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ABSTRACT 

Magnesium (Mg) has shown great promise as a potential biocompatible and 

biodegradable implant material. Some of its unique properties include high 

strength/weight ratio and closer elastic modulus to that of the human bone. However, 

in a pure state, its in-vivo corrosion is too rapid to be used for implants. Hydrogen 

evolution during degradation leads to the elevation of body fluid pH which causes 

infection or inflammation and delaying tissue healing process. Despite many studies 

to improve the corrosion resistance of pure Mg, reports on sodium hydroxide (NaOH) 

and polydopamine (PDA) pre-treated Mg followed by calcium-phosphate (Ca-P) 

coating using electrodeposition (ED) technique are hardly found in the literature 

especially fluoridated hydroxyapatite (FHA) coating. This research is aimed to 

improve the corrosion resistance of Mg by NaOH and PDA pre-treatment followed by 

different phases of Ca-P coatings. In the first stage, pure Mg was pre-treated with 

NaOH (1M, 30 minutes) and PDA (2 mg/ml in 10 mM Tris buffer, pH 8.5). In the 

second stage, different phases of Ca-P were coated on the pre-treated specimens using 

ED technique with two different electrolytes at current density equal to 1 mA/cm2 for 

60 minutes at room temperature. The pre-treated and coated specimens were analysed 

using X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, 

attenuated total reflectance-Fourier transform infrared spectroscopy, scanning 

electron microscopy, energy dispersive X-ray spectroscopy and optical microscopy. 

The specimens were also evaluated on their surface roughness, water contact angle 

and scratch hardness. In addition, corrosion behaviours of specimens were analysed 

using potentiodynamic polarization and in-vitro immersion tests. Results in the first 

stage showed that both pre-treatments decreased the corrosion rate of Mg, in particular 

coated substrates with PDA by almost 27 folds. PDA pre-treatment also improved 

surface properties by reducing water contact angle and increasing surface roughness 

by 2.3 and 4.5 folds respectively as compared to pure Mg. In the second stage, the 

results showed that dicalcium-phosphate dihydrate (DCPD) and FHA were formed on 

NaOH pre-treated specimens. It was found that DCPD coatings required post-

treatment to convert DCPD to hydroxyapatite (HA). However, HA and FHA were 

able to be deposited directly on the PDA pre-treated specimens without requiring any 

post-treatment. In terms of adhesion strength between the Ca-P coatings and the 

substrates, PDA pre-treatment specimens were superior than NaOH pre-treatment. 

Comparing between FHA and HA coatings on both pre-treatments, FHA coated 

specimens demonstrated higher corrosion resistance and surface roughness. It is 

believed that by introducing fluorine into the coating, it stabilizes and increases the 

crystalline structure of FHA. The corrosion resistance of FHA-PDA coated Mg 

improved significantly (approximately 62 folds) as compared to uncoated pure Mg. 
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ABSTRAK 

Magnesium (Mg) telah menunjukkan potensi besar sebagai bahan implan 

bioserasi dan biodegradasi. Antara ciri-ciri unik magnesium termasuklah nisbah 

kekuatan/berat yang tinggi dan modulus elastik yang hampir sama dengan tulang 

manusia. Walaubagaimanapun, kakisan in-vivo Mg tulen terlalu pantas untuk 

digunakan sebagai implan. Pembebasan hidrogen semasa degradasi menjurus kepada 

peningkatan pH bendalir badan yang menyebabkan jangkitan atau inflamasi dan 

melambatkan proses penyembuhan tisu. Walaupun terdapat banyak kajian untuk 

meningkatkan ketahanan kakisan Mg tulen, namun laporan tentang pra-rawat Mg 

dengan sodium hidroksida (NaOH) dan polidopamin (PDA) diikuti salutan kalsium 

fosfat (Ca-P) menggunakan teknik elektroenapan (ED) sukar untuk dijumpai dalam 

literatur terutamanya salutan hidroksiapatit berflorida (FHA). Kajian ini bertujuan 

untuk meningkatkan rintangan kakisan Mg melalui pra-rawat NaOH dan PDA diikuti 

dengan salutan Ca-P dengan fasa berbeza. Dalam peringkat pertama, Mg tulen telah 

dipra-rawat dengan NaOH (1M, 30 minit) dan PDA (2 mg/ml dalam 10 mM Tris 

penampan, pH 8.5). Dalam peringkat kedua, Ca-P dengan fasa berbeza telah disalut 

pada spesimen pra-rawat menggunakan kaedah ED dengan dua elektrolit yang 

berbeza pada ketumpatan arus bersamaan dengan 1 mA/cm2 selama 60 minit pada 

suhu bilik. Spesimen pra-rawatan dan yang disalut telah dianalisis dengan 

menggunakan spektroskop fotoelektron sinar-X, pembelauan sinar-X, pantulan 

lemah-spektroskop inframerah Fourier, mikroskop imbasan elektron, spektroskop 

tenaga serakan sinar-X dan mikroskop optik. Kekasaran permukaan, sudut sentuh dan 

