased system

agility and reduced system wiring, NCSs are now applicable to many fields, ranging

from DC motors control, advanced aircraft, spacecraft, automotive and manufacturing

processes. There are a few excellent literatures that provide more details on NCS.

For example, the information in current and future research direction of NCS can be

found in [1]. The survey article done in [2] has presented the comprehensive history,

classification and research fields that are related to NCS. The results on estimation,

analysis and controller synthesis for NCS to handle constraints that exist in NCS are
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Figure 1.1: Configuration of NCS

presented in [3–5]. The survey of control methodology for NCS to compensate the

delay effect can be found in [6,7]. The recent methodologies of event-triggered method

for NCS is reported in [8].

Each configuration of NCS consists of sensor, controller and actuator which

are interconnected to the same network. It could be constructed by using single sensor

and single actuator node, multi-sensors multi-actuators (I sensors and J actuators), or

even sensor and actuator-controller combined node, as shown in Figure 1.1. Sensors

generate a stream of sensed data and transmit it to controller via network. Controllers

process the samples of the sensed data and generate appropriate control signals to

be delivered over the network to actuators. Actuators transform control signals into

actions that will affect the physical system.

In term of controlling dynamic systems that have strict temporal requirement,

high speed serial bus communication has been used as the ‘backbone’ or the

enabler of NCS in the application. Fieldbus technology such as PROFIBUS [9],

WorldFIP [10], ControlNet [11], DeviceNet [12], switched Ethernet [13, 14] and

controller area network (CAN) are among the most popular fieldbuses that are being

adapted in many application especially in automotive and automation equipment.
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In brief, PROFIBUS is a master/slave communication system that is developed by

Germany researchers in 1980s [9]. WorldFIP also is a master/slave communication

system developed by French researchers to compete PROFIBUS technology [15].

ControlNET is developed by Rockwell Automation company in early 2000s and it

is a serial communication system that is operated in bus topology network [16].

DeviceNet is also serial communication system but has the ability to support multiple

communication hierarchies and it was invented by Allen-Bradlet company in 1990s

[17]. Ethernet was initially developed by Xerox company in 1970s and now has

become popular and well established local area network (LAN) technology when the

internet uses this technology to transmit large number data to remote area at very fast

speed and low cost [18].

CAN is an advanced serial bus system designed for short messages

transmission and currently it can operate at the speed up to 8 Mbps [19]. It was

initially developed for automotive use in late 1980s by Robert Bosch, but now CAN is

widely utilized in most real time automation system due to its robustness to electrical

interference, predictable behaviour, ability to self diagnose and data error repair, high

performances and suitable for harsh environment. Although there are other network

types which are faster and able to provide same performance as CAN, but due to low

cost and robust protocol, CAN is always the preferred choice for many applications.

Furthermore, extensive researches have been carried out in attempt to make the CAN

communication link acting as a powerline as well as data transmission medium which

promises a greater saving in term of wiring, size and development cost of system in

the future [20–27].

In similar line to other types of network, CAN-based system that consists of

nodes and bus line are also prone to fault. Fault is known as a threat to dependability

of a system which can compromise the ability to deliver service that can justifiably be

trusted. Fault is defined as an adjudged cause of an error. An error is known as the part

of a system’s total state that may lead to a failure. A system is said to have a system

failure when the error induced by a fault has cause the delivered service to deviate from

the correct state. The framework of this thesis will be focused on fault in network since
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it is more prominent as compared to fault in network nodes.

The source of these fault could be from environment, human-made or

hardware/software problem such as electromagnetic interference (EMI) [28–31],

hesienbug [29, 31], intermittent connection [32], unsynchronized clock, malicious

activity and intrusion attempt [33]. However, most literatures show that for the system

under harsh environment such as in automotive or avionic environment, the source

of faults mainly come from EMI [32, 34–36]. For instance, EMI is an unwanted,

spurious, conducted, or radiated signal of electrical origin that can cause performance

degradation in electronic equipment. Radio equipment, power electronic converter and

lightning are a few examples of EMI sources. EMI can potentially affect the correct

functioning of network nodes and also causes data transmission error in CAN. EMI

problem can be effectively handled at network nodes level, but providing a support

to combat EMI at transmission line require expensive facilities especially for long

network line [37]. Utilizing fibre optic cable can efficiently eliminate EMI effect,

however it is not favoured by the cost-conscious industry due to cost constraints.

Shielded cable or filtered connector can be used to reduce the EMI effect to bus line,

however, the EMI effect is still exists especially under harsh environment [38, 39].

Fault occurrences in CAN will induce data error which in turn resulting

additional transmission delay and/or causing data dropout. Thus it can degrade the

performance of NCS. To ensure the stability of NCS, the effect of fault occurrences in

CAN should be taken into account when designing NCS. Another concern in an NCS

is the error handling feature which is designed to provide error checking mechanism

in CAN protocol. The basic idea of error checking is the ability to detect data errors

as soon as possible and the system will retransmit the affected messages. In NCS,

data retransmission feature is favourable since it helps to recover data losses and

maximizing network bandwidth. However, this feature could lead to uncontrolled

number of retransmitted data and consequently causing bandwidth overload and thus

leading to performance deterioration and system instability. Hence, this mechanism

need to be replaced with other more effective error handling protocol which is capable

to optimize the number of retransmitted data.
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1.2 Problem Statements

There are a few problems arise in designing a CAN-based NCS under network

fault conditions:

I. The native error handling of data handling protocol in CAN performs

the data retransmission of erroneous data until it is successfully

transmitted. This process will introduce additional delay and may

lead to network congestion and thus it is not suitable for real time

requirement.

