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There are compelling evidence showing that mitochondrial dysfunction and 
low-grade chronic inflammation in several peripheral tissues may attribute to the 
central pathophysiological mechanism of insulin resistance and type 2 diabetes. 
Celastrol, a pentacyclic-triterpene, is an established anti-inflammatory agent from the 
root of Tripterygium wilfordii that has been used for centuries as medicament to treat 
numerous inflammatory diseases. As its therapeutic treatment is increasingly being 
recognized, the present study sought to investigate the functional roles of celastrol upon 
mitochondrial dysfunction and insulin resistance induced by mitochondrial respiratory 
inhibitors in insulin responsive cells. The glucose uptake activity, mitochondrial 
functions, lipolysis, intracellular lipid accumulation and a number of signaling 
pathways were investigated using cell-based assays and western blot analyses. The 
optimum doses of celastrol in improving insulin-stimulated glucose uptake of 
mitochondrial inhibitors-treated 3T3-L1 adipocytes, human skeletal muscle and C3A 
human liver cells were 5, 15 and 30 nM, respectively. Celastrol treatment for 48 hours 
improved the mitochondrial activities and decreased the mitochondrial superoxide 
productions. The integrity of mitochondrial dynamics was restored via substantial 
changes in mitochondrial fusion and fission. Furthermore, celastrol prevented the 
amplified level of cellular oxidative damages where the production of pro-
inflammatory cytokines in cultured cells was greatly down-regulated. The release of 
free fatty acids and glycerol from conditioned media of adipocytes and hepatocytes 
were reduced after celastrol treatment. The relative amount of intracellular lipid 
accumulation was decreased in celastrol-treated cells with mitochondrial dysfunction. 
Importantly, celastrol enhanced the phosphorylation of amino acid residues of insulin 
receptor substrate 1 (IRS1), serine/threonine kinase (Akt/PKB) and Akt substrate 160 
(AS160) proteins in insulin signaling pathways with amplified expression of 5' 
adenosine monophosphate-activated protein kinase (AMPK) protein in human 
myotubes and hepatocytes. The metabolic effects of celastrol were also accompanied 
with the attenuation of nuclear factor-kappa B (NF-κB) and diminished activation of 
the protein kinase C (PKC) isoforms in insulin resistant cells. The protein expression 
of glucose transporter 4 (GLUT4) was normalized by celastrol in adipocytes and human 
myotubes while reduced GLUT2 protein expression was observed in hepatocytes, 
signifying its ameliorative properties in enhancing insulin sensitivity of these in vitro 
disease models. Collectively, these results unequivocally suggested that celastrol may 
be advocated for use as a potential therapeutic molecule to protect against 
mitochondrial dysfunction and inflammation in the development of insulin resistance 
and type 2 diabetes.  
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Terdapat banyak bukti menunjukkan bahawa ketidakfungsian mitokondria dan 
keradangan kronik tahap rendah dalam beberapa tisu periferal telah dikaitkan dengan 
mekanisme patofisiologikal pusat dalam kerintangan insulin dan penyakit diabetes 
jenis 2. Celastrol, sejenis pentasiklik-triterpena,  merupakan agen anti-radang daripada 
akar kayu pokok Tripterygium wilfordii yang telah sekian lama digunakan sebagai ubat 
untuk merawat pelbagai penyakit radang. Memandangkan kepentingan rawatan 
terapeutik kini semakin disedari, kajian ini bertujuan untuk mengkaji peranan fungsi 
celastrol ke atas ketidakfungsian mitokondria dan kerintangan insulin yang disebabkan 
oleh perencat respirasi mitokondria dalam sel-sel yang responsif terhadap insulin. 
Aktiviti pengambilan glukosa, fungsi-fungsi mitokondria, lipolisis, pengumpulan lipid 
intraselular dan beberapa laluan isyarat telah dikaji menggunakan beberapa cerakinan 
berasaskan sel dan analisis pemendapan Western. Dos celastrol yang optimum dalam 
meningkatkan pengambilan glukosa yang diransangkan oleh insulin dalam sel adiposit 
3T3-L1, otot rangka manusia dan sel hati manusia C3A yang dirawat dengan perencat 
mitokondria ialah masing-masing 5, 15 dan 30 nM. Rawatan celastrol selama 48 jam 
meningkatkan aktiviti mitokondria dan mengurangkan pengeluaran radikal 
superoksida mitokondria. Integriti dinamik mitokondria telah dipulihkan melalui 
perubahan besar dalam gabungan dan pembelahan mitokondria. Tambahan pula, 
celastrol menghalang kerosakan sel oksidatif yang mana pengeluaran sitokin pro-
radang dalam sel-sel dikurangkan. Pelepasan asid lemak bebas dan gliserol daripada 
media sel adiposit dan hepatosit telah dikurangkan selepas rawatan celastrol. Jumlah 
relatif pengumpulan lipid intraselular telah menurun dalam ketidakfungsian 
mitokondria sel yang dirawat dengan celastrol. Celastrol meningkatkan pemfosforilan 
beberapa jujukan asid amino daripada protein-protein substrat reseptor insulin (IRS1), 
serina/treonina kinase (Akt/PKB) dan substrat Akt 160 (AS160) dalam laluan isyarat 
insulin dengan ungkapan protein 5’ adenosina monofosfat-diaktifkan kinase (AMPK) 
ditingkat dalam miotiub dan hepatosit manusia. Kesan metabolik celastrol juga 
disertakan dengan pengurangan faktor nuklear kappa B (NF-κB) dan protein kinase C 
(PKC) dalam sel kerintangan insulin. Ungkapan protein glukosa pengangkut 4 
(GLUT4) telah dinormalkan oleh celastrol dalam sel adiposit dan miotiub manusia 
manakala pengurangan ungkapan protein glukosa pengangkut 2 (GLUT2) diperhatikan 
dalam hepatosit, lantas memperlihatkan sifatnya dalam memperbaiki sensitiviti 
terhadap insulin dalam sel-sel model penyakit ini. Secara keseluruhannya, keputusan 
ini menunjukkan bahawa celastrol berpotensi untuk digunakan sebagai molekul 
terapeutik bagi melindungi daripada ketidakfungsian mitokondria dan keradangan 
dalam kerintangan insulin dan penyakit diabetes jenis 2. 
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INTRODUCTION 

