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ABSTRACT 

Cross-lingual sentiment classification aims to utilize annotated sentiment 
resources in one language for text sentiment classification in another language. 
Automatic machine translation services are the most commonly used tools to directly 
project information from one language into another. However, different term 
distribution between translated and original documents, translation errors and different 
intrinsic structure of documents in various languages are the problems that lead to low 
performance in sentiment classification.  Furthermore, due to the existence of different 
linguistic terms in different languages, translated documents cannot cover all 
vocabularies which exist in the original documents. The aim of this thesis is to propose 
an enhanced framework for cross-lingual sentiment classification to overcome all the 
aforementioned problems in order to improve the classification performance. 
Combination of active learning and semi-supervised learning in both single view and 
bi-view frameworks is proposed to incorporate unlabelled data from the target 
language in order to reduce term distribution divergence. Using bi-view documents 
can partially alleviate the negative effects of translation errors. Multi-view semi-
supervised learning is also used to overcome the problem of low term-coverage 
through employing multiple source languages. Features that are extracted from 
multiple source languages can cover more vocabularies from test data and 
consequently, more sentimental terms can be used in the classification process. 
Content similarities of labelled and unlabelled documents are used through graph-
based semi-supervised learning approach to incorporate the structure of documents in 
the target language into the learning process. Performance evaluation performed on 
sentiment data sets in four different languages certifies the effectiveness of the 
proposed approaches in comparison to the well-known baseline classification 
methods. The experiments show that incorporation of unlabelled data from the target 
language can effectively improve the classification performance. Experimental results 
also show that using multiple source languages in the multi-view learning model 
outperforms other methods. The proposed framework is flexible enough to be applied 
on any new language, and therefore, it can be used to develop multilingual sentiment 
analysis systems.
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ABSTRAK 

Klasifikasi sentimen silang bahasa bertujuan untuk menggunakan sumber-
sumber sentimen beranotasi dalam satu bahasa untuk pengelasan sentimen teks dalam 
bahasa lain. Perkhidmatan penterjemahan mesin automatik merupakan alat-alat yang 
paling biasa digunakan untuk pemetaan langsung maklumat daripada satu bahasa 
kepada bahasa yang lain. Walau bagaimanapun, agihan terma yang berbeza antara 
dokumen terjemahan dan asal, kesilapan terjemahan dan struktur intrinsik yang 
berbeza pada dokumen dalam bahasa berbeza adalah masalah yang membawa kepada 
prestasi yang rendah dalam klasifikasi sentimen. Tambahan pula, disebabkan oleh 
kewujudan istilah linguistik yang berbeza dalam pelbagai bahasa, dokumen yang 
diterjemahkan tidak boleh meliputi semua kosa kata yang wujud dalam dokumen asal. 
Tujuan tesis ini adalah untuk mencadangkan rangka kerja yang dipertingkat bagi 
klasifikasi sentimen silang bahasa untuk mengatasi semua masalah yang dinyatakan di 
atas bagi meningkatkan prestasi klasifikasi. Gabungan pembelajaran aktif dan 
pembelajaran separa-selia dalam kedua-dua rangka kerja pandangan tunggal dan dwi-
pandangan telah dicadangkan bagi menggabungkan data tidak dilabel dari bahasa 
sasaran untuk mengurangkan kesan negatif kesilapan terjemahan. Menggunakan 
dokumen dwi-pandangan boleh mengurangkan kesan negatif daripada kesilapan 
terjemahan. Pembelajaran separa-selia pelbagai pandangan juga digunakan untuk 
mengatasi masalah liputan terma yang rendah melalui penggunaan pelbagai bahasa 
sumber. Ciri-ciri yang diekstrak dari pelbagai bahasa sumber boleh meliputi lebih 
banyak perbendaharaan kata dalam data ujian dan membolehkan terma sentimental 
yang lebih banyak digunakan untuk menyumbang dalam proses pengelasan. 
Persamaan kandungan dokumen dilabel dan tidak dilabel digunakan melalui 
pendekatan separa-selia pembelajaran berasaskan graf untuk menggabungkan struktur 
dokumen dalam bahasa sasaran di dalam proses pembelajaran. Penilaian prestasi yang 
telah dijalankan pada set data sentimen dalam empat bahasa berbeza membuktikan 
keberkesanan pendekatan yang dicadangkan berbanding dengan kaedah klasifikasi 
yang terkenal dan asas. Ujikaji menunjukkan bahawa penggabungan data tidak dilabel 
dari bahasa sasaran boleh meningkatkan prestasi klasifikasi dengan berkesan. 
Keputusan ujikaji juga menunjukkan bahawa penggunaan bahasa pelbagai sumber 
dalam model pembelajaran pelbagai pandangan mengatasi prestasi kaedah-kaedah 
lain. Rangka kerja yang dicadangkan adalah cukup anjal untuk digunakan dalam apa-
apa bahasa yang baru dan oleh itu, boleh digunakan untuk membangunkan sistem 
analisis sentiment berbilang bahasa.
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CHAPTER 1 

