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ABSTRACT 

 

 

 

 

Magnetic Resonance Imaging (MRI) being the foremost significant component 

of medical diagnosis which requires careful, efficient, precise and reliable image 

analyses for brain tumour detection, segmentation, visualisation and volume 

calculation.  The inherently varying nature of tumour shapes, locations and image 

intensities make brain tumour detection greatly intricate.  Certainly, having a perfect 

result of brain tumour detection and segmentation is advantageous.  Despite several 

available methods, tumour detection and segmentation are far from being 

resolved.  Meanwhile, the progress of 3D visualisation and volume calculation of brain 

tumour is very limited due to absence of ground truth.  Thus, this study proposes four 

new methods, namely abnormal MRI slice detection, brain tumour segmentation based 

on Slantlet Transform (SLT), 3D visualization and volume calculation of brain tumour 

based on Alpha (α) shape theory.  In addition, two new datasets along with ground truth 

are created to validate the shape and volume of the brain tumour.  The methodology 

involves three main phases.  In the first phase, it begins with the cerebral tissue 

extraction, followed by abnormal block detection and its fine-tuning mechanism, and 

ends with abnormal slice detection based on the detected abnormal blocks.  The second 

phase involves brain tumour segmentation that covers three processes.  The abnormal 

slice is first decomposed using the SLT, then its significant coefficients are selected 

using Donoho universal threshold.  The resultant image is composed using inverse SLT 

to obtain the tumour region.  Finally, in the third phase, four original ideas are proposed 

to visualise and calculate the volume of the tumour.  The first idea involves the 

determination of an optimal α value using a new formula.  The second idea is to merge 

all tumour points for all abnormal slices using the α value to form a set of 

tetrahedrons.  The third idea is to select the most relevant tetrahedrons using the α value 

as the threshold.  The fourth idea is to calculate the volume of the tumour based on the 

selected tetrahedrons.  In order to evaluate the performance of the proposed methods, a 

series of experiments are conducted using three standard datasets which comprise of 

4567 MRI slices of 35 patients. The methods are evaluated using standard practices and 

benchmarked against the best and up-to-date techniques.  Based on the experiments, the 

proposed methods have produced very encouraging results with an accuracy rate of 96% 

for the abnormality slice detection along with sensitivity and specificity of 99% for brain 

tumour segmentation.  A perfect result for the 3D visualisation and volume calculation 

of brain tumour is also attained.  The admirable features of the results suggest that the 

proposed methods may constitute a basis for reliable MRI brain tumour diagnosis and 

treatments.  
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ABSTRAK 

 

 

 

 

Pengimejan Resonans Magnetik (MRI) merupakan komponen utama yang 

penting dalam  diagnostik perubatan yang memerlukan analisis imej yang teliti, cekap, 

tepat dan diyakini untuk pengesanan, segmentasi, visualisasi dan pengiraan isipadu 

tumor otak.  Sememangnya tumor mempunyai pelbagai bentuk, lokasi dan keamatan 

imej  yang sangat merumitkan bagi pengesanannya.  Tentunya, adalah amat berfaedah 

jika sekiranya hasil pengesanan dan segmentasi tumor otak yang sempurna dapat 

diperolehi. Walaupun terdapat beberapa kaedah yang tersedia, namun pengesanan tumor 

dan segmentasi masih lagi belum dapat diselesaikan sepenuhnya.  Sementara itu, 

kemajuan visualisasi 3D dan pengiraan isipadu tumor otak adalah sangat terhad kerana 

ketiadaan kebenaran mutlak.  Oleh itu, kajian ini mencadangkan empat kaedah baharu 

iaitu pengesanan hirisan MRI tidak normal, segmentasi tumor otak berdasarkan jelmaan 

Slantlet (SLT), visualisasi 3D dan pengiraan isipadu tumor otak berdasarkan teori bentuk 

Alpha (α).  Di samping itu, dua set data baharu beserta dengan kebenaran mutlak telah 

dicipta untuk mengesahkan bentuk dan isipadu tumor otak.  Metodologi ini melibatkan 

tiga fasa utama. Dalam fasa pertama, ia dimulai dengan pengekstrakan tisu otak, diikuti 

dengan pengesanan blok yang tidak normal dan mekanisma penalaan halus, dan berakhir 

dengan pengesanan hirisan yang tidak normal berdasarkan blok tidak normal yang telah 

dikesan.  Fasa kedua melibatkan segmentasi tumor otak yang merangkumi tiga proses. 

