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Mapping of trees plays an important role in modern urban spatial data 

management, as many benefits and applications inherit from this detailed up-to-date data 

sources. Timely and accurate acquisition of information on the condition of urban trees 

serves as a tool for decision makers to better appreciate urban ecosystems and their 

numerous values which are critical to building up strategies for sustainable development. 

The conventional techniques used for extracting trees feature include ground surveying and 

interpretation of the aerial photography. However, these techniques are associated with some 

constraint, such as labour intensive field work and a lot of financial requirement which can 

be overcome by means of integrated LiDAR and digital image datasets. Compared to 

predominant studies on trees extraction mainly in purely forested areas, this study 

concentrates on urban areas, which have a high structural complexity with a multitude of 

different objects.  This study presented a semi-automated approach for extracting urban trees 

from integrated airborne based LiDAR and multispectral digital image datasets over Istanbul 

city of Turkey. The presented approach includes extraction of shadow free vegetation areas 

from digital images using shadow index and NDVI techniques, automated extraction of 3D 

information about vegetation areas from integrated processing of the datasets, extraction of 

tree objects from the vegetation based on various LiDAR attributes and finally, accuracy 

assessment of the extracted trees. The quality measures of this approach reveals that the 

extracted result is 83% complete and 80% correct. The developed algorithms have shown a 

promising result which proved that the integrated datasets is a suitable technology and viable 

source of information for urban trees management. Furthermore, the approach has also 

proved to be an accurate, fast and cost effective technique for estimating and delineating 3D 

information about trees. As a conclusion, therefore, the extracted information provides a 

snapshot of location, and extent of trees in the study area which will be useful to city 

planners and decision makers to understand how much canopy cover exists, identify new 

planting, removal, or reforestation opportunities and what locations have the greatest need or 

potential to maximize benefits of return on investment. It can also help track trends or 

changes to the urban trees over time and inform future management decisions. 
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Pemetaan pokok memainkan peranan yang penting dalam pengurusan data spatial 

bandar moden, kerana banyak manfaat dan aplikasi mewarisi ini terperinci up-to-

date sumber data. Pengambilalihan yang tepat dan maklumat mengenai keadaan 

pokok bandar berfungsi sebagai alat untuk pembuat keputusan untuk lebih 

menghargai ekosistem bandar dan banyak nilai-nilai mereka yang kritikal untuk 

membina strategi untuk pembangunan lestari. Teknik-teknik konvensional 

digunakan untuk mengeluarkan pokok menampilkan termasuk ukur tanah dan 

tafsiran fotografi udara. Walau bagaimanapun, teknik ini dikaitkan dengan 

beberapa kekangan, seperti tenaga kerja yang ramai kerja lapangan dan banyak 

keperluan kewangan yang boleh diatasi dengan cara LiDAR bersepadu dan dataset 

imej digital. Berbanding kajian utama di atas pokok pengekstrakan terutamanya di 

kawasan semata-mata hutan, kajian ini menumpukan kepada kawasan bandar, 

yang mempunyai kerumitan struktur yang tinggi dengan pelbagai objek yang 

berbeza. Kajian ini dibentangkan pendekatan separa automatik untuk 

mengeluarkan pokok bandar dari LiDAR berdasarkan udara bersepadu dan 

multispectral dataset imej digital ke bandar Istanbul Turki. Pendekatan kali ini 

termasuklah pengambilan bayangan kawasan tumbuh-tumbuhan bebas daripada 

imej digital menggunakan indeks bayangan dan teknik NDVI, pengekstrakan 

automatik maklumat 3D mengenai ciri-ciri pokok dari set data bersepadu dan 

akhirnya, penilaian ketepatan pokok diekstrak. Langkah-langkah yang berkualiti 

pendekatan ini mendedahkan bahawa keputusan yang diambil adalah 83% selesai 

dan 80% betul. Algoritma maju telah menunjukkan hasil memberangsangkan yang 

membuktikan bahawa dataset bersepadu adalah teknologi yang sesuai dan sumber 

yang berdaya maju maklumat untuk pengurusan pokok bandar. Tambahan pula, 

pendekatan ini juga telah terbukti menjadi satu, teknik tepat cepat dan kos efektif 

untuk menganggarkan dan menggariskan maklumat 3D mengenai pokok. 