1INTRODUCTION 

1.1 Overview 

Over the years, surveys have been the main method for answering the question 

“what do people think?”. Careful samplings of the polled population and a 

standardized questionnaire have become the standard ways of learning about large 

groups of people. Recently though, the era of widespread internet access and social 

media has brought a new way of learning about large populations. The advent of 

Web2.0 and social media contents such as online review web sites and personal blogs 

have created several opportunities for understanding the opinions of other people about 

social events, companies, products, news etc.  However, because of the proliferation 

of different web sites, the task of finding and scanning opinion sites on the web and 

summarizing their information has been a very difficult task. We can find a huge 

volume of opinionated text at each site and obviously the task of analysing and 

summarizing this information into a useful format is very difficult. Therefore, an 

automated opinion mining and summarizing system is needed to overcome this 

difficulty. 

Traditional Natural Language Processing (NLP) applications mostly 

concentrate on topical text characterization that deals with the communicated facts and 

objective presentation of the information. In recent years, the natural language 

community has recognized the value in analysing emotions and opinions expressed in 

free text. Opinion mining is the task of having computers automatically extract and 

understand the opinions in a text. 
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Text sentiment classification refers to the task of determining the sentiment 

polarity (e.g. positive or negative) of a given text document (Liu and Zhang, 2012). 

Recently, sentiment classification has received considerable attention in the natural 

language processing research community due to its many useful applications such as 

online product review classification (Kang et al., 2012) and opinion summarization 

(Ku et al., 2006).  

Up until now, different methods have been used for sentiment classification. 

These methods can be categorised into two groups, namely; lexicon-based and 

machine learning based methods. The lexicon-based methods classify text documents 

based on the polarity of words and phrases contained in the text. If a text document 

contains more positive than negative terms, for example, it is classified as positive and 

vice versa (Turney, 2002; Taboada et al., 2011). A sentiment lexicon is always used 

to determine the sentiment polarity of each term. In contrast, machine learning 

methods train a sentiment classifier based on labelled data using some machine 

learning classification algorithms (Pang et al., 2002; Moraes et al., 2013). The 

performance of these methods depends intensively on both the quality and quantity of 

labelled data as the training set for the sentiment classifier. Based on these two groups 

of methods, sentiment lexicons and annotated sentiment data can be seen as the most 

important resources for sentiment classification. 

