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ABSTRACT 

The use of Carbon Fibre Reinforced Polymer (CFRP) to strengthen steel 

structures has attracted the attention of researchers in recent years.  Previous 

researches demonstrated that bonding of CFRP plates to the steel sections has been a 

successful method to increase the mechanical properties.  However, behaviour of the 

system under various environmental conditions has not completely been defined yet.  

The main objective of the study is to evaluate the performance of steel/CFRP 

bonding system after exposure in natural tropical climate.  Environmental conditions 

including wet/dry cycles, submerging in plain water, salt water and acidic solution 

were considered to define the effect of different exposures on the system.  In the 

experimental program, double lap shear specimens (DLS) and strengthened I-section 

steel beams were prepared and subjected to the environmental exposures up to 8 

months.  Further, CFRP and epoxy adhesive coupons were prepared and exposed to 

the same conditions to find the influence of aging on the materials individually.  

Tensile tests and four-point bending tests were performed after exposure and the 

mechanical properties were compared to the control specimens.  The results 

demonstrated that the epoxy adhesive was the critical part. In addition, the strength 

and stiffness of the coupons which were subjected to tropical climate showed a 

remarkable increase around 16% and 11% at the beginning of exposure, respectively.  

However, these properties were reduced gradually until the end of exposure.  The 

results of tests on DLS specimens and strengthened steel beams indicated the same 

rate of properties degradation as the adhesive coupons.  The failure mode for 

strengthened steel beams was lateral-buckling which showed the bonding strength 

was still remained after exposure.  Further, the properties of CFRP plate showed 

negligible changes for all environmental conditions.  The theoretical analysis has 

been conducted to predict the properties of specimens before and after exposure and 

the results showed close agreement to the experimental tests. 
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ABSTRAK 

Penggunaan Polimer Bertetulang Gentian Karbon (CFRP) untuk 

mengukuhkan struktur keluli telah menarik banyak perhatian masa kini.  Kajian lepas 

menunjukkan sistem lekatan plat CFRP kepada keratan keluli telah berjaya untuk 

meningkatkan sifat mekanikalnya. Walau bagaimanapun, prestasi sistem di bawah 

pelbagai keadaan persekitaran masih belum diketahui sepenuhnya. Objektif utama 

kajian ini adalah untuk menilai prestasi sistem lekatan keluli/CFRP selepas 

didedahkan kepada keadaan iklim tropika. Selain itu, dedahan kepada keadaan 

kitaran basah/kering, rendaman dalam air paip, air garam dan larutan berasid juga 

dibuat untuk menentukan kesannya kepada sistem. Dalam program eksperimen, 

sampel lekatan ricih (DLS) dan seksyen keluli yang diperkukuhkan disediakan dan 

didedahkan kepada keadaan yang dinyatakan sehingga 8 bulan. Selain itu, CFRP dan 

kupon epoksi juga disediakan dan didedahkan kepada keadaan yang sama untuk 

menentukan pengaruh dedahan terhadap bahan tersebut. Ujian tegangan dan ujian 

lenturan empat titik telah dijalankan selepas dedahan dan sifat mekanikal dibandingkan 

dengan sampel kawalan.  Keputusan menunjukkan pelekat epoksi adalah elemen yang paling 

kritikal dalam system ini. Disamping itu, kekuatan dan kekukuhan kupon yang didedahkan 

kepada iklim tropika menunjukkan peningkatan masing-masing sekitar 16% dan 11% pada 

peringkat awal dedahan.  Walau bagaimanapun, prestasi mulai merosot secara beransur-

ansur sehingga akhir masa dedahan. Keputusan ujian ke atas sampel DLS dan rasuk 

diperkuatkan menunjukkan kadar pengurangan prestasi yang hampir sama dengan kupon 

epoksi.  Mod kegagalan bagi rasuk diperkuatkan adalah sisi-lengkokan yang menunjukkan 

kekuatan ikatan masih ada selepas dedahan. Sementara itu ciri-ciri plat CFRP hanya 

menunjukkan perubahan yang kecil untuk semua keadaan dedahan.  Analisis teori telah 

dijalankan untuk meramalkan sifat-sifat spesimen sebelum dan selepas dedahan dan hasil 

kajian menunjukkan keputusan yang hampir sama dengan keputusan eksperimen. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Steel structures constitute a large number of existing infrastructures which 

have been largely expanded all over the world and now reaching a critical age with 

increasing signs of deterioration and reduced functionality.  A number of factors 

responsible for the decline on the strength of structures and make them lose their 

serviceability.  Environmental deterioration, fatigue, and aging of structural elements 