Kesimpulannya, oleh itu, maklumat yang diekstrak menyediakan gambar lokasi, 

dan tahap pokok di kawasan kajian yang akan berguna untuk perancang bandar 

dan pembuat keputusan untuk memahami berapa banyak perlindungan kanopi 

wujud, mengenal pasti peluang penanaman, penyingkiran, atau penanaman semula 

hutan baru dan apa lokasi mempunyai keperluan atau potensi besar untuk 

memaksimumkan manfaat pulangan ke atas pelaburan. Ia juga boleh membantu 

trend trek atau perubahan kepada pokok bandar dari semasa ke semasa dan 

memaklumkan keputusan pengurusan masa depan. 
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INTRODUCTION 

1.1 Background of the Study 

Urban trees have many advantages such as preserving energy, improving 

water quality, minimizing greenhouse gasses and many other environmental 

pollutants, as well as connecting urban dwellers with nature (McPherson, 2006). To 

exploit these benefits, information about location, composition and extent of urban 

trees is often needed for planning and management purposes. This information can 

be employed for a different type of analysis, like vegetation growth tracking or 

monitoring, appraisal of tree condition, etc. Urban forests stand for a reasonable 

fiscal expenditure for cities. In spite of efforts and capital spent on the conservation 

of trees, many cities often do not have an all-inclusive information on their 

conditions. In order to realize numerous economic, environmental and sustainable 

decision-making processes, accurate, up-to-date and in-depth information on spatial 

distributions, extents and health conditions of urban ecosystem is necessary. 

Accurate techniques for locating and mapping trees help city planners and decision 

makers to understand how much canopy cover exists; identify new planting, removal, 

or reforestation opportunities and what locations have the greatest need or potential 

to maximize benefits of return on investment. It can also help track trends or changes 

to the urban trees over time and inform future management decisions. 

Conventionally, this information is obtained through field surveying methods which 

are highly expensive, laborious (tedious), time-consuming and usually cannot be 
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carry out over large areas. In addition, field surveying can only be carried out in 

areas reachable by the surveyors with insufficient or no data obtained in restricted 

properties and other unreachable areas. It is not easy, if not impossible, to generate 

information about urban trees for the whole city through field surveying. Therefore, 

somewhat insufficient information is obtainable about trees in many cities around the 

world, which is a major limitation for actualizing their benefits (Zhang, and Qiu, 

2012). 

Advancements in remote sensing tools have introduced laser technology 

which bridges the gap of satellite imagery inability to pass through the trees canopy. 

The technology accords distinctive advantages for management of urban natural 

resources. In spite of the existing usage of high-resolution satellite and airborne 

remote sensing data, LiDAR as a remote sensing technology, is a preference tool, 

which presents a promising potentiality for mapping and studying urban forests 

(Plowright, 2015). This is achievable with an accurate, intense and 3D mapping of 

natural resources which offers cost effective information especially, over a very large 

spatial scale in order to enhance performance in operations and decision-making 

processes. Light Detection And Ranging (LiDAR) is an evolving technology which 

has the ability to generating a well-defined 3D representation of ground surface over 

wide spatial scales. The distance between LiDAR sensor and terrain features can be 

measured with a very high degree of accuracy by estimating the time taken by the 

laser pulse to travel from laser instrument and then return after being reflected from 

terrain feature. The capability of LiDAR to pass through vegetation has attracted 

remarkable concern from the field of natural resources management (Hudak, et al. 

2009). From a forest management standpoint, LiDAR has been used to define 

information about trees (Coops, et al., 2007), measure carbon stocks (Patenaude, et 

al., 2004), compute fuel quantity (Seielstad and Queen, 2003) and create habitat 

models (Vierling, et al, 2008), develop forest inventories (Woods, et al. 2008). 

Contemporary LiDAR systems have the ability to obtained intensive data which can 

identify and measure discrete trees. Even though considerable research has been 

carried out regarding LiDAR applications in forestry, its usage in the study of urban 

trees has been limited. As LiDAR applications in urban trees mapping expand, 

therefore, automated approach for tree detection technique is most likely to increase. 
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However, LiDAR systems have no band which makes it insufficient for 

vegetation classification, especially in urban forests with diverse species and high 

spatial heterogeneity. Digital multispectral imagine, usually possesses many distinct 

bands, therefore, exhibit a great potential in identifying and mapping tree feature 

with their rich spectral contents. The integrated digital image and LiDAR datasets 

possess huge potential in mapping urban trees. Further information can be obtained 

from the fusion of features derived from LiDAR and data from other sensors such as 

digital images. Therefore, data products which are highly information-rich can be 

created (Flood, 2002). Airborne LiDAR data and digital imagery are highly 

complementary, the images can validate the filtering accuracy while the elevation 

information from LiDAR can be used to ortho-rectify images datasets (Flood, 2002). 

Highly dense LiDAR data with multiple returns per square meter would be 

overwhelming for tree crown depiction and for determination of crown shape while 

image spectral properties can be used to differentiate tree objects (Holmgren, et al. 