Although, this area is under consideration from the last decade for English 

language (Pang et al., 2002; Turney, 2002), unfortunately, other languages are 

relatively ignored by the research communities. This has led to a scarcity of labelled 

corpus and sentiment lexicons in other languages (Wan, 2011; Martín-Valdivia et al., 

2013). Further, manual construction of reliable sentiment resources is a very difficult 

and time-consuming task. Therefore, the challenge is how to utilize labelled sentiment 

resources in one language (a resource-rich language such as English is always called 

the source language) for sentiment classification in another language (a resource-

scarce language is called the target language). This subsequently leads to an interesting 

area of research called cross-lingual sentiment classification (CLSC). 
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The most direct solution to this problem is the use of machine translation 

systems to directly project the information of data from one language into another 

(Banea et al., 2008; Wan, 2011; Martín-Valdivia et al., 2013; Balahur and Turchi, 

2014). However, because the training set and the test set come from two different 

languages having differing linguistic terms and writing styles, as well as originating 

from different cultures with various people interests, these methods cannot attain the 

performance results of monolingual sentiment classification methods in which the 

training and test samples are from the same language.  

Due to this problem, numerous researchers try to find reliable techniques for 

cross-lingual sentiment classification. Different term distribution in the original and 

translated text, translation errors in the resource projection stage and different writing 

styles and document structures in different languages are some of serious problems 

which researchers were confronted with. 

To overcome these problems, making use of unlabelled data from the target 

language can be helpful, since this type of data is always easy to obtain and has the 

same term distribution, same writing style, and same structure as the target language 

data. Therefore, employing unlabelled data from the target language in the learning 

process is expected to result in better classification performance in CLSC. This is the 

main idea behind all proposed approaches in this study. Active learning (AL) (Wang 

et al., 2012) and semi-supervised learning (SSL) (Ortigosa-Hernández et al., 2012) are 

two well-known techniques that make use of unlabelled data to improve classification 

performance. Both techniques are iterative processes. AL aims to reduce manual 

labelling efforts by finding the most informative examples for human labelling, while 

SSL tries to automatically label examples from unlabelled data in each cycle. Various 

types of semi-supervised learning models are proposed to overcome the 

aforementioned problems in this study.In this research, semi-supervised learning and 

active learning are utilized in order to incorporate unlabelled data from the target 

language and several classification models are proposed based on these approachs.  
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1.2 Background of the problem 

User generated reviews are very important in business, e-commerce and 

education, since they consist of valuable opinions produced from user experiences. For 

example, in e-commerce sites, a product quality can be assessed by reading customer’s 

reviews about the product. It can help customers to decide whether to select the product 

or not and it can help companies as well to evaluate their products.  

Sentiment classification dates back to the early 2000’s. There are two early 

works trying this task reported by Pang et al. (2002) and Turney (2002).  Two different 

approaches were introduced in these two studies. The first paper used machine learning 

(or supervised) approach (Pang et al., 2002)  and the other one exploited a lexicon-

based method (Turney, 2002). Supervised approaches rely on a large set of labelled 

data to train a classifier and then use this classifier to estimate the polarity label of 

unlabelled test data. Most of the existing studies locate sentiment classification as a 

supervised classification problem (Pang et al., 2002; Riloff et al., 2006; Prabowo and 

Thelwall, 2009; Ye et al., 2009; Zhang et al., 2011; Kang et al., 2012).  In supervised 

methods, some researchers considered different feature sets and various feature 

selection techniques to increase the performance of sentiment classification. The Bag 

of words (BOW) approach is the most popular techniques for text representation in 

sentiment classification (Pang et al., 2002; Wang et al., 2014).  The main disadvantage 

of supervised methods is that it is very hard to prepare and annotate a large amount of 

labelled training data.  

In parallel, several works have been performed in this area by using sentiment 

lexicons to classify documents according their sentiment.  All of these works try to 

calculate the sentiment orientation of words in a document by using a dictionary or by 

exploiting a search engine to calculate the association of words with a known polarity 

seed set (Turney, 2002; Harb et al., 2008; Taboada et al., 2011). These types of works 

are considered as lexicon-based methods and are strongly dependent on sentiment 

lexicons. 
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 The labelled corpus and sentiment lexicons are the most important resources 

for sentiment classification task. Since most recent research studies in sentiment 

classification have been performed in some limited number of languages, there are an 

insufficient number of annotated corpus and sentiment lexicon in other languages.  

