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ABSTRACT

Recent studies on motor imagery (MI)-based brain computer interaction (BCI) 

reported that the interaction of spatially separated brain areas in forms of functional or 

effective connectivity leads to a better insight of brain neural patterns during MI 

movements and can provide useful features for BCIs. However, existing studies suffer 

from unrealistic assumptions or technical weaknesses for processing brain signals, such 

as stationarity, linearity and bivariate analysis framework. Besides, volume conduction 

effect as a critical challenge in this area and the role of subcortical regions in 

connectivity analysis have not been considered and studied well. In this thesis, the 

neurophysiological connectivity patterns of healthy human brain during different MI 

movements are deeply investigated. At first, an adaptive nonlinear multivariate state- 

space model known as dual extended Kalman filter is proposed for connectivity pattern 

estimation. Several frequency domain functional and effective connectivity estimators 

are developed for nonlinear non-stationary signals. Evaluation results show superior 

parameter tracking performance and hence more accurate connectivity analysis by the 

proposed model. Secondly, source-space time-varying nonlinear multivariate brain 

connectivity during feet, left hand, right hand and tongue MI movements is investigated 

in a broad frequency range by using the developed connectivity estimators. Results 

reveal the similarities and the differences between MI tasks in terms of involved regions, 

density of interactions, distribution of interactions, functional connections and 

information flows. Finally, organizational principles of brain networks of MI movements 

measured by all considered connectivity estimators are extensively explored by graph 

theoretical approach where the local and global graph structures are quantified by 

computing different graph indexes. Results report statistical significant differences 

between and within the MI tasks by using the graph indexes extracted from the networks 

formed particularly by normalized partial directed coherence. This delivers promising 

distinctive features of the MI tasks for non-invasive BCI applications.
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ABSTRAK

Kajian terkini mengenai interaksi antara otak dan komputer (BCI) berasaskan imaginasi 

motor (MI) melaporkan bahawa, interaksi antara bahagian otak yang berasingan dalam bentuk 

kesalinghubungan secara berfungsi atau berkesan dapat memberikan gambaran yang lebih baik 

bagi corak neural otak berhubung semasa pegerakan MI, dan dapat menghasilkan ciri-ciri yang 

berguna untuk sistem BCI. Walau bagaimanapun, kajian sedia ada bergantung kepada andaian 

yang tidak realistik atau mempunyai kelemahan dari segi teknikal bagi pemprosesan isyarat otak 

seperti sifat kepegunan, kelinearan dan rangka kerja analisis bivariat. Di samping itu, kesan 

isipadu konduksi adalah cabaran yang kritikal dalam bidang kajian ini dan peranan bahagian 

subkortikal dalam analisis kesalinghubungan tidak dipertimbangkan dan dikaji dengan baik. 

Dalam tesis ini, corak kesalinghubungan neurofisiologi bagi otak manusia yang sihat semasa 

pergerakan MI yang berlainan dikaji secara mendalam. Pada mulanya, suatu model mudah suai 

tidak linear multivariat ruang-keadaan yang dikenali sebagai lanjutan penapis Kalman duaan 

dicadangkan untuk menganggar bentuk kesalinghubungan. Beberapa penganggar 

kesalinghubungan berfungsi dan berkesan berdomain frekuensi dibangunkan untuk isyarat tidak 

linear tidak pegun. Keputusan penilaian menunjukkan prestasi pengesanan parameter yang lebih 

baik dan analisis kesalinghubungan lebih tepat diperolehi daripada model yang telah diusulkan. 

Yang kedua, sumber-ruang pada masa yang berbeza-beza dengan model multivariat tidak linear, 

kesalinghubungan otak semasa pergerakkan MI kaki, tangan kiri, tangan kanan dan lidah dikaji 

dalam julat frekuensi yang luas dengan menggunakan penganggar kesalinghubungan yang telah 

dibangunkan. Keputusan mendedahkan persamaan dan perbezaan di antara tugas-tugas MI dari 

segi bahagian yang terlibat, ketumpatan interaksi, taburan interaksi, hubungan berfungsi dan 

aliran maklumat. Akhir sekali, prinsip organisasi jaringan otak semasa pergerakkan MI diukur 

dengan semua penganggar kesalinghubungan yang telah diambil-kira, serta dikaji secara meluas 

dengan pendekatan teori graf di mana, struktur lokal dan global graf diukur dengan mengira 

perbezaan indeks graf. Keputusan melaporkan perbezaan yang signifikan secara statistik antara 

tugas-tugas MI dengan menggunakan indeks graf diekstrak daripada jaringan yang terbentuk 

terutamanya oleh separa koheren berarah yang dinormalkan. Ini memberikan ciri-ciri tersendiri 

yang baik bagi tugas MI untuk aplikasi BCI yang tidak invasif.
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CHAPTER 1