are major problems in steel structures.  Lack of proper maintenance and use of 

substandard materials in initial construction are other factors that caused the 

deficiency of the structures.  Besides that many structures nowadays require 

upgrading to carry larger loads or should be retrofitted according to new codes.  The 

cost for strengthening in most cases is much less than the cost of replacement and 

usually takes less time and so reduces service interruption time.  Conventional 

methods of repair and retrofit of steel sections generally use steel plates through 

bolting or welding to the structural member.  Increasing considerable dead load to 

the structure, susceptibility to the corrosion and need to heavy lifting equipment are 

some drawbacks of this methods.  In addition, welding is not a favorable solution due 

to fatigue problems.  Furthermore, mechanical details such as bolted connections 

which have better fatigue life are time consuming and costly. 

The use of Fibre Reinforced Polymer (FRP) materials has been demonstrated 

as a successful technique to increase the strength and stiffness of structural elements. 

FRP consists of high strength fibres embedded in a matrix resin.  Many advantages 
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including light weight, high strength and stiffness, excellent durability performance, 

fatigue and corrosion resistance, and easy assembling make them quite promising for 

repair and strengthening of structures and highly preferred than the steel plates.  

Several types of FRP are currently available to provide strength to metal structures.  

Due to its initial success in strengthening concrete structures, glass fibre reinforced 

polymer (GFRP) is a readily available and the least expensive type of FRP 

commonly used for strengthening.  However, other types of fibre, such as, carbon 

and aramid have been commonly used in recent years.  Lately researches have 

showed that carbon fibre reinforced polymer (CFRP) is considered to be one of the 

most suitable for the purpose of strengthening of steel structures.  This is essentially 

due to the higher stiffness of the CFRP comparing to other types. 

1.2 Problem statement 

A number of experimental and theoretical researches have been conducted to 

find the behaviour of the steel/CFRP bonding systems recently.  Most of these 

studies mainly concern to short term strengthening of steel sections under static 

loads. Bonding characteristics, flexural strengthening of beams, and developing 

theoretical/numerical models have attracted more attentions.  Furthermore, 

performance of the system under fatigue loads and environmental effects have gained 

interest subsequently.  Generally, previous researches demonstrated that bonding 

CFRP plates to the steel sections increased flexural stiffness and fatigue resistance 

significantly.  Besides, deteriorated beams have been repaired to achieve initial 

strength successfully by this method. 

However, one of the main limitations to popular use of this technique has 

been the durability of bonding between steel and CFRP in various environmental 

conditions.  Actually, the performance of the system in long term is the most 

important issue especially for the structures such as bridges which are exposed to 

natural environment.  Although previous studies emphasized CFRP strengthening 

method is quite acceptable, thorough researches need to be conducted to reveal long 

term durability problems. 
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However, relatively little literature exists concerning the durability 

performance of steel sections strengthened with CFRP plate.  Particularly, in tropical 

climate the behaviour of steel/CFRP bonding system has not been studied yet.  The 

durability of the steel/CFRP bonding system is a vital issue that needs to be clearly 

understood especially in the tropical climate region to gain the acceptance of the 

system to be used in construction industry.  The knowledge and understanding of this 

aspect is important for engineers in tropical climate countries such as Malaysia. 

1.3 Objectives 

The aim of this study is to investigate the bonding behaviour of steel/CFRP 

system expose to various environmental conditions including natural tropical 

climate, wet/dry cycles, immersed in plain water, salt water, and acidic solution.  

Meanwhile, tropical climate which is an extreme hot/wet weather is considered as the 

main environmental condition.  Related objectives of the research are as follows: 

i. To characterize the bonding strength and stiffness of steel/CFRP double 

lap shear joints under natural tropical climate 

ii. To determine the short term flexural behaviour of I-section steel beam 

strengthened with CFRP plate 

iii. To determine the effect of CFRP length on the flexural behaviour of 

strengthened I-section steel beam 

iv. To evaluate the effect of tropical climate on the flexural stiffness and load 

capacity of I-section steel beams strengthened with CFRP plate 

v. To propose the appropriate analytical procedure to predict the behaviour of 

the steel/CFRP systems subjected to environmental exposure 
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1.4  Research significance 

The proposed research constitutes experimental and analytical investigation 

to study the performance of steel/CFRP bonding system after exposure to various 

environmental conditions.  Although, some studies used accelerated tests to predict 

the bond behaviour in long term, the effect of natural environment is still unknown.  

In this research, natural tropical climate is considered as the main environmental 

condition to study the behaviour of the steel/CFRP bonding system in an extreme 

aggressive condition.  The results of the study are expected to make contribution in 

understanding the behaviour of steel structures strengthened with CFRP material in 

tropical climate. 