Recently some researchers focus on cross-lingual sentiment classification, which tries 

to use sentiment resources in one language for sentiment classification in other 

languages.   

Most approaches focused on resource projection from one language (always 

English) to another language with few sentiment resources and then used machine 

learning approach for sentiment classification, based on the projected resources. For 

example in (Banea et al., 2008; Banea et al., 2010), automatic machine translation 

engines were used to translate the English resources for subjectivity classification and 

then machine learning approaches were employed for classification based on translated 

corpora as training data.  In some other works, resource translation was employed to 

compensate for the lack of training data in supervised sentiment classification in 

languages other than English (Dasgupta and Ng, 2009; Wan, 2009; Zhao et al., 2010; 

Wan, 2011).  Most existing works in this area have used machine translation systems 

to translate labelled training data from the source language into the target language and 

perform sentiment classification in the target language (Banea et al., 2010; Balahur 

and Turchi, 2014). Some other researchers have employed machine translation in the 

opposite direction so as to translate unlabelled test data from the target language into 

the source language and performed the classification in the source language 

(Prettenhofer and Stein, 2010; Martín-Valdivia et al., 2013). Although machine 

translation is a reasonable tool for resource projection in the field of sentiment 

classification, working with translated data implies an increasing number of features, 

sparseness, and noise in datasets.  

Another approach is that of feature translation, which involves translating the 

features extracted from labelled documents (Shi et al., 2010; Moh and Zhang, 2012). 

The features, selected by a feature selection technique, are translated into different 

languages. Subsequently, based on those translated features, a new model is trained 

for each language. This approach only needs a bilingual dictionary to translate the 
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selected features. However, it can suffer from the inaccuracies of dictionary 

translation, in that words may have different meanings in different contexts. 

Additionally, selecting the features to be translated can be an intricate process. 

Some other researchers tries to overcome the problem of CLSC through 

domain adaptation techniques (Prettenhofer and Stein, 2010; Wei and Pal, 2010).  

They adapted Structural Correspondence Learning (SCL) (Blitzer et al., 2006) to use 

unlabelled data and a word translation oracle to induce correspondence among the 

words from both the source and target languages. However, translation errors and 

different document structures between two languages have been ignored in these 

studies.  

The previous studies exhibit that relying only on translated resources cannot 

produce satisfactory result in cross-lingual sentiment classification, because the 

machine translation engines are still far from satisfactory.  Even if the machine 

translation do well, it might have a systematic bias (Duh et al., 2011). For example, 

the word “awesome” might be common in English reviews but when a non-English 

review translate to English, the work “excellent” may be generated instead. From the 

translation perspective, this is a correct translation but from classifier perspective, 

there is a domain mismatch due to differences in word distribution. Therefore, 

researchers try to overcome these limitations in different frameworks. 

In recent studies, researchers employed semi-supervised learning to improve 

the accuracy of cross-lingual sentiment classification. In Wan (2011), two different 

views were used by exploiting semi-supervised co-training approach to classify 

Chinese review documents by using English training documents.  Because the 

examples with the highest confidence are selected to add to the training data in each 

step of co-training and these examples are not necessarily the most informative ones, 

the improvement in the accuracy of this model is very limited. Additionally, when the 

initial classifiers in each view are not good enough, there will be an increased 

probability of adding examples having incorrect labels to the training set. Therefore, 

the addition of noisy examples not only cannot increase the accuracy of the learning 

model, but will also gradually decrease the performance of each classifier.  
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Although recent research works have tried to overcome some problems in 

resource projection and sentiment classification in CLSC, there are still several 

research gaps in this research area, which have not been considered in the literature. 

These gaps can be summarized as considering translation errors and information loss 

during the resource projection process, the problem of low vocabularies coverage and 

creation of sparseness in data representation of text documents in the target language 

and considering different intrinsic structures of text documents in the source and target 

languages.  