Pertama,  hirisan tidak normal diuraikan menggunakan SLT, kemudian pekalinya yang 

signifikan dipilih menggunakan ambang sejagat Donoho.  Imej yang terhasil dibentuk 

menggunakan SLT songsang untuk mendapatkan kawasan tumor.  Akhirnya, dalam fasa 

ketiga, empat idea asli dicadangkan untuk menggambarkan dan mengira isipadu 

tumor.  Idea pertama, ia melibatkan penentuan nilai α optimum secara automatik 

menggunakan satu formula baharu.  Idea kedua adalah untuk menggabungkan semua 

titik tumor bagi kesemua hirisan tidak normal menggunakan nilai α tersebut untuk 

membentuk satu set tetrahedron.  Idea ketiga adalah untuk memilih tetrahedron yang 

paling sesuai menggunakan nilai α di atas sebagai nilai ambang. Idea keempat adalah 

untuk mengira isipadu tumor berdasarkan tetrahedron yang terpilih.  Dalam usaha untuk 

menilai prestasi kaedah-kaedah yang dicadangkan, satu siri eksperimen dijalankan 

menggunakan tiga set data piawai yang merangkumi 4567 hirisan MRI daripada 35 

pesakit.  Kaedah-kaedah tersebut dinilai dengan menggunakan amalan piawai serta 

ditanda araskan dengan teknik-teknik terkini yang terbaik.  Berdasarkan eksperimen, 

kaedah-kaedah yang dicadangkan telah menghasilkan keputusan yang sangat 

menggalakkan dengan kadar ketepatan 96% bagi pengesanan keabnormalan hirisan dan 

99% sensitiviti dan spesifisiti untuk segmentasi tumor otak.  Keputusan yang sempurna 

juga dicapai bagi visualisasi 3D dan pengiraan  isipadu tumor otak.  Ciri-ciri yang 

mengkagumkan daripada keputusan ini mencadangkan bahawa kemungkinan kaedah-

kaedah yang dicadangkan  ini boleh dijadikan asas yang dipercayai bagi  diagnosis tumor 

otak MRI dan rawatan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview  

 

 

This chapter rationalizes the urgent necessity of systematic research to 

detecting and segmenting the brain tumour in Magnetic Resonance Images (MRI).  

Brain tumour being the most common brain diseases affects and devastates many 

human lives (Siegel et al. 2012).  According to the estimation of International 

Agency for Research on Cancer (IARC), every year over 126,000 people are 

diagnosed with brain tumour with a mortality rate above 97,000 (Ferlay et al. 2010).  

Despite many dedicated research efforts to overcome brain tumour related problems, 

higher survival rate of brain tumour patients is far from being achieved.  Lately, 

multi-disciplinary approaches involving the knowledge of medicine, mathematics 

and computer science are adopted for better understanding of the disease and to 

discover more effective methods for cure. 

 

 

MRI and Computed Tomography (CT) scans of human brain are the most 

common tests used to detect the presence and identify the location of brain tumour 

for selected specialised treatment option (Polidais 2006; Jeena and Kumar 2013).  

Presently, available options for brain tumour treatment include surgery, radiotherapy, 
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and chemotherapy.  The choice for the treatment options are based on the size, shape, 

type, and grade of the tumour.  It also depends on whether or not the tumour is 

exerting pressure on vital parts of the brain (Horská and Barker 2010; Tommaso 

2012).  Actually, the treatment options is critically decided by the factors such as the 

extent to which the tumour has spread to the other parts of the Central Nervous 

System (CNS) or body, the possible side effects on the patient relating to the 

treatment procedure and the overall health of the patient (Merchant et al. 2010). 