INTRODUCTION

1.1 Overview

1.1.1 Brain Com puter Interface

Brain computer interface (BCI) is a state-of-the-art technology that translates 

neuronal activities into user commands. This topic was introduced over 40 years ago 

[1] however it has considerably developed recently and there is a continuous increase 

in the number of research groups focusing on this area [2, 3]. It provides a 

communication and control channel between the brain and external environment 

which does not depend on the brain’s normal output pathways of peripheral nerves 

and muscles so that it offers an effective assistance to individuals with motor 

disabilities [3]. BCIs are of great value to the rehabilitation engineering and assistive 

technology where the use of prosthetics, robots and other devices fully controllable 

by mental intentions have become a reality [4]. These systems have a direct positive 

influence on the life quality of the disabled and also offer new modes of human 

machine interaction for both disabled and healthy users such as music generation [5] 

or computer game control [6]. Nowadays, more complex devices including orthoses, 

prostheses, robotic arm and mobile robots [7-12] can be controlled by modern BCI 

systems.



Generally, BCIs measure neurophysiologic signals, process them and produce 

control signals that reflect the user’s intent. BCIs can be categorized based on 

measuring brain neural activities through different neuroimaging techniques among 

which electroencephalographic (EEG)-based BCI is very well established and 

accepted for practical applications as well as clinical and research settings for 

decades. This is because EEG equipment is inexpensive, lightweight, portable, non- 

invasive with minimal clinical risks, user friendly and comparatively easy to apply 

[13, 14]. It can provide signals with high temporal and low spatial resolution with 

limited frequency range [15]. However, spatial resolution can be increased by means 

of more electrodes and the existent frequency range is enough for BCI purposes.

EEG-based BCI systems detect the existence of particular patterns in a 

person’s ongoing brain activity that relates to the person’s intention to start control 

and then translate these patterns into meaningful control commands. Figure 1.1 

illustrates an EEG-based system components and steps.

Figure 1.1 A typical EEG-based BCI components [16].

In the depicted system, the user’s brain activity is recorded by the electrodes 

placed on the head via an electrode cap. Then, the signals transmit from electrodes 

to the biosignal amplifier to convert the brain signals from analog to digital format. 

After that, the digital signals are processed in a computer in the following steps. 

Artifacts are removed from attained signals after they have been amplified to
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increase the signal-to-noise ratio. In order to generate the most prominent signal 

values known as features, signal enhancement, feature extraction and feature 

selection techniques are considered. Feature translator aims to transform the 

provided features into logical control signals commonly in the two stages of 

classification and post-processing. The former targets to distinguish different 

patterns and classifies them into separate groups while the latter aims to reduce the 

number of error activations of the system.

In BCI systems, electrophysiological sources refer to the neurological 

mechanisms or processes employed by a BCI user to generate control signals. 

Current BCIs are grouped into seven major categories based on the 

neuromechanisms and recording technology they use [16]. These are sensorimotor 

rhythms, P300 evoked potentials, visual evoked potentials, slow cortical potentials, 

activity of neural cell, response to mental tasks and multiple neuromechanisms. BCI 

based on sensorimotor rhythms is known as Motor Imagery (MI) BCI, a type of 

endogenous EEG-based BCI which is much more suitable for BCI [15] and is 

focused in this thesis.

