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ABSTRACT 

 

 

Epilepsy is a chronic brain dysfunction in which neurons and neuronal 

network malfunction cause symptoms of a seizure. A seizure is an abnormal 

electrical discharge from the brain appearing at a small area of the brain. The seizure 

affected zone loses its normal task abilities and might react uncontrollably. 

Electroencephalography (EEG) is one of the useful instruments in diagnosing many 

brain disorders like epilepsy. This non-invasive modality is used to localize brain 

regions involved during the generation of epileptic discharges. At present, many 

quantitative methods for identifying and localizing the epileptogenic focus from 

EEG have been invented by scientists around the world. Under quasi-static 

assumptions, Maxwell’s equations governing the spatial behaviour of the 

electromagnetic fields lead to Partial Differential Equations (PDE) of elliptic type in 

domains of R
3
.  This thesis presents a new method based on integrated new EEG 

source detection, Cortical Brain Scanning (CBS) with meromorphic approximation 

to identify the sources on the brain scalp, which have highly abnormal activities 

when a patient is having a seizure attack. Boundary measurements for meromorphic 

approximation method are considered as isotropic and homogeneous in each layer 

(brain, skull, and scalp). The proposed method is applied on simulated and published 

EEG data obtained from epileptic patients. The method can enhance the localizations 

of sources in comparison to other methods, such as Low Resolution Brain 

Electromagnetic Tomography (LORETA), Minimum Norm Estimation (MNE), and 

Weight Minimum Norm Estimate (WMNE), coupled with meromorphic 

approximation. Standard validation metrics including Root Sum Square (RSS), 

Mean Square Error (MSE), and Receiver Operating Characteristic Curve (ROC) are 

used to verify the result. The proposed method produces promising results in 

enhancing the source of localization accuracy of epileptic foci. 
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ABSTRAK 

Epilepsi adalah kegagalan fungsi otak yang kronik yang mana kegagalan 

neuron dan rangkaian neuron boleh menyebabkan gejala serangan sawan. Serangan 

sawan adalah keadaan di mana satu pelepasan elektrik yang tidak normal di kawasan 

kecil otak. Serangan sawan akan menyebabkan kehilangan keupayaan biasa dan 

mungkin berlaku tindak balas tanpa kawalan. Elektroensifalografi (EEG) adalah satu 

instrumen yang sangat berguna semasa mendiagnosis pelbagai gangguan otak, seperti 

epilepsi.  Modaliti tidak ceroboh digunakan untuk mengenal pasti kawasan otak yang 

terlibat semasa serangan sawan.  Pada masa ini, banyak kaedah kuantitatif untuk 

mengenal pasti dan mencari fokus sawan menggunakan EEG telah diciptakan oleh ahli 

sains serata dunia. Dengan andaian kuasi-statik, persamaan Maxwell di dalam 

pemodelan medan elektromagnetik menghasilkan Persamaan pembezaan Separa (PDE) 

jenis elliptik dalam domain R3. Tesis ini memaparkan kaedah terbaharu EEG pengesan 

sumber bersepadu, Imbasan Otak Korteks (CBS) dengan anggaran meromorfik bagi 

mengenal pasti sumber di atas kulit kepala yang menunjukkan aktiviti abnormal tinggi 

apabila pesakit diserang sawan. Pengukuran sempadan bagi kaedah anggaran 

meromorfik diandaikan isotrofik dan seragam pada setiap lapisan (otak, tengkorak dan 

kulit kepala). Kaedah yang dicadangkan digunakan terhadap data yang disimulasikan 

dan data EEG yang diperolehi dari pesakit sawan. Kaedah ini boleh membantu 

meningkatkan pencarian lokasi sumber berbanding dengan kaedah lain seperti 

Tomografi Electromagnetic Otak Resolusi Rendah (LORETA), Jangkaan Norma 

Minimum (MNE), dan Jangkaan Norma Minimum Berpemberat (WMNE) serta 

dipadankan dengan anggaran meromorfik. Pengesahan metrik piawai termasuk 

hasiltambah kuasa dua punca (RSS), purata ralat kuasa dua (MSE) dan lengkung cirian 

operasi penerima (ROC) digunakan untuk menentusahkan keputusan yang terhasil. 