 

 

Certainly, precise detection of the brain abnormality type is a great necessity 

to reduce diagnostic errors and to schedule a correct treatment plan. In this regard, 

Computer Aided Diagnostics (CAD) remarkably improved the detection accuracy.  

The CAD system not only renders an alternative opinion to support the image 

interpretation of the radiologist but also reduces the image reading time significantly.  

Brain segmentation for abnormality detection in MRI slices is the most tedious task 

due to its complex anatomy and problems inherent to the nature of the image 

(Hutchison and Mitchell 2011; Moghaddam and Soltanian-zadeh 2011; Reddy et al. 

2012).  The heterogeneous and diffuse manifestation of pathology in medical images 

often prohibits the employment of computational methods.  Primarily, several classes 

for tumour types possess a variety of sizes and shapes (Prastawa et al. 2004; Louis et 

al. 2007).  Appearance of tumour at different locations in the brain with varying 

image intensities is another factor that makes automated brain tumour image 

detection and segmentation difficult (Polidais 2006).  Diffusive growth of tumours 

often makes their resection highly difficult.  Usually, surgery is performed to achieve 

a Gross Total Resection (GTR) because the extent of surgical resection in turns 

determines the longevity of the patient (Lacroix et al. 2001; Stippich 2007; Merchant 

et al. 2010).  

 

 

Precise determination and comparison of tumour volume on preoperative and 

postoperative MR images are prerequisite for the resection extent determination.  

The estimation of preoperative and postoperative tumour volumes are often depend 

on the surgeon’s impression or on the measurement of its largest axis along x, y and 

z direction (Lacroix et al. 2001; Merchant et al. 2010).  Consequently, accurate 
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volume calculation of tumour is not executed routinely.  Definitely, the visualization 

of the tumour on MR images greatly diverges due to presence of varieties of tissues 

inside the tumour area and its diffuse expansion.  Thus, the selection of different 

segmentation techniques is essential to differentiate the cancerous tissue from the 

surrounding healthy tissues.  This assists to determine the correct tumour volume. 

Besides, the segmented tumours must be visualized distinctly to obtain their explicit 

shape and location in the brain. 

 

 

 

 

1.2 Designations 

 

 

The human brain being the central functional unit controls the entire human 

body parts.  It is a highly specialised organ that allows human being to adapt and 

endure varying environmental conditions.  In addition, the brain enables a human to 

articulate words, execute actions, bring about thoughts and feelings (Natarajan et al. 

2012; Deepak et al. 2013).  Under certain conditions due to mysterious reasons the 

brain cells grow and multiply in an uncontrolled manner.  In this situation, the 

mechanism that controls normal cells is unable to regulate the growth of the brain 

cells.  The abnormal mass of brain tissue is medically termed as the brain tumour.  

The tumour occupies the space inside the skull, intervene the regular activity of brain 

and enhances the brain pressure.  This increased brain pressure causes some shift of 

the brain tissues, pushes them against the skull and responsible for the nerves 

damage of the other healthy brain tissues (Louis et al. 2007; Natarajan et al. 2012; 

Shally and Chitharanjan 2013; Salankar and Bora 2014). 

 

 

Varieties of imaging modalities such as CT (Al-Kadi 2010), MRI (Wong et 

al. 2012), Single Photon Emission Computed Tomography (SPECT) (Bronnikov 

2012) and Positron Emission Tomography (PET) (Wright 2010; Lartizien et al. 

2012) are used to inspect brain tumours.  Figure 1.1 shows an image slice through the 

human brain obtained via CT, MRI, SPECT and PET techniques to render different 
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information about the brain function and anatomy. 

 

 

 

 

Figure 1.1 Human brain slices with different imaging modalities.  From left to 

right: CT, MRI, SPECT and PET (Wright 2010) 

 

 

Damadian invented the MRI in 1969 and first used it to investigate the human 

body (Damadian et al. 1977).  Eventually, MRI became the most preferred imaging 

technique in radiology because it allows the visualization of internal structures in 

greater details. MRI reveals superior distinction among soft tissues within the body.  

