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ABSTRACT 

 

 

 

The motion induced sway of oscillatory systems such as gantry cranes may 

decrease the efficiency of production lines. In this thesis, modelling and development 

of input shaping-based control schemes for a three dimensional (3D) lab-scaled 

gantry crane are proposed. Several input shaping schemes are investigated in open 

and closed-loop systems. The controller performances are investigated in terms of 

trolley position and sway responses of the 3D crane. Firstly, a new distributed Delay 

Zero Vibration (DZV) shaper is implemented and compared with Zero Vibration 

(ZV) shaper and Zero Vibration Derivative (ZVD) shaper. Simulation and 

experimental results show that all the shapers are able to reduce payload sway 

significantly while maintaining desired position response specifications. Robustness 

tests with ±20% error in natural frequency show that DZV shaper exhibits 

asymmetric robustness behaviour as compared to ZV and ZVD shapers. Secondly, as 

analytical technique could only provide good performance for linear systems, meta-

heuristic based input shaper is proposed to reduce sway of a gantry crane which is a 

nonlinear system. The results show that designing meta-heuristic-based input shapers 

provides 30% to 50% improvement as compared to the analytical-based shapers. 

Subsequently, a particle swarm optimization based optimal performance control 

scheme is developed in closed-loop system. Simulation and experimental results 

demonstrate that the controller gives zero overshoot with 60% and 20% 

improvements in settling time and integrated absolute error value of position 

response respectively, as compared to a specific designed PID-PID anti swing 

controller for the lab-scaled gantry crane. It is found that crane control with changing 

cable length is still a problem to be solved. An adaptive input shaping control scheme 

that can adapt to variation of cable’s length is developed. Simulation with real crane 

dimensions and experimental results verify that the controller provides 50% 

reduction in payload sway for different operational commands with hoisting as 

compared to the average travel length approach.   
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ABSTRAK 

 

 

 

Ayunan hasil pergerakan sistem berayun seperti kren gantri akan mengurangkan 

keberkesanan proses pembuatan. Tesis ini membentangkan pemodelan dan 

pembangunan skema kawalan berasaskan pembentuk masukan untuk kren gantri tiga 

dimensi (3D) berskala makmal. Beberapa skema pembentuk masukan telah dikaji dalam 

sistem gelung buka dan gelung tutup. Prestasi pengawal dikaji berdasarkan sambutan 

kedudukan troli dan ayunan kren 3D. Pertama, pembentuk Getaran Sifar dengan Lengah 

teragih (DZV) digunakan dan dibandingkan dengan pembentuk Getaran Sifar (ZV) dan 

pembentuk Pembezaan Getaran Sifar (ZVD). Keputusan simulasi dan eksperimen 

menunjukkan semua pembentuk berupaya mengurangkan ayunan beban secara berkesan 

disamping mencapai spesifikasi sambutan masa yang diperlukan. Ujikaji ketegapan 

dengan ±20% ralat dalam frekuensi tabii menunjukkan pembentuk DZV mempunyai 

ciri-ciri ketegapan yang tidak simetri berbanding pembentuk ZV dan DZV. Disebabkan 

kaedah analitik hanya dapat memberikan keputusan yang baik untuk sistem lelurus, 

pembentuk masukan berasaskan meta-heuristik dicadangkan untuk mengurangkan 

ayunan kren gantri. Keputusan menunjukkan pembentuk masukan berasaskan meta-

heuristik menghasilkan ayunan yang lebih baik dalam julat 30% hingga 50% berbanding 

pembentuk masukan berasaskan analitik. Kemudian, skema kawalan prestasi optima 

berasaskan pengoptimuman kerumunan zarah dibangunkan dalam sistem gelung tutup. 

Keputusan simulasi dan eksperimen menunjukkan bahawa pengawal tersebut 

menghasilkan sambutan kedudukan dengan lajakan sifar dan pembaikan sebanyak 60% 

dan 20% dalam masa menetap dan nilai ralat purata kamiran berbanding pangawal anti-

ayunan PID-PID. Disebabkan kawalan kren dengan perubahan panjang kabel masih 

merupakan masalah yang perlu diselesaikan, skema kawalan pembentuk masukan 

penyesuaian yang berupaya untuk menyesuaikan kepada perubahan panjang kabel 

dibangunkan. Keputusan simulasi dalam dimensi kren sebenar dan eksperimen 

menunjukkan bahawa pengawal ini berupaya menghasilkan pengurangan ayunan beban 

sebanyak 50% berbanding kaedah panjang perjalanan purata untuk berbagai jenis operasi 

kren. 
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CHAPTER 1 

 

 

 

 INTRODUCTION 

 

 

 