2008). It is assumed that both data sources concurrently will be more successful for 

trees detection in contrast with any of them alone. Thus, both high-resolution LiDAR 

data and multispectral images allow for evolving of new techniques for vegetation 

detection and classification (Holmgren, et al. 2008). 

Therefore, it is suffices to note that integrated airborne based multispectral 

digital image and LiDAR point cloud datasets are suitable technology and viable 

source of information for city managers to analyse, evaluate, enhance urban 

landscape patterns and gain a better understanding of the current composition, 

location, extent, status and structures of trees in an urban areas. 

1.2 Problem Statement 

Climate change possesses a fundamental threat to the atmosphere, 

ecosystem, and humanity. Human being and animals face new challenges for 
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survival because of climate change. For instance, more frequent and intense drought, 

storms, heat waves, rising sea levels, melting glaciers, intense rainfalls, and warming 

oceans can directly harm animals, destroy the environment they live, and wreak 

havoc on humans livelihood and communities. Scientists around the world have 

reached an overwhelming consensus that climate change is real and caused primarily 

by human activity. Respected scientific organizations such as the National Academy 

of Science, the Intergovernmental Panel on Climate Change (IPCC) and World 

Meteorological Association (WMA) have all identified climate change as an urgent 

threat caused by humans that must be addressed.  

Greenhouses gases, such as carbon dioxide, trap heat in the atmosphere and 

regulate our climate. These gases exist naturally, but human add more carbon dioxide 

by burning fossil fuels for energy (coal, oil, and natural gas) and by clearing forests. 

Burning fossil fuels, such as coal, oil, and natural gas, to generate energy has the 

greatest impact on the atmosphere than any other single human activity. Globally, 

power generation is responsible for about 23 billion tons of CO2 emissions per year, 

in excess of 700 tons every second. Coal is especially damaging our atmosphere, 

releasing 70% more carbon dioxide than natural gas for every unit of energy 

produced (Inter-governmental Panel on Climate Change IPCC). Greenhouse gases 

act like a blanket. The thicker the blanket, the warmer our planet becomes. At the 

same time, oceans are also absorbing some of this extra carbon dioxide, making them 

more acidic and less hospitable to sea life. As climate change worsens, dangerous 

weather events are becoming more frequent and severe around the globe. Inhabitants 

of cities and other places around the world are battling with the effect of climate 

change, from heat waves and wildfires to coastal storms and flooding. The need for 

urgent action to address climate change is now indisputable. Thus, the issue of 

addressing local climate threats has become a major challenge for city planners.  

These can be achieved by implementing practical measures that improve air quality, 

protect water supplies and reduce urban flooding. These include; transition toward 

100 percent renewable energy and effective management of natural resources such as 

managing trees in urban areas and other parts of our environment, through timely and 

accurate acquisition of information on the status, composition, location, extent and 
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structural change of urban forest in order to develop strategies for sustainable 

development and improve urban environments (Song, 2005; Yang, et al., 2012). 

The conventional techniques used for extracting individual trees feature 

include ground surveying (field inventory) and interpretation of aerial photography. 

However, these techniques are associated with some constraint such as labour 

intensive field work and a lot of financial requirement which can be overcome by 

means of airborne LiDAR (Lang, et al. 2006) and very high resolution digital image 

datasets. Field surveying generally requires a lot of labour, time and limited by 

geographical accessibility (Lee, et. al. 2009). Aerial photography does not directly 

provide 3D information of trees structure (Chen, et al. 2006) and is easily influenced 

by weather condition and topographical covers (Chen, et al. 2005).  

Advancements in remote sensing tools have introduced laser technology 

which bridges the gap of satellite imagery inability to pass through the trees canopy. 

This permits fast, cost effective, dense and accurate measurements of underneath 

trees structure especially, over a very large spatial scale (Rahman, et al. 2015). 

LiDAR has been found to be useful in the surveying of coniferous urban vegetation 

(Popescu, et. al. 2007). It has also found to be useful in mapping individual tree 

stands with more accurate and detailed attributes estimation especially in urban areas 

which consists of trees of different species, height and health condition (Koch, 2006). 

The ground-based LiDAR has the ability to acquire a detailed 3D measurement of 

the tree structure. However, it can only be effective over small geographical extent. 

Therefore, it suffices to note that integration of airborne LiDAR and multispectral 

imagery datasets have a great potential to supersede conventional field surveying, as 

the marrying of two dataset sources is not only capable of extracting individual trees 

and measuring their metrics but also defining their species types. 
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1.3 Aim and Objectives  

The aim of this research is to extract urban trees from integrated airborne 

based digital image and LIDAR points cloud datasets. In order to achieve the aim of 

this research, four objectives have been identified as follows: 

 To extract shadow free vegetation area from the digital image. 