This makes MRI suitable to generate better quality images for the cancerous tissues, 

brain, heart, and muscle than X-rays or CT methods (Novelline and Squire 2004; Fu 

et al. 2010; Abdullah et al. 2011).   

 

 

Figure 1.2(a) illustrates a patient’s head that is examined in a clinical 

diagnosis using three planes, including axial plane, coronal plane, and sagittal plane. 

Figure 1.2(b) to (d) depicts the brain MR images from various planes.  
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Figure 1.2 MR brain image from patient’s head (a) The setup, (b) Axial plane 

view, (c) Sagittal plane view, and (d) Coronal plane view (Lorenzen et al. 2001) 

 

 

MRI is represented via pixels grids with "H" rows and "W" columns. Every 

pixel of an MR image corresponds to a voxel (i.e. Volume element) whose value 

symbolizes the tissue and MR signal, respectively.  The volume of a voxel depends 

on MR image parameters including slice thickness and pixel spacing.  Normally, an 

MR image acquires more than one slice, which leads to an image sequence 

(H×W×K) with "K" slices.  Figure 1.3 displays a typical MR image sequence of 

(512×512×9) having (5.5 mm) spacing between slices and (0.9375 mm×0.9375 mm) 

distance between each two pixels in the image slice. 
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Figure 1.3 MR image sequence (Brown and Semelka 2011) 

 

 

 

 

1.3 Background of Research 

 

 

The medical brain images provide valuable and detailed information 

regarding normal and abnormal brain tissues.  Currently, MR images are the most 

common test for diagnosing and confirming the presence of brain tumour (Horská 

and Barker 2010; Joshi 2010; Mehmood et al. 2013).  Practically, brain MR images 

include both normal and abnormal image slices.  Despite extensive research, the 

classification of brain MR image abnormality remains challenging (Padma and 

Sukanesh 2011; Elaiza et al. 2011a; Al-Badarneh et al. 2012).  The resoans are due 

to variation of possible complex locations, size, shapes, and image intensities for 

different types of brain tumours (Kikinis et al. 1996; Xu et al. 2002; Veloz et al. 

2011; Roy et al. 2013).  

 

 

Radiologists analyse the brain MRI slices by visual inspection to detect and 

identify the presence of tumour or abnormal tissue (Amrutal et al. 2010; Salankar 



7 

 

and Bora 2014).  These diagnoses are based on the location, shape, and image 

intensity of different types of brain tumours.  Clinically, radiologists analyse the 

brain image slice by slice visually for tumour detection and identification. Such 

effort is labour intensive, expensive and often erroneous, especially involving a large 

number of image slices.  Furthermore, the sensitivity of the human eye and brain to 

elucidate such images reduces with the increase of number of cases, particularly 

when only a small number of slices contain information of the affected area 

(Salankar and Bora 2014).  Therefore, a powerful and reliable tool needs to be 

developed to automate the tumour localization so that precise detection and 

segmentation of the abnormal tissue is feasible.  

 

 

Figures 1.4 and 1.5 display a normal MRI slices of patients.  Figure 1.6 

illustrates an abnormal MRI slice at different locations, size, shapes, and image 

intensities for brain tumours in the same patient. 

 

 

             

               (a)                                                                     (b) 

Figure 1.4 Normal MRI slices from IBSR (10Normals_T1) dataset, (a) Slice 22 

of patient Normal_4, and (b) Slice 16 of patient Normal_15 
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                    (a)                                                                     (b) 

 

Figure 1.5 Normal MRI slices from challenge MICCAI (BRATS2012-BRATS-

1) dataset, (a) Slice 119 of patient BRATS_HG0010, and (b) Slice 54 of patient 

BRATS_HG0008 

 

 

         

                (a)                                                                     (b) 

 

Figure 1.6 Abnormal MRI slices at different locations with varying size, shapes, 

and image intensities of brain tumour (red rectangle) from IBSR (536_T1) dataset of 

MRI scan 536_32, (a) Slice 22, and (b) Slice 26 

 