Taking into account the existing gaps, this research aims to deal with the 

problems of cross-lingual sentiment classification under the semi-supervised learning 

strategy. Unlabelled documents from the target language are employed in the learning 

process of CLSC using semi-supervised learning approaches in order to narrow down 

the gaps between the training and test data. These unlabelled documents are always 

easy to obtain and have the same characteristics with the test documents. Therefore, 

employing unlabelled documents from the target language is expected to result in 

better classification performance in CLSC. Various types of semi-supervised learning 

models are proposed to overcome the aforementioned problems in this study.  

1.3 Problem statement 

In this study, we intend to overcome the problem of cross-lingual sentiment 

classification.  This problem can be defined as follow: 

Suppose we have two different languages: source language and target language 

and two different document sets: { }1 2, ,...,
s

S S S S
nL d d d=  denotes the labelled text 

document set in the source language and { }1 2, ,...,
t

T T T T
nU d d d=  denotes the unlabelled 

text document set in the target language, where sn  and tn  are the number of 

documents in the source language dataset and the target language dataset respectively. 

Let { }1 2, ,...,
s

S S S S
nY y y y=   denotes the label set of text documents in the source 
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language that 1S
iy = +  if the overall sentiment expressed in text document S

id  is 

positive, while 1S
iy = −  if the overall sentiment expressed in text document S

id  is 

negative.  Given labelled examples ( , )S S
i id y in the source language and unlabelled 

examples ( ,?)T
id  in the target language, the problem of CLSC is to train a model, in 

order to predict unknown labels of T
id   in the target language by leveraging on 

labelled examples in the source language. We can use machine translation services to 

fill the language gap by translating the labelled data from the source language into the 

target or translating the unlabeled data from the target language into the source.  

However, using translated data leads the existing classification models to be 

confronted by new problems as follows: 

1.3.1  Different term distribution in the source and the target languages 

The first problem is the difference in term distribution between the original and 

the translated text documents due to the dissimilarity in cultures, writing styles and 

also linguistic expressions in various languages. It means that a term may be frequently 

used in one language to express an opinion while the translation of that term is rarely 

used in another language. This problem leads to create different feature distribution 

between training and test data. Therefore, a classifier, which trains based on the 

training text documents from the source language, cannot perform well on the test 

documents in the target language. Incorporating unlabelled data from the target 

language into the learning process can reduce feature distribution divergence.  

1.3.2  Information loss and translation errors in resource projection 

Because machine translation quality is still far from satisfactory, there are 

several translation errors in resource projection process, which leads to decrease the 

quality of projected data and loss some critical information. These errors may even 

change the sentiment polarity of an opinionated text document. Therefore, applying 
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monolingual sentiment classification techniques directly on the erroneous translation 

of training or test documents may seriously decrease the sentiment classification 

performance. 

1.3.3  Low coverage of the target language terms by the features extracted from 

the source language text documents 

Because the training data and test data come from two different languages 

having differing linguistic terms, features extracted from text documents of the source 

language cannot cover all the vocabularies contained in the text documents of the 

target language. Consequently, several sentimental words may be ignored when 

documents in the target language are represented based on the extracted features. This 

problem also leads to create sparseness in data representation in the target language 

and consequently decrease the performance of sentiment classification. 

1.3.4  Different intrinsic structure of text documents in various languages 

Due to the discrepancy in writing style and linguistic terms in various 

languages, the intrinsic structures of documents in different languages are dissimilar. 

As a result, the classifier trained based on the training data in one language cannot 

perform well in another language with different intrinsic structure. In fact, ignoring the 

intrinsic manifold structure of documents in the target language can degrade the 

classification performance in CLSC.  

1.4 Research question 

This study aims to overcome the aforementioned problems by exploiting 

unlabelled documents from the target language into the classification process. 

