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ABSTRACT

UWB communication systems were newly regenerated when the Federal

Communications Commission (FCC) defined the 3.1-10.6 GHz unlicensed band for

UWB applications. Based on an investigation in designing UWB antennas, researchers

have encountered more difficulties compared to a narrow band antenna. UWB antennas

should have extremely wide impedance bandwidth while preserving high radiation

efficiency with compact size. In some cases, a band-notched function should have

been created to avoid electromagnetic interference between nearby existing systems

and UWB systems. In this research, various promising UWB Dielectric Resonator

Antennas (DRAs) have been demonstrated to overcome several challenges. The

impedance bandwidth of the UWB DRAs has been improved for more than 110% by

using some techniques such as connecting a strip to the ground plane and modifying

structure of Dielectric Resonator (DR). The efficiency issue of UWB antennas is

overcome by implementing DR as a resonator element which is excited by various

shape structures feed lines to achieve more than 90% efficiency. The electromagnetic

interferences between UWB systems and nearby existing systems in the frequency

bands of 3.22-4.06 GHz, 4.84-5.96 GHz and 5.71-6.32 GHz are eliminated by using

a stub connected to the hollow centre of feed line, an inverted-T shape parasitic strip

near DR and modified metallic sheet underneath the DR, respectively. Compared with

UWB monopole antennas, UWB DRAs obviate the problem of radiation pattern by

utilizing dielectric resonator characteristics. In parallel, the broadside radiation pattern

is obtained by implementing various shapes of microstrip feed line at a proper location

to excite the DRA that provides symmetry radiation patterns with a consistent stability

across the desired bandwidth.
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ABSTRAK

Sistem komunikasi UWB adalah baru tumbuh semula apabila Suruhanjaya

Komunikasi Persekutuan (FCC) mentakrifkan 3.1-10.6 GHz band yang tidak berlesen

untuk aplikasi UWB. Berdasarkan kajian di dalam mereka bentuk antena UWB, para

penyelidik menghadapi lebih kesukaran berbanding dengan mereka bentuk antena

jalur sempit. Antena UWB harus mempunyai lebar jalur galangan masukan yang

sangat luas di samping kecekapan pada radiasi tinggi dengan saiz yang kompak.

Dalam beberapa kes, fungsi jalur-bertakuk dicipta untuk mengelakkan gangguan

elektromagnet di antara sistem sedia ada dan sistem UWB. Di dalam kajian ini,

pelbagai UWB bentuk Antena Penyalun Dielektrik (DRAs) dicipta bagi mengatasi

beberapa cabaran berkaitan UWB. Lebar jalur galangan masukan daripada DRAs

UWB dipertingkatkan dengan lebih daripada 110% menggunakan beberapa teknik

seperti menghubungkan jalur dengan satah tanah dan mengubah suai struktur Penyalun

Dielektrik. Isu kecekapan antena UWB diatasi dengan melaksanakan DR sebagai

elemen resonator yang teruja dengan pelbagai struktur bentuk talian untuk mencapai

kecekapan yang lebih daripada 90%. Gangguan elektromagnetik antara sistem UWB

dan sistem sedia ada yang berdekatan dalam jalur frekuensi 3.22-4.06 GHz, 4.84-

5.96 GHz, dan 5.71-6.32 GHz dapat dikurangkan dengan menggunakan puntung

yang dihubungkan dengan pusat berongga talian makanan bentuk-T terbalik jalur

parasit berhampiran DR dan lembaran logam diubah suai bawahnya DR, masing-

masing. Berbanding dengan UWB antena monopole, DRAs UWB menyelesaikan

masalah corak sinaran dengan menggunakan ciri-ciri resonator dielektrik. Pada masa

yang sama, corak sinaran selebaran diperolehi dengan melaksanakan pelbagai bentuk

garis jalur mikro di lokasi yang betul, untuk merangsang DRA yang menyediakan

corak sinaran simetri dengan kestabilan yang konsisten di seluruh lebar jalur yang

dikehendaki.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The Ultra-Wideband (UWB) systems have developed intensely in the past two

decades which are implemented for both academic and industrial communities of

telecommunication applications. These antennas generally strive to be compatible the

Federal Communications Commission (FCC) which support an impedance bandwidth

of 7.5 GHz, i.e. from 3.1 GHz to 10.6 GHz in 2002 [1]. There are several advantages

of UWB communications compare to other technologies which make them excellent

candidate to present a further eloquent solution for wireless broadband applications as

follow [2–6].