1.1 Research Background 

Type 2 diabetes mellitus is a devastating metabolic disorder characterized by 

insulin resistance and linked to various metabolic syndromes such as hormonal 

imbalance, hypertension, hyperglycemia and excess fatty acids in blood circulation 

[1]. The biological determinant such as genetic factors is involved in the pathogenesis 

of type 2 diabetes [2,3]. One of the first-degree relatives who had family history 

suffered from type 2 diabetes is conferred to have been three-fold increased risk of 

developing the disease [3–5]. On the other side of the scale, during the last few 

decades, the dramatic increases in incidence and prevalence rates of this disorder are 

intimately observed in developed and developing countries [6]. Undoubtedly, it is 

becoming increasingly difficult to ignore the influence of environmental factors in the 

onset of such disease. It can be signified that the concerted actions of both genetic and 

environmental factors such as malnutrition, psychological stresses, smoking, alcohol 

intake, aging and sedentary lifestyles are considerably linked together towards the 

development of type 2 diabetes and its co-morbidities [7]. 

In the following years, the roles of mitochondrial dysfunction-induced 

inflammation towards progression of insulin resistance, the forerunner of type 2 

diabetes mellitus, have acquired important new dimensions [8–10]. Indeed, a 
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multitude of studies have discovered that the impairments of mitochondrial functions 

in skeletal muscles, liver and adipose tissues of both human and animal diseased 

subjects are etiologically associated with low-grade chronic inflammation [11,12]. In 

light of data indicating a pathophysiologic role of mitochondrial dysfunction in the 

occurrence of inflammation and insulin resistance, it is intriguing to hypothesize that 

the metabolic adaptations observed in these target tissues may affect the whole-body 

metabolism as a whole. To a smaller extent, it is now becoming clear that the 

derangements of cellular inflammatory mediators are inextricably linked to oxidative 

stress and reduced mitochondrial functions in insulin resistance state [9]. Although the 

molecular details of such signaling remain enigmatic, extensive data advocated that 

several destructive activators can lead to the intense oxidation of mitochondrial DNA, 

lipid and protein, resulting in the advancement of pro-inflammatory cytokines 

production via activation of nuclear factor-kappa B (NF-κB) signaling pathways in a 

number of metabolic tissues [8,11,13]. Thus, further therapeutic research targeting 

these regulatory pathways and its ameliorative mechanisms in these peripheral tissues 

may provide an insight towards effective treatments of such disorders.  

The concerted understanding of the pathogenesis of type 2 diabetes and insulin 

resistance persists to drive personalized approaches to treatment with the minimized 

side effects. Aside from new synthesized drugs, the search for more effective and safe 

anti-diabetic agents continues to be an area of research interest to expand the 

therapeutic armamentarium. The use of active compounds derived from plants for use 

as drugs and medicines in alleviating various metabolic diseases is attracting 

increasing attention. Celastrol is an established active ingredient of natural quinone 

methide triterpenoid isolated from plant family Celastraceae (Tripterygium wilfordii 

Hook F.), the traditional Chinese medicine called “Thunder of God Vine”. This 

compound exhibits a number of biological activities including anti-oxidant, anti-

inflammatory and anti-cancer properties [14]. The mechanistic actions of celastrol on 

the cellular targets are poorly understood, thereby impeding its application in clinical 

studies. Though, mounting evidences documented that celastrol has its own unique 

capability to inhibit NF-κB transcription factors and its downstream targets in various 

cell types without affecting DNA-binding activity of activator protein 1 (AP-1) [15–