 

Anatomically, MR brain images consist of non-cerebral tissues such as skull, 

skin, bone, muscle, eye-balls, and dura together with cerebral tissues including White 

Matter (WM), Gray Matter (GM), Cerebrospinal Fluid (CSF) and tumour (if 
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present).  Separation of these types of these tissues and localization or segmentation 

of tumours from cerebral tissues poses a severe challenge.  Present outcome is far 

from being satisfactory and radical improvement is necessary (Xu et al. 2002; Harati 

et al. 2011; Bauer et al. 2011; Wang et al. 2011; Veloz et al. 2011; Hamamci et al. 

2012).  Figure 1.7 illustrates the separation complexity of the healthy tissues from the 

cancerous one for challenge MICCAI (BRATS2012-BRATS-1) dataset reflecting the 

intensity homogeneity and inherent complexity. 

 

 

              

                    (a)                                                                     (b) 
 
Figure 1.7 Abnormal MRI slices in the presence of tumour inside the red square 

in terms of intensity homogeneity from challenge MICCAI (BRATS 2012-BRATS-

1) dataset, (a) Slice 85 of patient BRATS_HG0004, and (b) Slice 127 of patient 

BRATS_HG0007 

 

 

Of late, several segmentation algorithms are extensively implemented 

towards diverse medical imaging modalities (Moon et al. 2002; Sasikala et al. 2006; 

Zacharaki et al. 2008; Singh et al. 2009; Soesanti et al. 2011; Mustaqeem et al. 2012; 

Gang et al. 2013; Sinha and Sinha 2014).  These techniques used dissimilar tactics to 

integrate the earlier available information with automatic segmentation.  The 

performance of such techniques is decided by both the interaction plan and automatic 

computation scheme.  Moreover, the performance evaluation varies from application 

to application because different medical images enclose entirely different complex 

anatomical structures.  Thus, these methods face difficulties in managing the 

peripheral concavities, fragile edges, and noises of the medical image.  
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Brain tumour being a well-known serious disease with absolute complexity, 

the diffusive growth of tumours often makes their resection highly intricate. Usually, 

surgery is performed to achieve a GTR because the extent of surgical resection 

determines the longevity of the patient (Lacroix et al. 2001).  Indisputably, the 

graphical visualization is an essential part of brain tumour detection and analysis. 

Still, accurate brain tumour visualization remains a formidable task.  It is crucial to 

improve the degree of resection for the abnormal tissues while preserving normal 

tissues (González-Navarro et al. 2012; Yee Lau et al. 2014).  Methods are available 

to visualize the brain tumour, but the major problem with these methods is the 

inability to visualize the boundaries of the tumour accurately in the details.  In 

addition, their inability to separate the healthy tissues from the unhealthy one leads to 

the assessment and calculation of wrong tumour volume (Lee 2009; González-

Navarro et al. 2012; Yee Lau et al. 2014). Figure 1.8 shows an example of the 3D 

visualization method of tumour patient, where the actual border is not seen and the 

tumour does not reveal the difference between healthy and unhealthy tissues. 

 

 

 

 

Figure 1.8 3D brain tumour visualization of MRI scan 536_32 in IBSR (536_T1) 

dataset using Matlab's Meshing Point Clouds function 
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The estimation of preoperative and postoperative tumour volumes are 

frequently decided by the surgeon’s impression or on the measurement of its largest 

axis along x, y and z direction (Lacroix et al. 2001).  Precise determination of the 

brain tumour extent for excised and advanced treatments requires careful calculation 

and systematic observation of the therapeutic effects on the tumour (Salman et al. 