First of all, the UWB systems can obtain an immense capacity of several

Gbps with a short range of 1 to 10 meters due to proportion of channel capacity

to bandwidth. Secondly, the UWB facilitates an extremely reliable communication

and secure solution due to possessing a spectral density in low power level, noise-

like, which causes slightly electromagnetic interference with longer-range existing

narrow-band systems. Thirdly, in UWB systems, a sufficient spatial resolution is

achieved by applying a short duration impulse. This characteristic is used in target

imaging to provide a potential capability to distinct targets from background clutter.

Fourthly, since the UWB signals have short duration pulse waveforms, no multi-

path cancellation will occurred because of passing the direct path signal through the

system before attaining the reflected path signal. Lastly, UWB systems compared

to conventional radio systems have an intrinsic capability for integration in low
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complexity, low power, and low cost due to propagating without the requirement of

an additional RF components which providing considerably short time domain pulse.

On the other hands, dielectric resonators (DRs) have been applied in the

microwave circuits design such as oscillators and filters due to their high Q-factor

characteristic. Moreover, it is found that the DRs with low dielectric constant can

be used in antenna design as radiating element because of their low radiating Q-

factor [7]. In the last two decades, dielectric resonator antennas (DRAs) have received

agreeable consideration for UWB antennas due to remarkable characteristics such as

different excitation mechanisms [8–11], high radiation efficiency [12], nearly constant

gain [13, 14], and compact antenna size [15, 16]. The DRAs compared to microstrip

patch antennas (MPAs)have wider impedance bandwidth because of having very small

dielectric losses and lack of conductor losses, and also higher efficiency and less

radiation pattern distortions due to lack of existing surface wave phenomena. In

addition, DRAs compared with printed antenna provide small size ate expense of

thickness due to decreasing the maximum path length in a certain direction to other

directions.

1.2 Problem Statement

Based on investigation on ultra-wideband DR antenna, the researchers

encountered some difficulties. One of the main challenges is obtaining wide impedance

bandwidth more than around 91% with high radiation efficiency more than 90% while

sustaining compact size. For example, the DRA impedance bandwidth is mostly below

10% for a single-mode excitation, which is not sufficient for UWB applications. On the

other hands, existing electromagnetic interference of some narrow bands system such

as wireless local area network (WLAN) and worldwide interoperability for microwave

access (WiMAX) is a serious problem for UWB application systems. Some design

techniques have been developed for the band rejection UWB DRA antenna. However,

most of these approaches suffer from increasing size of antenna and lack of the
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flexibility and separately of each band rejection with control the width of the band-

notch across the stop-band.

1.3 Research Objective

The objectives of this work focus on simulate and fabricate of a novel UWB

DRA which are :

i. Design of compact UWB DRA with high radiation efficiency while sustaining

wide bandwidth over whole desired frequencies.

ii. Design of UWB DRA with sufficient band rejection for existing

electromagnetic interference of nearby wireless communication systems such

as WiMAX (3.3-3.8 GHz) and WLAN (5.15-5.825 GHz).

1.4 Scopes of Project

This work focuses on the design of the UWB DRA which operates within

the frequency range from 3.1 GHz to 10.6 GHz. The development of the UWB

DRA is comprised by avoiding the electromagnetic interference of nearby narrow

band systems such as the worldwide interoperability for microwave access (WiMAX)

system operating at 3.3-3.8 GHz and wireless local area network (WLAN) system

operating at 5.15-5.85 GHz.