kekerasan gores spesimen turut dinilai. Sebagai tambahan, tingkah laku kakisan 

spesimen telah dianalisis dengan menggunakan ujian polarisasi upayadinamik dan 

rendaman in-vitro. Keputusan peringkat pertama menunjukkan kedua-dua pra-

rawatan mengurangkan kadar kakisan Mg, khususnya yang disalut dengan PDA, 

sehingga hampir 27 kali ganda. Pra-rawatan PDA juga menambah baik sifat 

permukaan dengan mengurangkan sudut sentuh sehingga 2.3 kali ganda dan 

meningkatkan kekasaran permukaan sehingga 4.5 kali ganda. Dalam peringkat kedua, 

keputusan menunjukkan dikalsium fosfat dihidrat (DCPD) dan FHA telah terbentuk 

pada spesimen pra-rawat natrium hidroksida. Didapati bahawa salutan DCPD 

memerlukan pasca-rawatan untuk menukar DCPD ke hidrokisapatit (HA). 

Walaubagaimanapun, HA dan FHA boleh dienap secara terus ke atas spesimen pra-

rawat PDA tanpa memerlukan sebarang pasca-rawatan. Dari segi kekuatan lekatan 

antara salutan Ca-P dan substrat, spesimen pra-rawatan PDA lebih baik daripada pra-

rawatan NaOH. Perbandingan antara salutan FHA dan HA terhadap kedua-dua pra-

rawatan mendapati spesimen yang disalut dengan FHA menunjukkan ketahanan 

kakisan dan kekasaran permukaan yang tinggi. Adalah dipercayai bahawa dengan 

mencampurkan florin ke dalam salutan dapat menstabilkan dan meningkatkan struktur 

kristal FHA. Ketahanan kakisan Mg yang disalut dengan FHA-PDA telah meningkat 

dengan ketara (hampir 62 kali ganda) jika dibandingkan dengan Mg tulen yang tidak 

disalut.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Research 

Replacing body parts is not new knowledge. The Etruscans, inhabitant of 

Etruria, replaced body parts like missing teeth. They used oxen bone as carved 

artificial teeth (Taba et al., 2005). The use of biomaterials as a new science is about 

100 years old, when different type of metal depends on applications and properties 

used for bone fracture fixation in 1895 (Hermawan et al., 2011). One definition of 

biomaterials is any materials that interact with biological system or biomedical device 

which performs, replaces or restore a natural function to a body tissue (Xin et al., 

2011). Generally biocompatibility, cytotoxicity, and basic structure-properties are the 

important concern for biomaterials field.  

A wide range of materials, like metals, ceramics, polymers or natural material 

is used as biomedical materials or biomaterials (Muhonen, 2008). Metals and their 

alloys have been used widely as orthopaedic implants and bone graft substitutes, due 

to their high strength (elastic modulus larger than 100 GPa), fatigue and ductility; 

reasonable corrosion resistance and biocompatibility. Although, permanent metallic 

materials such as titanium alloys, stainless steel and cobalt-based alloys have important 

role in hard tissue implants, particularly in load-bearing applications (Wang et al., 

2012a), they have several limitations, which include proportionately higher elastic 

modulus compared to natural bone that has effect on new bone growth and potential 

of releasing corrosion products and even metallic ions into the body from these 
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materials. Moreover, these kinds of implants (permanent implants) do not degrade 

spontaneously into the human body (Chiu et al., 2007). 

In this sense, biometals with sufficient degradation rate and adequate tensile 

strength are attractive candidates as hard tissue (bone, dentine, and dental enamel) 

repairing implants. Biodegradable implants support tissue and after revival and healing 

of the tissue, degrade and replace by healed tissues (Witte et al., 2008) . Metals like 

magnesium (Mg) show potential for this purpose, especially as compared to 

biodegradable polymers such as polylactic acid and polyglycolic acid due to the poor 

mechanical properties of the latter (Tschon et al., 2009; Witte et al., 2006).  

Mg alloys have received a lot of interest in recent years. First of all by resorbing 

spontaneously, they reduce the cost and patient morbidity and infection by avoiding 

an implant removal surgery. Except admirable mechanical properties like high tensile 

and compressive strength, an elastic modulus that is closest to the human bone, Mg is 

a natural component of the body with noteworthy functions in human metabolism 

(Vormann, 2003). 1 mol (24g) of Mg can be found in human body. Mg is cofactor for 

many enzymatic reactions and metabolism processes like protein synthesis and 

stabilization of DNA and RNA (Hartwig, 2001; Staiger et al., 2006). Biocompatibility 

of Mg has been reported by several researchers (Henderson et al., 2013; Willbold et 

al., 2013; Witte et al., 2006; Witte et al., 2005; Witte et al., 2007b). Without any 

toxicity, irritation and allergy, releasing Mg during degradation even have beneficial 

effect like enhance new bone formation (Saris et al., 2000; Xu et al., 2007). 