1.1.2 M otor Im agery-based BCI

Imagination of doing something is an important cognitive process that occurs 

throughout lifespan. MI which refers to the act of imagining a specific action without 

actually executing it, has fascinated scientists from a wide range of domains 

including sport sciences, psychology, neuroscience and neural engineering. MI has 

been defined as the conscious mental simulation of actions involving brain’s motor 

representations similar to when actually perform movements [17]. This has led to the 

suggestion that MI and motor execution rely on similar neural structures and 

processes [17-20]. Moving a limb or the imagination of limb movement changes the 

brain activity in the cortex and results in different EEG patterns [21]. The BCIs 

based on MI are known as MI-BCI where each mental task is associated with one of 

the commands to the external device. In MI-BCI, subjects are asked to haptically
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imagine movements of certain limbs, e.g., the left or the right hand. Then, in order 

to produce the commands, the operator switches voluntarily between corresponding 

mental tasks in either synchronous (cue-paced) or asynchronous (self-paced) mode.

Brain oscillations are typically categorized according to the specific 

frequency bands: delta is < 4 Hz, theta is 4-7 Hz, alpha is 8-15 Hz, beta is 16-30 Hz 

and gamma is > 30 Hz. Alpha activity recorded from sensorimotor (somatosensory 

and motor) areas is also called mu activity. Increase/decrease of oscillatory activity 

in a specific frequency band is called event-related 

synchronization/desynchronization (ERS/ERD). Previous studies have indicated that 

when the subject performs or even imagines limb movement, specific frequency 

components of EEG such as the mu and central beta rhythms are (de)synchronized 

over the contralateral (ipsilateral) sensorimotor area [21-23]. Besides, depending on 

the part of the body imagined to be moved, the amplitude of multichannel EEG 

recordings exhibits distinctive spatial patterns [24]. Therefore, most of early studies 

on MI-BCI have employed features of single channels for movement pattern 

discrimination such as amplitude values like autoregressive (AR) model coefficients, 

frequency based features like quantification of ERS/ERD using band power (BP) and 

time-frequency maps of cortical activity at specific regions [25].

1.1.3 Challenges and Limitations of Conventional M I-based BCI

Although promising results and achievements have been reported in the 

literature by using the mentioned EEG features, yet there remain many challenges 

and barriers to use this technology easily and effectively for the intended 

beneficiaries i.e. those who require an alternative means of communication/control 

such as people with neuromuscular deficiencies due to disease, spinal cord injury or 

brain damage. It has been shown that the motor imagery responsive frequency bands 

are not consistent for inter- and intra-subjects [26] which indicates the instability of 

such BCIs. ERD/ERS analysis for different subjects has proven to be complex since 

it occurs in different parts of the cortex, at different frequencies and during different
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time intervals which leads to difficulty when extracting features for classification 

[27]. As EEG data is often of low amplitude and noisy, there is no consistency in the 

patterns among different subjects and the arising patterns can change within a session 

for the same subject [27].

It has been reported that activity invoked by imagination of limb movements 

is located on contralateral side of somatosensory cortex and only few electrodes have 

been employed (C3, C4, Cz) to capture the corresponding EEG patterns in such areas 

[28, 29]. However, other studies showed that somatosensory stimuli suppressed mu 

rhythms at both the contralateral and the ipsilateral somatosensory cortex [30, 31]. In 

addition, the positions of ERDs are not necessarily beneath electrodes C3 and C4 

[32]. Several EEG studies also further confirmed the notion that MI can activate 

primary sensorimotor areas [33-35]. Other researchers have tended to show that 

during the performance of cognitive tasks many different parts of the brain are 

activated and communicate with one another, thus making it difficult to isolate one 

or two regions where the activity takes place [36]. For instance, it has been 

demonstrated that the supplementary motor area (SMA), prefrontal area, premotor 

cortex, cerebellum and basal ganglia are activated during both movement execution 

and imagination [37-41]. Moreover, the role of primary motor cortex has been 

widely reported in numerous brain imaging studies explored by EEG [33-35, 42-48], 

functional magnetic resonance imaging (fMRI) [49-69], magnetoencephalography 

(MEG) [34, 70], positron emission tomography (PET) [71-73] and near infrared 

spectroscopy (NIRS) [74, 75].

Another observed limitation is that foot movement imagery invokes activity 

over Cz and a distinction between left and right foot movement is not possible 

because the corresponding cortical areas are too close [15]. Similarly, ERD/ERS 

patterns of individual fingers cannot be discriminated [15]. It was concluded that to 

produce detectable patterns, the cortical areas involved have to be large enough so 

that the resulting activity is sufficiently prominent compared to the remaining EEG. 