1.1 Background  

 

Generally, role of crane in human life is very important. Cranes are mostly 

utilized in construction of structures like bridges, dams, buildings, and high-rise 

towers. They are used for transportation of heavy loads and hazardous materials in 

shipyard, factories and warehouses. Cranes are also used in energy-based industries 

such as nuclear power plants and oil platforms in refineries. The task of a crane is to 

lift a load from a source place and transfer it to a target place. For this purpose, the 

mechanism of a crane should consist of a hoisting system including hoisting line and 

a hook for vertical movements of the load. Moreover, it needs a support mechanism 

which is cart-girder, cart-jib or a boom that moves the load around the crane 

workspace in horizontal space. It should be mentioned that there are different type of 

cranes such as gantry, overhead, jib, tower and boom cranes (Abdel-Rahman et al., 

2003). For this study a gantry crane is considered as this is one of the widely used 

cranes in factories and warehouses (Butler et al., 1991). 

 

One of the significant factors affecting productivity and efficiency of the 

industrial systems is speed. However, it is obvious that for a flexible system such as a 

gantry crane increasing the speed of manoeuvres cause the flexible system to 

oscillate more. This oscillation can result in considerable residual sway that 

negatively affects performance of the systems (Gholabi et al., 2013). At low speeds, 

the payload’s sways are not considerable and can be neglected. However, at higher 

speed, these sway angles prevent the payload to settle down during movement and 
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unloading. This problem will be crucial particularly for industrial applications where 

operators should manipulate the cranes (Peng et al., 2012). To address the mentioned 

issues, an efficient controller should be designed to improve the system performance. 

 

 

 

1.2 Statement of the Problem 

 

To increase the production speed the commands to the crane should be fast 

but this type of commands causes undesirable residual oscillation of payload in three 

dimensional (3D) gantry cranes. This low damped sway definitely decreases the 

efficiency of production line and may cause some serious damages to the production 

area.   

 

 

 

1.3 Objectives of the Study 

 

The work focuses mainly on the control of a 3D gantry crane. The main 

objectives of the study are as follows:  

(a) To implement and investigate a new input shaping technique on a 3D gantry 

crane 

(b) To design and implement meta-heuristic based input shapers for a non-

simplified model of a 3D gantry crane  

(c) To design and implement a PSO-based PID controller to cater two control 

objectives including fast and accurate positioning and low payload sway 

(d) To design and implement an open-loop adaptive input shaping controller for 

the 3D crane with varying cable lengths  

 

 

 

1.4 Scope of Works 

 

This work has been conducted within the following scope: 
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1) Matlab and Simulink are used to simulate and investigate the behaviour of the 

system 

2) Experiments are conducted based on a lab-scaled 3D gantry crane 

3) The cable is considered to be inextensible 

4) Horizontal movements are restricted to 55 cm and hoisting range is between 

0-75 cm  

5) ZV, ZVD, UM-ZV, UM-ZVD and DZV shapers are considered as input 

shapers 

6) PSO is considered in the development of a meta-heuristic based input shaping 

scheme 

7) PID controller is utilized for closed-loop control design 

8) Input is limited based on movement’s restrictions of the lab-scaled gantry 

crane 

9) Maximum input for all three directions is considered as 1 N. 

10) Cable length is the only variable characteristic of the crane  

 

 

 

 

1.5 Thesis Contributions 

 

This study may have several contributions in modelling and control of the 

system as follows:  

(a) Development of a DZV based control scheme for payload sway control of a 3D 

gantry crane  

(b) Development of a meta-heuristic based input shapers for a non-simplified model 

of a 3D gantry crane  

(c) Development of a PSO-based PID controller including an input shaper for input 

tracking and payload sway reduction of the system. 

(d) Development of an adaptive input shaping controller for handling varying cable 

lengths 
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1.6 Thesis Organisation 

 

This thesis is organised as follows. Chapter 2 provides a review of the 

existing modelling and control for a 3D gantry crane. Chapter 3 describes research 

methodology of the current study. Chapter 4 describes the 3D gantry crane system 

considered in this study and incorporating payload’s damping, and dead zone of 

actuator into the dynamic model. Experimental results are presented for verification 

and assessment of the developed model. Also, implementation of DZV shaper for 

control of the 3D gantry crane is described. Development of a PSO-based input 

shaping scheme for payload sway control of the 3D gantry crane is described in 

chapter 5. Moreover, an optimal performance controller including PID control 

algorithm and input shaping techniques is also proposed in chapter 5. Adaptive input 

shaping scheme is proposed in Chapter 6.  Finally, the conclusions of the thesis as 

well as the research direction of the work are presented in Chapter 7. 
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