II. Fault in CAN will induce additional delay and/or data dropout which

can degrade the performance of NCS. However, there is no relationship

that can be associated between fault parameters and NCS parameters

that can influence the NCS performance. This problem has obscured

the development of NCS model under fault conditions and thus lead to

difficult controller design and analysis.

III. The transmission delay and data dropout that occur for sensor data and

control signal data can degrade or destabilized the performance of NCS.

The controller that are designed without consideration of delay and

data dropout cannot guarantee the stability of NCS when the system

experience delay and data dropout.

1.3 Objectives

The aims for this research are as the followings:

I. To develop the strategies to handle the fault occurrences in CAN in

order to properly analyse the effect of the fault to CAN-based NCS

performance.
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II. To build a control algorithm for NCS which can compensate the delay

and data dropout effects that are introduced by fault occurrences in

CAN.

III. To verify the efficacy of developed fault handling strategies and

designed control algorithm through extensive simulation.

The main contributions of this work are achieved by completing these three objectives.

1.4 Scopes of Work

Scopes of this project are:

I. Fault in CAN of single loop NCS

Fault may occur in network nodes and transmission line. Also the NCS

may consist of several loops on the same network. In this work, only

fault in transmission line on single loop NCS will be covered.

II. Strategies to handle fault occurrences in CAN

The strategies that are proposed to handle erroneous data due to fault

occurrences in CAN will cover the development of fault and messages

model, messages scheduling theory and probability theory. These

strategies are purposely to bound transmission delay and also to give

an information on data dropout probability.

III. Modelling of NCS and control algorithm design

The modelling of NCS in CAN will be performed by considering the

transmission delay and data dropout probability into the system. Then

the control algorithm of NCS will be designed subjected to Lyapunov-

based stability conditions. The synthesis of controller gain will be

determined by using linear matrix inequality (LMI).

IV. Simulation

The simulation of designed control algorithm will be applied to steer-
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by-wire (SbW) system. The system is arranged into third order linear

time invariant (LTI) system with disturbances. To find the solution

of developed LMI sets, Yalmip/Sedumi solver will be used since it

produce less conservative result as compared to LMI Control Toolbox

that provide in MATLAB R©/Simulink. Also to verify the efficacy of the

proposed strategies, MATLAB R©/Simulink-based TrueTime simulator

will be extensively utilized.

1.5 Contributions of the Research Works

The following are the main contributions of the study:

I. A new equation of response time analysis (RTA) under error busts

which is presented in Section 3.2.2. If the value fault bursts duration

and fault inter-arrival time within fault bursts are known, the equation

can provide a schedulability analysis under fault bursts.

II. A new error handling algorithm has been introduced in Section 3.3.1

to replace the native error handling in CAN. This mechanism has been

designed to be applied in single loop CAN and can prevent network

congestion, thus providing suitable environment for CAN-based NCS

under network fault conditions.

III. A new proposition statement has been developed in Secion 3.3.2 which

enable the fault parameters to be associated to the parameters that are

influencing NCS performance, namely loop delay and data dropout

probability.

IV. A new theorem has been derived in Section 3.4.2 to provide the

synthesis of state feedback controller for NCS with bounded delay and

data dropout. This theorem has been developed based on Lyapunov

stability approach formulated based on LMI.
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1.6 Thesis Outline

This thesis consists of five chapters and are organized as the followings:

Chapter 2 provides a literature review on the CAN, fault occurrences and NCS. First,

the background of CAN-based NCS and fault occurrences is discussed in term of NCS

history, justification of choosing CAN and fault occurrences in networked system.

Afterwards, a research trend in CAN is presented to discover the research opportunity

or issues that arise in CAN applications. The research of NCS design under delay and

data dropout in recent years are also presented.

Chapter 3 consists of three sections presenting the methodology for error

handling and controller design for CAN-based NCS. Section 3.2 discusses the

framework of CAN messages and fault occurrences in CAN-based NCS which serve

as the basis of this work. The explanation on CAN regarding frame format, data

transmission protocol and data error handling are done at prior before establishing the

messages and fault model. The RTA under network fault conditions is also developed

to provide pessimistic schedulability test for control message. A probability theory

and message scheduling theory are utilized in the development process. Then, Section

3.3 covers the development of a new error handling algorithm which is designed to

provide more suitable data error management in NCS environment. The calculation to

determine the data dropout probability for control message is also incorporated in this

section. Then, in Section 3.4, the NCS model with delay and data dropout is developed,

subsequently the stability and stabilization condition derivation is performed based on

Lyapunov stability theory to design a controller that can compensate the effect of delay

and data dropout. The pole clustering technique of LMI region is also introduced as a

supplementary to controller design to obtain the desired transient response.

Chapter 4 provides an extensive analysis of simulation work to investigate

the effectiveness of the proposed strategies to handle fault in CAN-based NCS. SbW

system is chosen as a testbed since it is the most critical automotive system in drive-

by-wire (DbW) technology. A brief explanation on this system is also included in the

chapter.



9

Finally in Chapter 5, the summary of the results of this research is presented.

The suggestions of future works for improvement, extension and continuity of this

research are also covered.
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