The rectangular DR with dielectric constant less than 15 is used to achieve wide

impedance bandwidth. The compact UWB DRAs is simulated and verified by CST

and HFSS in terms of return loss, gain, efficiency, and radiation pattern to improve its

performance. A parametric study of the different design of UWB DRAs was carried

out. The UWB DRA is optimized and fabricated with good agreement between the

measured results with simulated results.
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1.5 Contribution of the Research

For this work, four contributions are introduced which include:

i. Design of a new compact two-segment Z-shaped DRA with different

permittivity excited by a U-shaped feed-line for ultra-wideband application

that the combination mechanism of the U-shaped feed-line and two-segments

DR (TSDR) characteristics provide firm omnidirectional radiation pattern and

high radiation efficiency with compact size while sustaining wide impedance

bandwidth.

ii. Design of a new simple compact rectangular dielectric resonator antenna

(RDRA) for ultra-wideband application that by applying a combination of

simple parasitic strip connected to the ground plane, microstrip feed line and

inserted RDR characteristic, a compact antenna size with a wide impedance

bandwidth, high radiation efficiency, nearly constant gain and consistent

omnidirectional radiation pattern over desired frequency range are achieved.

iii. Design of a new compact DRA with band rejection of 5.71-6.32 GHz (upper

WLAN band) using a modified metallic sheet for ultra-wideband application

that the combination mechanism of L-Shape strip connected to the ground

plane, proper position of microstrip feed line, inserted DR characteristic,

and metallic sheet underneath DR provide a wide impedance bandwidth and

compact antenna with consistent omnidirectional radiation pattern.

iv. Design of a new compact UWB DRA with dual band rejection of 3.22-4.06

GHz (WiMAX) and 4.84-5.96 GHz (WLAN) that by intently implementing a

combination mechanism of two inserted identical DRs, U-shaped excitation

performance, stub, inverted T-shaped parasitic strip, and slot in the ground

plane, ultra wideband characteristic with efficient dual band-notched and

miniature size of about 0.124λ × 0.31λ × 0.062λ at 3.1 GHz are achieved

simultaneously.
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1.6 Signification of the Research

Dielectric resonator antennas would be chosen by more system engineers when

designing their wireless products due to possessing their considerable characteristics,

flexibility in design and easily available commercially at very low cost. Therefore,

DRAs have proved themselves to be ideal candidates for UWB antenna applications

such as local and personal area networks (LAN/PAN), roadside info-station, short

range radios and military communications.

1.7 Thesis Outlines

This thesis is organized in six chapters, which each chapter will describe on the

different aspects of the work. The outlines of the dissertation for each 6 chapter are

organized as follows.

Chapter 1 introduces an introduction of UWB system and a brief history

about the dielectric resonator antenna and also makes some view about the problem

statements, objective, and scope of this work.

Chapter 2 describes most prevalently used shapes of DRA and focuses on

surveys of coupling mechanisms, bandwidth enhancement techniques, and compact

techniques of DRAs through the literature to obtain some idea and achieve proper

design.

Chapter 3 focuses on the methodology of project and steps of design.

Moreover, the steps of the fabrication process and measurement procedure are

illustrated.

Chapter 4 depicts simulated and measured results of an ultra-wideband

dielectric resonator antenna design. Discussions about comparisons between simulated

and measured result through the diagram are illustrated.
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Chapter 5 demonstrates a design of ultra-wideband dielectric resonator antenna

with WiMAX/WLAN band rejections. Parametric studies and discussions with

experimental results are illustrated.

Chapter 6 concludes this project and indicates some possible future works.
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5. Oppermann, I., Hämäläinen, M. and Iinatti, J. UWB: theory and applications.
John Wiley & Sons. 2005.

6. Roy, S., Foerster, J. R., Somayazulu, V. S. and Leeper, D. G. Ultrawideband
radio design: The promise of high-speed, short-range wireless connectivity.
Proceedings of the IEEE, 2004. 92(2): 295–311.

7. Long, S. A., McAllister, M. W. and Shen, L. C. The resonant cylindrical
dielectric cavity antenna. IEEE Transactions on Antennas and Propagation,
1983. 31: 406–412.

8. Guo, Y.-X. and Luk, K.-M. On improving coupling between a coplanar
waveguide feed and a dielectric resonator antenna. IEEE Transactions on

Antennas and Propagation, 2003. 51(8): 2144–2146.

9. Al Salameh, M., Antar, Y. M. and Séguin, G. Coplanar-waveguide-fed
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