2005; Siegel et al. 2012; Dang et al. 2013).  Typically, this is performed by 

measuring the volume of the tumour from 3D scans.  Although, numerous methods 

for the estimation of the tumour volume are available, but the actual 3D shape of the 

tumour is seldom displayed.  Conversely, each scientific research must evaluate and 

gauge their result.  However, research is not yet perfected to extract the tumour from 

the brain and measure its volume to validate and evaluate the result given by other 

related method of brain tumour volume calculation.  Simultaneously, there are 

methods to calculate the brain tumour volume manually.  Some of them include 

Frustum Model (Shally and Chitharanjan 2013), Meshing Point Clouds (Iglesias et 

al. 2011), Trace method (Chong et al. 2004; Salman et al. 2005) and Modified 

MacDonald (MMC) method (Dang et al. 2013).  However, the results obtained from 

these methods are not very accurate and often neglects the ground truth.  Thus, it is 

indispensable to uncover an innovative method to gauge and validate the proposed 

method of tumour volume calculation. 

 

 

In short, cancer is considered as the disease of the century.  Despite the 

introduction of various methods and calculations the accurate determination of the 

tumour volume remains unsuccessful and many obstacles still exist that does not 

allow the full recovery.  Moreover, overcoming the uncertainty of these methods in 

determining the actual volume, the brain tumour shape and the errors in drug dose 

calculations that lead to wrong dose (over or under) which would finally lead to 

jeopardizing the human life remain the future challenges.  These performance 

limitations necessitate continued research efforts to mitigate the identified 

challenges. 

 

 

In view of the above rationale, present thesis posed the following research 

questions to provide solutions to the challenges regarding abnormality detection of 
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MRI slices, brain tumour segmentation, 3D visualization and volume calculation of 

brain tumour and finally the creation of a new ground truth.  

 

 

The main issues are how to detect, segment, visualise, and calculate the 

volume of the brain tumour in MR images with a high reliability? 

 

 

The specific research questions that need to be answered are:  

 

i) Is it possible to determine brain abnormality accurately?   

ii) How to develop a new method to overcome the earlier limitations associated 

with MRI images brain tumour detection, segmentation, visualization, and 

volume calculation?   

iii) Can the proposed method perfectly segment the brain tumour in MRI 

images?      

iv) Does the new method capable to extract suitable features from the abnormal 

cerebral tissues which can be used to represent the brain tumour(s) in the 

MR images? 

v) How to determine the brain tumour(s) volume accurately using the extracted 

features?  

vi) Is it possible to represent and visualize the brain tumour in a 3D 

presentation?  

vii) How accurate and reliable the 3D visualization and computed volume of a 

brain tumour? 

viii) How to validate and evaluate the 3D visualization and computed volume of 

a brain tumour? 

ix) How to create a new ground truth for reliable assessment and 

implementation of the proposed methods? 
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1.4 Problem Statements 

 

 

It is an urgent necessity to build an understanding on the brain tumour 

detection and subsequent analyses with systematic processing steps, including 

abnormality detection in MRI slices, segmentation, 3D visualization and volume 

calculation of brain tumour.  Despite numerous available methods satisfactory results 

on brain tumour detection and segmentation are far from being acquired.  

Consequently, surgery and diagnostics remain a dispute.  Different approaches are 

proposed for the all previous processing steps. In addition, creation of a new ground 

truth is mandatory.  The entire brain tumour detection scheme mainly depends upon 

appropriate preprocessing methods in terms of accuracy and reliability.  A new fully 

automatic detection system for brain tumour need to be introduced by taking the 

following views of the latest developments:  

 

1. Clinically, detection of MRI brain slices’ abnormality is painstaking, 

voluminous and time-consuming (Singh and Kaur 2012; Kumari 2013; 

Salankar and Bora 2014).  This is due to two main reasons: (1) homogeneity 

between healthy tissues and cancerous cells, which is very difficult to 

distinguish even by naked eyes, let alone the machines and, (2) large number 

of slices involved during the examination - the figure varies whose relies on 

the type and severity of illnesses (Selvaraj et al. 2007; Abdullah et al. 2011; 

Salankar and Bora 2014).  Thus, many attempts are made to automate the 

process.  However, its performance is rather less impressive and room for 

improvement is still wide open.  Besides, another pressing issue is to localize 

a tumour or cancerous cell found in the abnormal slice, automatically, which 

is never being of research interest thus far.  Therefore, an effective solution 

for the above problems not only would equip the doctor with the state of the 

art, but would also ensure a successful implementation of subsequent 

procedures, including segmentation, visualization, and volume estimation of 

tumours in a more precise manner. 