Hand areas, foot areas and the tongue area are comparatively large and 

topographically different. Therefore, current MI-based BCIs are limited in 

imagination of only four movements: left hand, right hand, feet and tongue [76].



However, a flexible and applicable BCI requires more control commands.

Study evidences on stroke patients revealed their ability to perform MI 

despite chronic or severe motor impairments [77-79], but patients with lesions in the 

parietal and frontal cortices have difficulty in performing MI [79, 80]. These studies 

showed that the portion of the brain that is responsible for generating ERD/ERS in 

MI-BCI could be compromised. Hence, the issue remains as whether stroke patients 

are practically capable of operating MI-BCI effectively. Although some promising 

findings have shown the reliability of MI-BCI in stroke rehabilitation [81-85], there 

is a lack of long-term evidence to support its clinical relevance. Besides, no 

successful communication has been established through BCI with a completely 

locked-in subject. Therefore, the most challenging part in MI-based BCI researches 

is during the communication with such patients, for which the reason is still 

unknown. Cognitive deficits in completely locked-in patients cannot be ruled out at 

present as the cause of this failure. It may be from abnormal brain activities in 

patients with severe disabilities alike in late stages of amyotrophic lateral sclerosis

[86]. It is possible that intentionally induced BP changes in the electric field of the 

brain reduce in these subjects [87].

One of the most possible and inevitable reasons of aforementioned 

weaknesses and limitations of MI-based BCI is the use of temporal-spectral MI EEG 

features from individual channels for discriminating different MI patterns as they 

may not provide enough information. Consequently, a better understanding of brain 

neural dynamic patterns behavior is essential for providing more useful and 

informative features for BCIs. It is well known that the execution of even simple 

motor and/or cognitive tasks by the brain requires the participation of multiple 

cortical regions which are mutually interconnected and exchange information via 

plastic long-range synapses [88]. Hence, knowledge of brain connectivity has 

become an essential aspect of modern neuroscience especially for understanding how 

the brain realizes its basic functions and what the role of different regions is. 

Accordingly, it is expected that different cognitive tasks like MI of different limbs 

are associated with different connectivity patterns among brain regions. Therefore, a 

promising approach for solving the mentioned limitations is to consider the
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relationships among inter-channels/sources brain signals by measuring connectivity 

of spatially distributed regions during MI movements. These connectivity patterns 

can be detected from EEG recordings and thus offer a new type of feature space for 

inferring a subject’s intention. This research proposes source-space adaptive 

nonlinear multivariate brain connectivity analysis during MI movements by Dual 

Extended Kalman Filter (DEKF) method. Moreover, significant information from the 

estimated brain neural network during different MI movements is extracted by means 

of graph theoretical approach.

1.2 Background of Problems

The human brain performs its sensory and cognitive functions by 

dynamically employing highly complex and interlaced neuronal networks. In BCI 

context, better understanding of these network functions may open insight into 

neurophysiological mechanisms of different motor tasks and may deliver more 

efficient features to enhance the system performance. In this regard, several studies 

have performed MI brain connectivity analysis to be used for BCI (review is 

provided in Chapter 2).

One of the most critical challenges of brain connectivity analysis is volume 

conduction (VC) effect (completely explained in Chapter 2) which can give rise to 

spurious instantaneous correlations between scalp EEG signals and potentially lead 

to misinterpretation of sensor-space EEG analysis [89]. In this regard, literature 

shows that (refer to Table 2.1) some studies did not take into account the possible 

VC effects which might lead the authors to misinterpretation in brain connectivity 

analysis [28, 90-102].

The most conventional way of estimating the brain connectivity is by 

evaluating the phase relations by a pair-wise (bivariate) estimation of coherence or 

covariance. The direction of EEG propagation was estimated using a two-channel 

AR model [103]. The concept of Granger causality (GC) [104] was applied to
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determine the propagation of EEG activity between two channels at a time [105, 

106]. Bivariate GC formulates the problem in such a way that if  a time series X.  ̂( )̂

contains information in past terms that helps in the prediction of X  ( t) , and this

information is contained in no other time series used in the predictor, then X^ ( t ) is

said to cause X  ( t). It has been shown that bivariate methods for the assessment of

directionality are likely to give misleading results, no matter if  they are based on 

phases of bivariate coherence or bivariate GC measure [107]. When two or three 

sources are acting simultaneously, which is a quite common situation, dense and 

disorganized structure of connections is obtained, similar to random structure. 