The study introduces an analytical procedure to estimate the mechanical 

properties of steel strengthening system as well.  Besides, the novelty of the research 

is using steel beams (in addition to double lap shear specimens) to investigate the 

durability performance.  While, all previous investigations used only lap shear joints 

to study the bonding durability, this research applied I-section steel beams 

strengthened with CFRP plate to find out the real behaviour of a structural element 

after exposure.  The current study aims to evaluate the practical application of 

steel/CFRP strengthening system in the field. 

1.5 Scope of the study 

In order to achieve the objectives, the research work was divided into two 

phases; experimental tests and theoretical analysis.  The scope of the study related to 

these phases is as follow: 

i. In the experimental phase, a number of 52 double lap shear joints were 

prepared based on ASTM D3528 (2008b) and subjected to the various 

environmental exposures for specific periods.  Then, tensile test was 

conducted to find the mechanical properties of the specimens.    
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ii. A number of 28 I-section strengthened beams were prepared and subjected 

to the same various environmental exposures for specific periods.  

Afterwards, four-point bending test was carried out to investigate about the 

flexural behaviour of the strengthened beams. 

iii. The CFRP and adhesive coupons were prepared according to ASTM D638 

(2010) and ASTM D3039 (2008a), respectively. Then, they were subjected 

to the same environmental conditions and were tested based on above 

standards to find the effect of exposures on these materials individually.   

iv. The exposures consisted of outdoor tropical climate, room ambient, 

wet/dry cycles in plain water, submerged in plain water, salt water and 

acidic solution. 

v. The duration of environmental exposure was considered 8 months for all 

the specimens.  

vi. In theoretical analysis, related equations for computing the bonding 

properties and durability estimation have been expressed.   

vii. The appropriate analytical approach is proposed to calculate the 

mechanical properties of steel sections after strengthening with CFRP 

materials.  Meanwhile, relevant codes and guidelines contents related to 

this issue are presented. 

viii. Finally, the results of the experimental tests were compared to the 

theoretical analysis to find a model for estimating the properties of 

steel/CFRP bonding system.   
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1.6 Limitation of the study 

The study was limited in some aspects.  The main limitation was related to 

the time of exposure for experimental program which was considered 8 months.  In 

addition, the outdoor conditioning was natural tropical climate in southern part of 

Malaysia. High temperature and humidity combined with heavy raining and 

ultraviolet of the sun were the major detrimental factors of this specific weather 

condition.  However, the tropical climate of other parts of the world might influence 

the bonding system differently.  Moreover, the conditioning of the specimens in 

wet/dry cycles, plain water, salt water and acidic solution were conducted in the 

laboratory temperature (not accelerated). 

The CFRP plate and epoxy adhesive were produced by Mapei Company to be 

compatible together.  The results might be changed by using similar materials of 

other companies.  Besides, diverse specifications of these materials might have 

different influence on the strengthening system.  Obviously, the mechanical and 

thermal properties of the materials affect the behaviour of the bonding system 

significantly.  

1.7 Thesis organization 

The thesis consists of six chapters.  A summary of the contents of the next 

chapters is as follow: 

Chapter 2: An entire overview of previous researches related to steel sections 

strengthened with CFRP plate is carried out focusing on environmental performance. 

Chapter 3: The research methodology is presented in two main parts 

including experimental program and theoretical analysis.  The experimental program 

consists of materials specifications, environmental conditions, instrumentation and 

tests set up.  The theoretical analysis includes computing the strength of double lap 
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shear joints, analysis of strengthened beams, and degradation modelling of epoxy 

adhesive through empirical equations. 

Chapter 4: The tests results of epoxy adhesive coupons, CFRP coupons and 

double lap shear specimens are presented and discussed in detail.  The effect of 

diverse exposures on the mechanical properties of the specimens is explained.  The 

results are compared with control specimens’ properties to find out the impression of 

environmental factors on the steel/CFRP bonding system.  Further, the result of 

theoretical model is compared with experimental results. 

Chapter 5: A detailed description of test results related to steel strengthened 

beams is exhibited.  The flexural behaviour of the strengthened beams is compared 

with control beam to find the effect of strengthening on the mechanical properties of 

the beam.  Besides, the efficacy of CFRP length on flexural behaviour of 

strengthened beams is investigated thoroughly.  Finally, the influence of various 

exposures, especially tropical climate, on the bonding characteristics and mechanical 

properties of the strengthened beams is studied. 

Chapter 6: The final chapter summarizes the conclusions of present research 

and provides recommendations for future works. 
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