 

2. Definitely, the brain tumours segmentation in MRI is a challenging and 

difficult task (Elaiza et al. 2011b; Hamamci and Unal 2012; Weizman et al. 
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2014) because of the variety of possible shapes, locations, and image 

intensities.  The pathology identification, detection of the disease and 

comparison between normal and abnormal tissues require assorted 

mathematical algorithms for features extraction, modeling, and measurement 

in the images.  Lately, several useful segmentation algorithms were proposed 

(Moon et al. 2002; Zacharaki et al. 2008; Farmaki et al. 2010).  However, due 

to the nature of tumour, the accuracy of the algorithms is far from satisfactory 

(Dass and Devi 2012; Shin 2012; Roy et al. 2013). 

 

3. Another pressing issue on tumour treatment is accurate 3D visualization of 

the tumour.  However, research interest in this area is very limited (Wu et al. 

2008; Lee 2009; González-Navarro et al. 2012; Wakchaure et al. 2014).  

Unfortunately, the accuracy of their works is challengeable due to the absence 

of the ground truth to validate their results (Wakchaure et al. 2014).  Also, 

most of the tumour shapes generated by the methods are far from satisfactory 

because they only provide gross shape of the tumour, let alone to distinguish 

between the healthy tissues and cancerous tissues (Wakchaure et al. 2014).  

 

4. In the cancer treatment, the tumour volume plays a significant role in 

determining the recommended therapy (Shi et al. 1998; Nelson 2001; Dubey 

et al. 2009; Shally and Chitharanjan 2013; Mehmood et al. 2013).  In spite of 

several methods for tumour volume calculation such as Meshing Point 

Clouds, Frustum Model, Trace Method and Modified MacDonald (MMC) the 

detection accuracy and reliability remains debatable due to the absence of the 

ground truth to validate the findings (Lau et al. 2005; Shally and Chitharanjan 

2013).  Actually, these methods fail to determine the actual size of the tumour 

(Shally and Chitharanjan 2013).  Therefore, a precise volume calculation 

method is required to overcome these drawbacks.    

 

5. For any scientific research, it is obligatory to have a ground truth so that the 

work can be validated (Salman et al. 2005; Quinn et al. 2013; Weizman et al. 

2014). Regarding the 3D visualisation and volume calculation of MRI brain 

tumour, to the best of the author's knowledge, there is no ground truth 

available thus far.   
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1.5 Research Goal 

 

 

The goal of this thesis is to develop a new MRI brain tumour detection 

system, which includes brain tumour detection, segmentation, 3D visualisation and 

volume calculation, with a higher degree of accuracy than the existing one. 

 

 

 

 

1.6 Objectives of the Study 

 

 

In order to achieve the above mentioned goal, the following objectives need 

to be accomplished: 

 

1. To detect the abnormal slices of the MR brain images.  

2. To propose a new segmentation technique using the Slantlet Transform 

(SLT) that can precisely localise the brain tumour from cerebral tissues. 

3. To develop new techniques for 3D visualization and volume calculation 

of the brain tumour based on the Alpha (α) shape theory.  

4. To create two ground truth s for 3D visualisation and volume calculation 

of MRI brain tumour, respectively. 

 

 

 

 

1.7 Research Scope 

 

 

This study is a synthesis of a complete process of the previous works.  A 

novel approach to MR image classification into normal and abnormal MRI slices and 

segmentation of the brain tumour will be developed.  Finally, it will provide a full 

automatic system for 3D visualization and volume calculation of human brain 
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tumour.  Computer experiments will be performed to test the proposed system on 

three standard datasets.  The first two datasets are obtained from the Internet Brain 

Segmentation Repository (IBSR) created by the Center for Morphometric Analysis, 

Massachusetts General Hospital (USA), named IBSR (10Normals_T1) without any 

brain tumour and IBSR (536_T1) with brain tumours.  They are used by several 

researchers for brain tumour detection worldwide.  The third dataset called challenge 

MICCAI (BRATS2012-BRATS-1).  The Multimodal Brain Tumour Segmentation 

(BRATS) challenge was the 15th international conference on Medical Image 

Computing and Computer Assisted Intervention (MICCAI 2012) held in France 

(2012).  This datasets provides a large number of brain tumour MRI scans in which 

the brain tumour regions have been manually delineated. 