Therefore, the results reported by most of previous studies on MI brain connectivity 

analysis might be violated by this issue. Accordingly, multivariate measures derived 

from multivariate autoregressive (MVAR) modeling of multichannel EEG signals 

have been proposed. In this case, not only one but some time series, vector Y (t ),

contain information in past terms that helps in the prediction of time series X  (t ) ,

then Y (t ) is said to cause X ( t ). MVAR models have been widely applied for

neurophysiological connectivity analysis, [108-112] and can be used to obtain 

several different measures of connectivity [113-116]. Although this technique has 

been proved as a superior method to estimate connectivity measures compared to 

bivariate methods [107]; it only captures the linear interactions among time series. 

However, many crucial neural processes like EEG have nonlinear characteristics 

(e.g. the regulation of voltage-gated ion channels corresponds to a steep nonlinear 

step-function relating membrane potential to current flow) [117]. In order to interpret 

the amount of transmission of nonlinear information among brain regions and its 

functional role, it is important to consider the physiological basis of the signal, which 

is likely to be nonlinear. So, nonlinear brain connectivity analysis may reveal the 

hidden interactions and provide complementary information of brain neural network 

during different motor tasks. However, most of MI-BCI studies have just 

investigated the linear brain connectivity. There are a few approaches that have 

applied phase locking value (PLV) index to measure the nonlinear interactions [24, 

28, 90, 94, 95, 102, 118, 119] however they have other limitations such as unrealistic 

assumptions (e.g. stationarity of EEG signals) and methodological defect (e.g. 

bivariate analysis). Moreover, PLV is a phase-based connectivity estimator; while it
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has been widely reported that frequency-based estimators are more efficient for the 

analysis of EEG data since the activity of neural populations is often best expressed 

in this domain [120, 121].

A significant drawback of conventional MVAR is that the connectivity 

measures are fixed with time and computed from MVAR models with constant 

coefficients fitted over the entire time-course, assuming brain as static or stationary 

process. This shortcoming has been observed in some of previous studies on MI 

brain connectivity analysis [28, 90, 97, 100-102, 118, 119, 122]. However, an 

important property of brain is its dynamic (time-variant) behavior during any task 

therefore analyzing brain connectivity within a static (time-invariant) framework or 

stationarity assumption is incompatible with the well-known dynamical condition- 

dependent nature of brain activity and leads to misinterpretation of the results. A 

number of algorithms have been proposed for fitting MVAR models to non- 

stationary signals, known as adaptive MVAR (AMVAR) or time-varying MVAR 

(TV-MVAR). In modern neuroscience, the most popular approaches include 

segmentation (overlapping sliding-window) [123, 124] and state space approaches 

[125, 126]. Segmentation-based AMVAR models apply a sliding window of length 

W  from the multivariate dataset with length T , and fit a MVAR model to this data. 

Then, the window by a quantity Q is incremented and the procedure is repeated until 

the start of the window is greater than T -  W . This technique has been recently 

utilized for single-trial connectivity estimation for classification of two MI tasks in 

BCI [127]. Although this technique produces MVAR coefficient matrices that 

describe the evolution of the MVAR process across time, the local stationarity of 

each window is still assumed and this may not be able to detect rapid parameter 

changes of brain activity. State space models (SSMs) on the other hand are the 

AMVAR models where the AR coefficients vary instantaneously with time. SSM 

provides a general framework for analyzing deterministic and stochastic dynamical 

systems that are measured or observed through a stochastic process. Although this is 

a powerful technique for dealing with non-stationarity of neurophysiological signals, 

there are very limited studies [128, 129] of applying SSMs for brain connectivity 

analysis in the literature and there is no study of using SSMs for brain connectivity 

analysis during MI movements. The SSM consists of two components: (1) state
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equation which models the dynamics of the hidden states } where t is the discrete 

time index, typically following a Markov process and (2) observation equation which 

describes the mapping of the hidden states to the observations [ y }. In SSMs,

conventionally, the estimators of the TV-AR coefficients are obtained sequentially in 

time using Kalman filter (KF), which is an optimal algorithm in mean-square sense 

for inferring linear Gaussian systems. This technique assumes linear model for 

connectivity analysis which is inappropriate for the complex real processes that 

typically exhibit nonlinearity. When the model is nonlinear, the KF cannot be applied 

directly and requires a linearization of the nonlinear model at each time step. This 

algorithm is called the extended Kalman filter (EKF), and effectively approximates 

the nonlinear function with a time-varying linear one. Nonlinear SSM poses the dual 

estimation problem [130] that can be solved by dual Kalman estimation, known as 

DEKF. This technique has been recently employed to investigate the newborn brain 

neural connectivity during sleep [131].