17]. Numerous studies to define its pharmacological mechanism showed that it 
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suppresses many steps of oxidative stress induction via NF-κB inhibition and 

modulates several inflammatory responses in peripheral tissues. Hence, subsequent 

experimental approaches in evaluating the attributive roles of this compound in 

hindering the activation of inflammatory pathways relative to mitochondrial functions 

and insulin signaling activities in metabolic diseases are of great interest [18]. On the 

basis of recent evidence, the search for more effective and safer natural anti-

inflammatory agents with multiple ameliorative properties in enhancing insulin 

sensitivity should be recognized to be an important area of investigation.  

1.2 Problem Statement 

Mitochondria have a plethora of physiological and pathological functions in 

several signaling pathways including regulation of calcium (Ca2+) homeostasis, 

orchestration of apoptosis, and mitochondrial superoxide production [19]. Presumably 

through its ability to regulate innumerable biological functions, any perturbation in 

these central processes may greatly alters the cellular and systemic functions of the 

organisms with dire consequences. Correspondingly, the multitude of studies revealed 

that the specific perturbations of mitochondrial oxidative phosphorylation including 

changes in mRNA levels of mitochondrial markers, enzymatic activities and substrate 

oxidation are allied to the progression of insulin resistance, hepatic steatosis and type 

2 diabetes [9,20–22]. Among these, it is now acceptable that the reduced oxidations of 

several important fuels such as glucose and fatty acids can exacerbate the disease along 

with impaired oxidative metabolism.  

Accumulating evidence suggests that skeletal muscle, liver and adipose tissues 

are among the primary target tissues for various metabolic activities relative to cellular 

mitochondrial energy homeostasis and functions [9]. Functional disturbances in these 

tissues can, therefore, theoretically contribute to several metabolic impairments. The 

substantial evidence from previous literatures pointed out that the impaired activity of 

Complex I and III in the mitochondrial electron transport chain and reduced adenosine 
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triphosphate (ATP) synthase proteins are major contributors to oxidative stress in rat 

fatty liver and diabetic patients [22–24]. These tissues are significantly affected in the 

progression of insulin resistance and type 2 diabetes, advocating that these tissues can 

be one of the promising targets for development of new diabetes drugs [25]. It is also 

important to note that current modern therapies in this field are extensively engaged 

towards the development of new therapeutic intervention of the disease rather than 

prevention. The exploration of new preventive strategies involving food and drink-

containing bioactive compounds remains a priority in order to mitigate the severity of 

such disease progression. 

In recent years, emerging evidence has been gathered to support the notion that 

an increase of oxidative stress, mitochondrial damage and exacerbated inflammation 

are among the key features of obesity and type 2 diabetes [8,10]. The concerted actions 

of both acute and chronic inflammation with augmented superoxide free radicals 

productions can lead to further reduce the ATP generation, consequently impeding 

insulin signaling activities in some peripheral tissues. In that sense, activations of 

redox-sensitive inflammatory pathways via NF-κB and c-Jun N-terminal kinase (JNK) 

signaling by mitochondrial dysfunction have been postulated as an adaptive system of 

cellular stresses towards overwhelmed generation of reactive oxygen species (ROS) 

[26]. To a lesser extent, the chronic stimulation of these inflammatory pathways have 

been recognized as the “main culprits” that contribute to the progression of type 2 

diabetes. Still, the precise mechanisms linking inflammation and mitochondrial 

dysfunction in metabolic tissues are still rather ambiguous. Although it is broadly 

appreciated that oxidative stress and inflammation lead to development of insulin 

resistance, the therapeutic interventions in modulating these mitochondrial 

dysfunction-induced inflammations that lead to insulin resistance are relatively scarce. 

Hence, further therapeutic strategy and prevention should be modulated towards 

inhibition of these detrimental pathways while boosting the metabolic pathways that 

promote enhanced cellular bioenergetics. 

In the search for novel treatments, the present study was designed to establish 

the in-vitro disease model of mitochondrial dysfunction-mediated insulin resistance 



5 

and inflammation in insulin responsive cells using mitochondrial inhibitors. As 

mitochondrial dysfunction is strongly associated with the activation of NF-κB 

inflammatory signaling pathways in these disease models, the therapeutic treatment in 

modulating these pathways is imperatively needed. The use of celastrol in ameliorating 

such metabolic impairments related to mitochondrial dysfunction and inflammation in 

these in-vitro disease models was undertaken. 

1.3 Objective 

The central objective of this study was to investigate the functional roles of 

celastrol upon mitochondrial dysfunction-induced insulin resistance in insulin 

responsive cells. 