The main challenge for Mg is corrosion kinetics in vivo that is faster than bone 

healing. Rapid release of degradation products, hydrogen gas production and gas 

bubble formation postpone tissue healing (Staiger et al., 2006). Inasmuch, various 

methods including purification, alloying, anodising, and surface coating are utilized 

for improving degradation resistance of Mg implants (Dorozhkin, 2014). Except the 

mechanical properties, biocompatibility may be affected by alloying due to toxicity 

potential of elements (Witte, 2010; Wong et al., 2010).  
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Surface treatment and coating can improve corrosion resistance (Abdal-hay et 

al., 2013; Jamesh et al., 2012). Various methods like electroless coating (Ambat and 

Zhou, 2004), biomimetic coating (Yanovska et al., 2012a), laser surface melting (Guan 

et al., 2009), laser surface cladding (Jun et al., 2006) plasma spraying (Yang et al., 

2010b), pulse laser deposition (Khandelwal et al., 2013), sol–gel (Jafari et al., 2013), 

electroplating (Zhu et al., 2006) and electrophoretic deposition (Jamesh et al., 2012) 

are used for coating different materials on Mg. Electrodeposition (ED) with benefits 

like capability of coating complex-shaped implants and simplicity in instrumentation 

is a capable technique to enhance the corrosion resistance as well as biocompatibility. 

This method has been used for coating ceramics such as HA onto metal like titanium 

or stainless steel, but there is lack of study for coating ceramics on Mg by ED (Tian 

and Liu, 2014).  

In orthopaedic area, calcium phosphate (Ca-P) bioceramics have been applied 

because of osseointegration and biocompatibility. Among different types of Ca-P 

phases as dicalcium phosphate dihydrate (brushite, DCPD, CaHPO4 . 2H2O), 

Anhydrous dicalcium phosphate (monetite, ADCP, CaHPO4) octacalcium phosphate 

(OCP, Ca8H2(PO4)6 . 5H2O) and tricalcium phosphate (whitlockite, TCP, Ca3(PO4)2). 

However, hydroxyapatite (HA, Ca10(PO4)6(OH)2) and fluoridated hydroxyapatite 

(FHA, Ca10(PO4)6Fx(OH)2-x) are of greater interest because of their stability and  

bioactivity (Metoki et al., 2014; Shadanbaz and Dias, 2012). Moreover, FHA has 

higher stability and lower solubility compared to HA (Bianco et al., 2010; Roche and 

Stanton, 2014). In fact, fluoride (F-) is an essential element in human body and trace 

amount of fluoride can help mineralisation and crystallization of Ca-P to forming new 

bone and regeneration of osteoblastic cells (Chen and Miao, 2005; Kim et al., 2004; 

Meng et al., 2011).  

However, bonding between Ca-P coating and metallic substrate is poor and 

ready to crack and also Ca-P ceramic layer cannot sufficiently postpone Mg 

degradation in aggressive media (Bai et al., 2010; Iqbal et al., 2012). Therefore, other 

layers like polymer binders could be applied to improve adhesion and corrosion 

resistance. (Zhitomirsky et al., 2009). Biocompatible polymers are used to enhance the 

adhesion and corrosion resistance of Mg. Recently, surface properties are modified 
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based on mussel adhesive mechanism (Zhang et al., 2013). Polydopamine with 

catechol and amine groups is appropriate candidate for conjugation of Ca to substrate 

(Lee et al., 2007).  

Owing to the potentiality of dopamine in biomedical application, it is rarely 

reported about coating of dopamine film on metal implant surface. Therefore, the 

combination of dopamine film and Ca-P phases becomes an innovative coating on Mg 

surface. 

1.2 Statement of the Problem 

Mg has desirable properties as a biodegradable metal. However the problem of 

using Mg as implant is its high corrosion rate. Rapid degradation of Mg implants 

would emit high volume of hydrogen leading to swelling of tissue surrounding implant 

(Hiromoto et al., 2015). In addition, it would alkalinise the physiological environment 

adjacent implantation spot that causes inflammation (Wu et al., 2013). Most 

importantly, it would descend the integrity of the implant and weaken its mechanical 

strength in long term usage (Dorozhkin, 2014). As such, effort to increase the corrosion 

resistance of Mg for maintaining the mechanical properties during bone healing is 

essential. It has been reported that the healing time for untreated implants is higher 

than that for implants with treated surfaces (Shadanbaz and Dias, 2012). 