Different types of functional and effective connectivity measures were 

considered to analyze the brain network in the literature. Most of these approaches 

only studied the mechanisms of functionally related of spatially distinct neuronal 

groups during particular tasks known as couplings which are measured by functional 

connectivity measures either in phase or frequency domain. Literature shows that 

effective connectivity analysis has not been studied well yet on different MI 

movements.

Conventional brain connectivity-based MI-BCI studies have been focused to 

discriminate different MIs by considering the connectivity measures as feature sets 

and employing machine learning algorithms for classification. However, a deep 

study of organization principals of brain networks which can reveal interesting 

characteristics and differences of various MI movements has been neglected. 

Recently, graph theoretical approach as an efficient tool in modern neuroscience has 

enabled the researchers to explore many important statistical properties underlying 

the topological organization of the human brain while performing different motor
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tasks. This powerful mathematical framework can be used to characterize and 

compare the brain network of different MI tasks.

Almost all studies in the literature have investigated the brain connectivity 

only among different sensors at scalp or regions at cerebral cortex while the roles of 

subcortical regions as well as deep brain structures have been neglected. However, it 

has been shown that cerebellum and basal ganglia [132, 133] are activated during 

both movement execution and imagery.

To the best of author’s knowledge, there are no studies on applying adaptive 

nonlinear state-space models estimated by DEKF and graph theoretical approach for 

source-space brain connectivity analysis during different MI tasks in BCI context.

1.3 Statem ent of Problems

The problems of the research are summarized as follows:

1) There are very few studies on brain connectivity analysis during MI tasks in 

BCI context. In this regards, differences of brain neural network among 

several MI tasks particularly in form of effective connectivity has not been 

well investigated yet.

2) Existing studies either at sensor or source level examined the brain 

connectivity only among different regions at cerebral cortex and the roles of 

subcortical regions as well as deep brain structures have been neglected.

3) Volume conduction effect as one of the most challenging problems in EEG- 

based MI brain connectivity analysis has not been taken into account in several 

previous studies.
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4) Existing studies on frequency-dependent connectivity analysis have assumed 

inappropriate linear static interaction among brain regions. Some researches 

applied short-time window-based AMVAR approach to deal with EEG non- 

stationarity; however, this method assumes that the signals are locally 

stationary in short time intervals and therefore they are limited in tracking 

rapid parameter changes and cannot provide high resolution time-frequency 

connectivity representations.

5) Several existing studies have estimated brain connectivity in bivariate (pair­

wise) framework which suffers the estimation of spurious functional links.

6) A deep study of organization principals of brain networks which can reveal 

interesting characteristics and differences of various MI movements has been 

neglected.

1.4 Research Hypothesis

The main hypotheses of this research are as follows:

1) Nonlinear SSM-based TV-MVAR is a superior model for estimating dynamic 

connectivity for detecting neurophysiological nonlinear interactions and rapid 

parameter changes.

2) A better understanding of the brain mechanisms during MI tasks using DEKF 

and nonlinear connectivity estimators across time and frequency should reveal 

(1) the neurophysiological properties of brain (2) the time-varying connectivity 

pattern (3) the similarities and the differences within MI tasks and (4) the 

unique connections of each MI task.
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3) Local and global graph indexes can reveal different properties underlying the 

brain topological organization during different MI tasks which should provide a 

clearer picture of similarities and (statistical significant) differences.

1.5 Objectives

In this research, a better understanding of the underlying mechanisms 

involved in different MI tasks that requires the knowledge of how the co-activated 

brain regions interact with each other is explored. The main objective of this thesis is 

to investigate the neurophysiological pattern of healthy human brain during different 

MI movements by taking into account the brain dynamic nonlinear 

functional/effective interactions in frequency domain. Besides, topological 

organization of the estimated brain networks is quantified and studied using graph 

theoretical approach. This includes the following sub-objectives:

1) To evaluate the robustness of DEKF for detecting nonlinear interactions and 

tracking fast parameter changes. And to develop several frequency-based non­

linear connectivity estimators.