1.4 Scopes of the Study 

In order to achieve this objective, three research scopes were carried out: 

1. To establish the in vitro disease models of mitochondrial dysfunction-induced 

insulin resistance in 3T3-L1 adipocytes, human skeletal muscle and C3A 

human liver cells. 

2. To evaluate the attributive roles of celastrol in modulating glucose uptake, 

inflammatory signaling, mitochondrial functions, lipolysis and intracellular 

lipid accumulation in these mitochondrial inhibitor-treated cells. 

3. To explore the metabolic effects of celastrol on the phosphorylation sites of 

insulin signaling pathways, AMP-activated protein kinase (AMPK), protein 

kinase C (PKC) isoform activations and glucose transporters protein 

expression in the in vitro disease models. 
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1.5 Significances and Original Contributions of the Study 

This investigation offers several contributions in the area of preventive and 

personalized medicine in treating mitochondrial dysfunction associated with insulin 

resistance and type 2 diabetes. The contributions are as follows: 

i. To the best of current knowledge, this study is one of the first reports 

towards specific establishment of the in vitro disease models for 

mitochondrial dysfunction-induced insulin resistance in insulin 

responsive cells. Currently, a number of studies in these areas are 

mainly focused using high level of glucose and free fatty acids in the 

media to induce insulin resistance in the cells. However, increasing 

evidence shows that the onsets of mitochondrial dysfunction, oxidative 

stress and peripheral insulin resistance in human and animal disease 

models are mainly triggered by the impaired mitochondrial respiratory 

chain activity (complex I and III) and reduced ATP-oxidative 

phosphorylation. Thus, there are compelling reasons to establish the in 

vitro disease models through specific inhibition of mitochondrial 

respiratory chain activity and ATP synthase to mediate insulin 

resistance in the cells in order to unravel the exact metabolic 

associations between insulin resistance and impaired oxidative 

metabolism. 

 

ii. Although mitochondrial dysfunction is strongly associated with 

inflammation, the roles of several key intracellular signaling cascades 

in regulating mitochondrial functions have not been fully characterized. 

Therefore, an exploration of in vitro functional roles of celastrol, an 

anti-inflammatory compound, in the event of mitochondrial 

dysfunction-induced insulin resistance may provide beneficial insight 

on the novel understanding of the therapeutic intervention and cellular 

mechanisms underlying deteriorated mitochondrial functions, 

inflammation and insulin resistance. 



7 

 

iii. Celastrol has been reported to possess a potent anti-oxidant, anti-

inflammation and anti-cancer in a number of disease models. New 

emerging in vivo data suggest that celastrol exercises its beneficial 

properties through amelioration of insulin resistance, weight gain and 

attenuation of numerous detrimental occasions in animal models. In 

contrast to its emerging role in various animal models of such diseases, 

there is a paucity of information regarding the in vitro effects of 

celastrol on insulin sensitivity and no comparative studies that relate to 

the use of celastrol in treating inflammation with reduced 

mitochondrial functions in the disease settings. To date, the specific 

studies on the mechanistic actions of celastrol in the peripheral tissues 

relative to mitochondrial dysfunction and insulin resistance have not 

been verified, hindering the current status of celastrol usage at the 

clinical trials. Thus, there seems to be great potential of further 

therapeutic intervention to study these mechanistic actions. To this end, 

the present study contributes to the new findings on the use of celastrol 

against the development of mitochondrial dysfunction and insulin 

resistance. 

1.6 Thesis Structure and Organization 

This thesis is divided into five chapters. Chapter 1 covers a brief overview of 

the research backgrounds, problems statement, central objective, scopes of analyses, 

originality and significant contributions of the study. 

Chapter 2 offers an overview of type 2 diabetes, insulin resistance and 

inflammation with the inclusion of the roles of mitochondrial dysfunction and NF-κB 

signaling pathways in the settings of such disorders. The literature also highlight the 



8 

current mechanistic roles of celastrol in the development of various metabolic 

diseases. 

Chapter 3 covers the overall methodologies used for the cell-based assays in 

investigating and evaluating the attributive roles of celastrol on mitochondrial 

dysfunction-induced insulin resistance in 3T3-L1 adipocytes, human skeletal muscle 

and C3A human liver cells. 

Chapter 4 presents the comprehensive results and discussions on the 

ameliorative properties of celastrol treatment on glucose uptake activity, 

mitochondrial functions, lipolysis, lipid distribution, pro-inflammatory cytokines 

release, intracellular insulin signaling pathways and its downstream target proteins in 

these in vitro disease models. The general proposed mechanisms of celastrol in 3T3-

L1 adipocytes, human skeletal muscle and C3A human liver cells were also presented. 

Chapter 5 provides the overall summary of the research findings and specific 

future recommendations for the upcoming works. 
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