Coating of calcium-phosphate has been widely applied on metallic implants for 

reducing corrosion rate as well as improving osseointegration of bone. Prior to coating, 

magnesium implants have been pre-treated with various methods, i.e. 1) acid solution 

such as hydrofluoric acid (Meng et al., 2011), 2) alkaline solution such as sodium 

hydroxide at different temperatures (25 – 100 ˚C) (Grubač et al., 2013) and 

concentrations (1-10 M) (Weng and Webster, 2012) and 3) polymer solution such as 

polydopamine (Chen et al., 2015). These pre-treatments has demonstrated some 

success with improvement in corrosion resistance, good homogeneity and adhesion of 

apatite coating. Various coating techniques have been reported for coating calcium-
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phosphate on magnesium such as sol-gel  (Rojaee et al., 2013a), dip coating (Abdal-

hay et al., 2012) and electrodeposition (Guan et al., 2012). Compared to other coating 

techniques, electrodeposition has several advantages which includes controlled 

coating thickness and homogeneity, cheaper technique and able to be conducted at low 

temperature (Yang et al., 2010a). Despite many studies, reports on sodium hydroxide 

and polydopamine pre-treated magnesium followed by calcium-phosphate coating 

using electrodeposition technique are hardly found in the literature especially 

fluoridated hydroxyapatite coating. As such, the wettability properties, roughness, 

corrosion behaviours, and scratch hardness are unknown.  

1.3 Research Objectives 

The objectives of this research are:  

1. To investigate the effects of pre-treatments on the corrosion behaviour of 

Mg. 

2. To investigate the effects of electrodeposited fluoridated hydroxyapatite 

and hydroxyapatite coatings on corrosion behaviour of Mg. 

3. To characterise pure Mg pre-treated with NaOH and PDA and coated with 

fluoridated hydroxyapatite and hydroxyapatite. 

1.4 Research Scopes 

The research was conducted within the following scopes: 

i. Pure Mg was used as the substrate and it was pre-treated with sodium 

hydroxide (NaOH) and polydopamine (PDA). The concentration for NaOH 
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was limited to 1M and the immersion time was fixed to 30 minutes.  

Dopamine solution was prepared using 2 mg/ml in 10 mM Tris-HCl and the 

pH was fixed at 8.5 in 24 hours immersion. The pre-treatment was 

conducted at room temperature. 

ii. The surface morphology, wettability properties, roughness, corrosion 

behaviours were investigated before and after pre-treatments.  

iii. Electrodeposition (ED) method was used to coat DCPD, HA, FHA on pre-

treated Mg. The deposition was carried out using current density of 1 

mA/cm2 for 60 minutes at room temperature. 

iv. The coated specimens were analysed under X-Ray photoelectron 

spectroscopy, grazing incidence X-ray diffraction, attenuated total 

reflectance-Fourier transformed infrared spectroscopy, scanning electron 

microscopy, and energy dispersive X-ray spectroscopy, optical microscopy. 

v. Ca-P coated specimen properties were examined in terms of scratch 

hardness, roughness and wettability. 

vi. The corrosion behaviour of the uncoated and coated specimens were 

investigated using potentiodynamic polarization and immersion tests. 

Immersion test was conducted in simulated body fluids (SBF) for 2 weeks 

to evaluate the pH value, weight loss and ion concentration of Mg. 

1.5 Importance of Research 

Recently, Mg is regarded as a biodegradable material, has attracted much 

attentions in biomedical applications due to its potential in eliminating revision surgery 

after implantation. It would also be able to avoid inflammation between the tissue and 

implant. However, high degradation rate of this biodegradable material still a major 

concern that restricts its applications. Improvements in surface treatment and coating 
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technique are expected to reduce corrosion rate as well as expedites the healing time 

and promoting new bone growth. In addition, the overall cost of implant will reduce 

with decreasing unnecessary infection and patient morbidity. In general, the outcome 

of this study indirectly increase the sustainability aspect of biodegradable implant. 

1.6 Organization of the Thesis 

This thesis consists of five chapters which explain the related concepts to the 

topic as well as the achievements. Chapter one gives an overview of the current 

research like the statement of the problem, objectives, and scopes of the study as well 

as the research importance. Chapter two reviews the literature on biomaterials, 

classification of them and their properties. This is followed by focus in biodegradable 

magnesium and surface coatings. Chapter three presents the methodology of research 

and explains sample preparations and tests. It begins with experimental methodology 

and is followed by the instruments which are used. Chapter four demonstrates and 

discusses findings of the experimental works. The relevant information regarding the 

specimens and analysis are provided. In chapter five the findings of the research are 

concluded. Moreover, the suggested studies are recommended for further 

investigations. 
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