2) To recover and localize the MIs source signals for studying brain 

neurophysiological behavior by estimating dynamic nonlinear brain 

interactions using DEKF and the developed connectivity estimators within a 

broad frequency range.

3) To construct and characterize the estimated brain network of each MI task 

using graph theoretical approach to reveal the similarities and (statistical 

significant) differences within MI tasks.
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1.6 Scope

The scope of this research is given as follows:

1) Using only a nonlinear AMVAR model in SSM framework for estimating the 

time-varying interactions.

2) Dataset of healthy subjects containing four MI movements, feet, left hand, 

right hand and tongue is used.

3) Source space analysis is considered for MI brain connectivity analysis.

4) Equivalent current dipoles corresponding to source signals are localized by 

DIPFIT technique.

5) Brain interactions are estimated by three functional and one effective 

connectivity estimators Coherence, imagery Coherence, partial Coherence and 

normalized partial directed Coherence.

6) Brain connectomes are characterized by graph indexes degree, strength, 

density and efficiency in order to study brain underlying organization.

7) All processing steps including stimulations and EEG signal analysis are carried 

out offline.

1.7 Significance of Study

BCI systems are of great value to the rehabilitation engineering and assistive 

technology, prosthetics, robots and other devices for people with neuromuscular 

deficiencies due to disease, spinal cord injury or brain damage. MI-based BCI needs 

to detect the correct brain patterns of different MI tasks and transform them to the
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interested control commands. Brain connectivity analysis is a promising approach to 

provide more clear patterns of each motor function and deliver more efficient and 

accurate BCIs. Estimating true brain connectivity requires a complete mathematical 

model that can reflect the realistic behavior of brain activity such as non-stationarity 

and nonlinearity. This research proposes a robust nonlinear AMVAR model in state 

space framework to carefully study brain network by estimating functional and 

effective connectivity measures during different MI tasks. Moreover, graph 

theoretical approach is implemented to characterize the brain networks topology to 

explore the brain organization during MI tasks and find significant differences 

among them.

1.8 Research Contributions

The main objective of this thesis is to investigate the neurophysiological 

pattern of healthy human brain during different MI movements by taking into 

account the brain dynamic nonlinear functional/effective interactions in frequency 

domain and applying graph theoretical approach to quantify the estimated brain 

networks and reveal the significant within MI tasks. Therefore, the current research 

targets to develop the frequency domain multivariate adaptive nonlinear brain 

connectivity estimators in SSM framework for MI brain source connectivity analysis 

in conjunction with graph theoretical approach. So, the following contributions are 

achieved.

i. DEKF has proven as a superior method to study time-varying nonlinear 

modeling of neurological signals.

ii. Four frequency domain brain connectivity estimators Coh, iCoh, pCoh and 

nPDC are developed for studying any non-stationary and nonlinear 

neurophysiological data.

iii. For the first time, brain source signals of four different MI tasks are 

reconstructed and localized for studying nonlinear dynamic brain



connectomes using DEKF and the developed connectivity estimators within a 

broad frequency range.

iv. For the first time, the brain networks of four MI tasks are constructed and 

characterized using graph theory to identify the similarities and (statistical 

significant) differences within all tasks.

1.9 Outline of the Thesis
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Chapter 1 introduces the research study including introductory materials 

(research overview, background of problems, statement of problems, research 

hypothesis, objectives, scope, significance of study and contributions of the 

research). Chapter 2 provides a comprehensive literature review related to this 

research. Chapter 3 proposes an adaptive nonlinear multivariate state-space model, 

dual extended Kalman filter, for connectivity pattern estimation. Besides, time- 

varying nonlinear frequency domain connectivity estimators are computed. Chapter 4 

deeply investigates time-varying nonlinear multivariate brain connectivity for 

studying couplings and information flows among the brain regions during four 

different motor imagery tasks. In Chapter 5, organizational principles of brain 

networks of different MI movements are extensively explored by graph theoretical 

approach. Chapter 6 concludes the thesis and presents the possible future directions.
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