Considering these problems, the main research question of this study is: 

 



10 

“How to improve the performance of cross-lingual sentiment 

classification through incorporating information of unlabelled data 

from the target language into the learning process?” 

In order to answer the main question, the following research questions that 

address the problem in detail are defined: 

(i) How to effectively exploit unlabelled documents from the target 

language into the learning process of cross-lingual sentiment 

classification in order to improve the classification performance? 

(ii) How to alleviate the destructive effects of translation errors in cross-

lingual resource projection?  

(iii) How can the use of labelled data from multiple source languages 

improve the performance of cross-lingual sentiment classification? 

(iv) How to involve the intrinsic structure of document in the target 

language into the learning process of cross-lingual sentiment classifier? 

1.5 Research goal 

The aim of the research is to propose an enhanced cross-lingual sentiment 

classification framework in which the aforementioned problems are considered in 

order to improve the classification performance. By addressing the existing problems 

in previous works, the research strives to design and develop learning models into the 

above-mentioned framework which fill the gaps between the training and test 

documents in the source and target languages with the ultimate goal of improving the 

performance of CLSC.  
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1.6 Research objectives 

In order to achieve the research goal, several research objectives have been 

identified and listed as follows: 

(i) To propose a learning model based on the combination of semi-

supervised learning and active learning to effectively utilize unlabelled 

documents into the learning process of cross-lingual sentiment 

classification. 

(ii) To improve the performance of the first proposed model by employing 

bidirectional translation to create bi-view data in order to alleviate the 

destructive effects of translation errors. 

(iii) To propose a multi-view semi-supervised learning model in which 

labelled data from multiple source languages are employed to cover 

more vocabularies from the target language in order to improve the 

performance of cross-lingual sentiment classification.  

(iv) To propose a similarity-based classification model using graph-based 

semi-supervised learning in which the intrinsic structure of documents 

in the target language is considered. 

1.7 Research scopes 

To solve the cross-lingual sentiment classification problem in this research, the 

following constraints are considered:  

(i) This research focuses on classifying book review documents 

(Prettenhofer and Stein, 2010; Pan et al., 2011) based on the overall 
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sentiment orientation of each text document due to the availability of 

this domain in different languages. 

(ii) Machine translation is used as projection tool in this study to translate 

whole text document from one language into another. Google Translate 

engine has been utilized as machine translation service. 

(iii) This research only focuses on increasing the performance of machine 

learning methods in cross-lingual sentiment classification and lexicon-

based approaches will not be considered. 

(iv) In this study, two European and two Asian languages are used as the 

target languages while English is used as the main source language.  

(v) In this study, with the exception for Tokenization tool, it is assumed 

that there are not any NLP tools (i.e. POS tagger or parser) in the target 

language. 

(vi) Content similarity of documents is used as a simple structural similarity 

measure which introduce the intrinsic structure of documents in the 

graph-based method and other methods of introducing intrinsic 

structure (e.g. opinions, methods of expressing sentiment, opinion 

holder characteristics) are not considered in this study.  
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1.8 Significance of the research 

In the past decade, sentiment analysis has become a hot research field and a 

booming industry. For instance, IBM SPSS1 provides quantitative sentiment 

summaries of survey data to assist businesses in understanding consumer attitudes. 

LexisNexis2 compiles consumer confidence and brand perception summaries using 

news media, while OpSec3 also mines user-generated data (social media). Wall Street 

has also started to use sentiment analysis in their trading algorithms with companies 

like OpFine4 providing up-to-date sentiment tracking of financial news. Even several 

major news sources like The Washington Post5 now provide social media statistics on 

popular political figures. 

 As mentioned in (Pang and Lee, 2008), 81% of users in internet have 

performed online search on a product at least once and 73% to 87% of these users 

report that product reviews had a significant influence on their purchase. These 

statistics show that the sentiment classification of reviews is very helpful to customers 

to select appropriate products, which has motivated researchers to pay more attention 

to this area. For this classification task there are several method introduced by 

researchers and most accurate methods are machine learning methods. Unfortunately, 

in many languages, there are not enough annotated sentiment resources to use in 

supervised classification and manual construction of labelled corpus is a very hard and 

time-consuming task.  