 To extract 3D information about vegetation areas from integrated processing 

of shadow free vegetation areas image and LiDAR point cloud datasets.  

 To classify the vegetation features. 

 To assess accuracy of extracted tree features in order to establish the utility of 

developed approach. 

1.4 Research Question 

 How multispectral information from the digital image can be utilized to 

extract shadow free vegetation areas? 

 How the integration of LIDAR and digital image can be useful to estimate 

3D-information about vegetation areas? 

 Which LIDAR attribute can be used to classify the vegetation? 

 How the accuracy of extracted trees can be assessed? 
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1.5 Scope of Study 

The scope of this research covers detection, extraction and classification of 

urban vegetation features, based on integration use of various attributes of the 

datasets. This will be achieved using GIS software tools (i.e. ArcGIS and ERDAS 

imagine) and programming tool (i.e. Python). 

For the fulfilment of above objectives, the present study will be carried out 

over Istanbul city of Turkey with a geographical extent of 41.0151370 Latitude and 

28.9795300 Longitude. 

1.6 Significances of the Study 

Information about urban trees provides a means for city planners to better 

understand trees resources in an urban environment and their numerous values. 

However, techniques used to evaluate urban trees resources and their possible 

impacts on the environment have been less explored. Surveying and mapping 

techniques aid in working out and remodelling environmental policies. They offer 

data for eventual incorporation of trees in environmental regulation studies, 

determine how trees affect the urban environment and accordingly enhance 

environmental quality in urban areas for human health (Jawak, et al. 2013). Urban 

Tree Canopy (UTC) is an important asset in the urban ecological system as it can 

reduce the atmospheric heat, runoff and refining atmospheric air condition.  

Information about existing urban tree canopy serves as a tool for decision makers to 

better appreciate urban ecosystems and design a number of conservation projects. 

Furthermore, apt and accurate acquisition of information on the condition, spatial 

distribution, extent, composition and structural change of urban trees is critical to 
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building up strategies for sustainable development and improve urban ecosystem 

(Song, 2005; Yang, et al., 2012).  

One of the remarkable and promising means to lessen the negative effect of 

urban growth and its implications is by means of managing trees in urban areas. They 

are considered as fundamental elements to improve the living conditions of the urban 

dwellers and to diminish polluting impact as a result of human activities (Song, 

2005; Yang, 2012). Trees and green areas help in purifying the atmospheric air by 

removing pollutants during the transpiration process. They can minimize the issues 

of urban heat island such as lowering the temperatures by means of transpiration and 

heat absorption (Pu and Landry, 2012; Weng, et al., 2004).  A growing interest has 

been observed among city planners and stakeholders for a better control and planning 

of planting and conservation of urban trees. In order to make this effective, the 

current state of urban trees is required to be mapped using a better approach which is 

less tedious, cost effective and time saving. Therefore, this research will provide 

urban planners and decision makers with an innovative method to analyses, evaluate, 

enhance urban landscape patterns and gain a better understanding of the current 

composition, spatial distribution, status, extent and structure of trees in urban areas. 

The extracted information will provide a snapshot of the current composition, spatial 

distribution, extent and health status of an urban tree which will be useful to city 

planners to understand how much canopy cover exists, identify new planting, 

removal, or reforestation opportunities and what locations have the greatest need or 

potential to maximize benefits of return on investment. It can also help track trends 

or changes to the urban trees over time and inform future management decisions. 

1.7 Chapter organization 

This research study includes five chapters, namely; introduction, literature 

review, methodology, results and analysis and conclusion and recommendations. 
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Chapter 1: This chapter comprises background of the study, problem 

statement, aim and objectives, research questions, scope of the study and significance 

of the study. 

Chapter 2: in this chapter, literatures related to the study were reviewed. 

These include theoretical concept of LiDAR, trees inventory, benefit of LiDAR in 

trees inventory LiDAR applications in trees inventory, detection and extraction of 

trees features, vegetation index, integration of airborne digital image and LiDAR 

datasets and finally, urban trees classification. 

Chapter 3: This chapter comprises the general research strategy that outlines 

the concepts, tools and procedure in which the research task is to be undertaken and, 

among other things describes the study area and datasets used. 

Chapter 4: This chapter exploits and interprets results from analysis of the 

research findings based on the research methodology established in the previous 

chapter and also in accordance with the research objectives as stipulated in 

this study. 

Chapter 5: This chapter comprises summary conclusion, recommendations 

and challenges faced during the study.
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