 

 

This study will mainly focus on T1-weighted High-Grade (HG) brain tumour 

in three planes (axial, coronal, and sagittal plane) for MR image segmentation, 3D 

visualization and volume calculation of elevated category.  However, the Low-Grade 

(LG) tumour and tumour classification either benign or malignant are beyond the 

scope of the present thesis.  In addition, another MRI pulse sequences such as T2-

weighted, PD-weighted (Proton Density), and Fluid-Attenuated Inversion-Recovery 

(FLAIR) are not within the scope. 

 

 

 

 

1.8 Significance of the Study 

 

 

The aforesaid diagnosis errors developed, the reason to form the foundation 

for the work presented here.  It is strongly believed that complete automatic brain 

tumour detection system can improve both the false positive and the false negative 

diagnosis rates.  The motivation of conducting this PhD study is to propose state-of-

the-art, optimized and innovative techniques for the brain tumour detection.  

Proposed techniques should be capable to provide promising performance in an 

undesirable situation such as separating the MRI slices into normal and abnormal, 
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precise segmentation for the brain tumour by reducing segmentation error, resolve 

problems associated with tumour volume calculation, and visualize the brain tumour 

in 3D shape, and give a new way to create a new ground truth.  In light of the above 

mentioned issues, the results of this research will contribute to what is currently 

known about brain tumour detection systems.  Nonetheless, the significance of this 

study is not only limited to knowledge enrichment, but also to the development of a 

new method for future implementation and brain tumour diagnosis and cure.    

 

 

 

 

1.9 Thesis Outline  

 

 

This thesis is organized as follows.  The rest of the chapters begin with a brief 

description highlighting the aims of each chapter and ends with a short summary.  

Each chapter is developed to be self-contained, but there exists cohesion among the 

chapters in order to ensure the free flow of presentation and understanding of the 

thesis content.  It should also be borne in mind that mathematical notations and 

definitions are introduced at various points to render a consistency and better 

understanding of the presentation.  

 

 

Chapter 2 provides an in-depth overview of relevant literatures on MR 

images of brain tumour detection, segmentation, 3D visualization, and volume 

calculation.  It is emphasised that the brain tumour in MR images is still an emerging 

research area with very little literatures.  Subsequently, a thorough discussion is 

provided on various approaches used so far in the brain MR image segmentation.  

The limitations of the existing methods and the need to develop a new method for 

detecting abnormal MRI slices, segmentation, visualization and volume calculation 

of brain tumour problems are underscored. 
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Chapter 3 presents a clear roadmap of this study to guide the reader for quick 

grasp of the detailed research framework.  The advantages of using the popular 

dataset in the newly developed methods are emphasized.  The layout of the entire 

research framework, strategies, and procedures are highlighted. 

 

 

Chapter 4 discusses the proposed methods in details.  It covers the cerebral 

tissue extraction, slice abnormality detection, segmentation, 3D visualisation and 

volume calculation of the MRI brain tumour.   

 

 

Chapter 5 provides the experimental results, detailed analyses, and 

discussions.  It explains the qualitative and quantitative measurements that are 

carried out for the performance evaluations and implementation of the method for 

every single phase such as detection of the MRI slices abnormal, segmentation of 

brain tumour, brain tumour 3D visualization and volume calculation.  The qualitative 

measurements are based on visual human inspections, while the quantitative 

measurements are performed using standard approaches.  In addition, every process 

is benchmarked against the best and up-to-date techniques for segmentation and 

volume calculation found in the literature.  

 

 

Chapter 6 concludes by emphasizing the major contributions, significant 

findings, and recommended future directions of the present thesis.  
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