On the other hand, in many applications, companies want to analyse and 

compare the opinions of their customers about their services and products in different 

1 http://www-01.ibm.com/software/analytics/spss/ 
2 http://www.lexisnexis.com/risk/data-analytics.aspx 
3http://opsecsecurity.com/brand-protection/online-brand-protection/sentimentanalysis 
4 http://www.opfine.com/ 
5 http://www.washingtonpost.com/politics/mention-machine/ 
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countries with different languages. Therefore, employing new techniques that use 

labelled data in a resource–rich language to train sentiment classifier in a resource-

scarce language is very useful in actual world. Recently, several methods have been 

proposed to solve this problem by using machine translation to translate labelled 

corpus from the source language into the target language or translate unlabelled data 

from the target language into the source language and applying monolingual sentiment 

classification on translated data. Since machine translation quality is still far from 

satisfactory, applying monolingual sentiment classification methods on translated data 

may apparently decrease the classification accuracy. In addition, even if translation of 

labelled or unlabelled data is completely correct, the cross-lingual classifier cannot 

perform as well as monolingual classifier since the data distribution across languages 

is different due to the difference in culture, writing style, and linguistic expression. In 

addition, the structure of data in target language should be considered as an important 

parameter to design classification models. Therefore, this study aims to create the 

cross-lingual classification models that use the labelled and unlabelled data in the 

source and the target languages to improve the cross-lingual classification 

performance, which is an urgent need in today’s sentiment analysis applications. 

1.9 Thesis outline 

This thesis is organized into eight chapters as follows: 

Chapter 1, Introduction, is started with an introduction to the research topic. 

After that, the research background and research problems are explained and research 

questions and objectives of research are introduced. Finally, the importance of research 

is expressed. 

Chapter 2, Literature review, provides the background information and reviews 

the previous studies in this field that leads to find the research gaps and formulate the 

research problem. 
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Chapter 3, Research methodology, explains the methods and datasets, which 

are used in this research. The research flow is described systematically in this chapter. 

Evaluation metrics and evaluation framework also are explained in this chapter. 

Chapter 4, Density-based active self-training model for cross-lingual sentiment 

classification, explains the development process of the first proposed model, which 

combine active learning and self-training to incorporate unlabelled data in the learning 

process. This model is evaluated and compared with some other baseline methods in 

this chapter. 

Chapter 5, Density-based active co-training model based on bi-view data, 

addresses the design and development steps of second proposed model, which 

enhances the first proposed model by using bidirectional translation in order to 

decrease the negative effects of translation errors. Corresponding results and 

evaluations are also given in this chapter. 

Chapter 6, Multiple source languages in multi-view semi-supervised learning 

model, investigates the effects of using multiple source languages on the classification 

performance of CLSC and introduces the third proposed model, which uses multi-view 

semi-supervised learning approach. 

Chapter 7, Incorporating intrinsic structure of target language data through 

graph-based semi-supervised learning model, describes the implementation process of 

the last proposed model, which employs the intrinsic structure of documents in the 

target language into the learning process. This chapter also shows the results obtained 

from the proposed model and compares the performance of this model with other 

methods. 

Chapter 8, Conclusion and future works, concludes the research, provides the 

list of contributions, states the limitations of proposed models and expresses some 

recommendations for future study.  
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1.10 Summary 

The principles of the research and the essential parts of this study were 

introduced in this chapter.  An overview of the research topic, the background of the 

research problem, problem statement along with research questions, research goal, 

objectives, and scopes of the current research as well as the significant of this research 

were described as an introduction of this study.  The aim of this chapter is to provide 

an overall description of the main parts of this research.  
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