Kaedah yang dicadangkan telah berjaya meningkatkan keyakinan dalam penentuan 

lokasi fokus sawan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Epilepsy is a chronic brain dysfunction in which neurons and neural network 

malfunction cause symptoms for a seizure. A seizure is an abnormal electrical 

discharge from the brain that appears at a small area of the brain.  Seizure causes a 

loss of normal task ability and might occur uncontrollably. Clinical research in 

neurophysiology intends to understand the mechanisms leading to disorder of the 

abilities of the brain and central nervous system in order to improve diagnosis and 

propose new therapies.  Electroencephalography (EEG) is mostly used in diagnosing 

epilepsy.  

EEG is a valuable tool for diagnosing epilepsy as it records the electrical 

activity originating from the brain. Data extracted from records is highly effective for 

diagnostic procedure of epilepsy. The specific evaluation criteria have been defined 

by experts for recognizing the epileptogenic zone. Especially for patients with 

epilepsy, those who are not treated with medication will usually choose surgery to 

remove the epileptogenic zone. Hence the EEG plays a crucial role in localization of 

this region. Numerous techniques have been used to obtain critical information to 

determine source localization based on scalp-recorded EEG. 

The motivation of this research, broadly stated, is to detect epileptogenic 

tissue of the brain using new EEG source localization method. The research seeks to 
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identify a new approach to increase localization accuracy of EEG sources by 

combination of equivalent current dipoles model and distributed source model. 

1.2 Background of the Research 

A highly complex organ which is the core of human nervous system is called 

brain.  It is made of a network of billions of neurons.  There are electrical 

communications between these neurons through synaptic connections for human 

activities. Studying these communications is extremely beneficial for functional 

understanding of the brain. If the electrical activities (known as signals) generated by 

a cluster of cells are abnormal, epilepsy seizures will occur (Penfield and Jasper, 

1954).  The procedure of recording these electrical activities can be grouped into two 

categories: a) Invasive techniques (with surgery) and b) non-invasive techniques 

(without surgery).  

EEG is a non-invasive technique that measures electrical activities at the 

surface of the head with millisecond temporal resolution.  Hence, a series of sensors 

are placed at the surface or around the head at extremely close distance.  In EEG for 

each human activity, large numbers of sources (neurons) are active.  Each sensor 

measures a different combination of activities depending upon its distance from the 

sources.  As these are non-invasive techniques, one has no idea about the sources and 

the mixing process that has taken place inside the head (Hämäläinen et al., 1993).  

Many methods have been established to detect the epileptic foci, i.e. the location of 

the abnormal cells.  This activity is called EEG source localization (Baillet, Mosher, 

et al., 2001).  Furthermore, several methods have been proposed for EEG source 

localization.  These methods are formulated based on inverse and forward problems.  

Forward problems consist of the calculation of the potential difference between 

electrodes for a given distribution of the source in the brain.  The mathematical 

translation of the forward problem is a Poisson differential equation (Sarvas, 1987).  

To solve the forward problem, i.e. to evaluate field quantities, several methods 

ranging from simple analytic approaches to numerical methods have been proposed 

(Hämäläinen et al., 1993).  Among the various methods, boundary element method 
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(BEM) has been applied most widely and is adopted in this work. In contrast, the 

inverse problem consists of estimating the source(s) that fits with the given potentials 

at the scalp electrodes.  It is more difficult and complex to be solved than the forward 

problem.  Two types of inverse source models have been proposed (Baillet, Mosher, 

et al., 2001; Michel et al., 2004)  namely, Equivalent Current Dipoles (ECD) model 

(Koles, 1998; Scherg and Von Cramon, 1986), and Distributed source localization 

model (Dale and Sereno, 1993).  The EEG inverse problem has endured different 

obstacles, such as high sensitivity to noise, complexity of verification, and ill-posed 

characteristics (Baillet, Mosher, et al., 2001).  Therefore, the evaluation of the 

inverse source models remains an open issue in this field in order to enhance the 

accuracy of finding the location of sources such as epileptic foci. 

1.3 Statement of the Problem 

To explore epileptic focus or epileptogenic tissue of the brain in a non-

invasive way, several techniques based on EEG have been developed. These 

techniques were formulated based on the inverse problem and forward problem. 

There have been two common inverse methods: ECD model and Distributed source 

localization model.  Both of the models have their own pros and cons.  The most 

commonly used optimization algorithms for ECD model are deterministic and 

stochastic (Yang, 2014). Deterministic algorithms look for local peaks located 

closely to the starting points and usually utilize gradient information by 

distinguishing error functions.  Levenberg-Marquardt algorithm (Dümpelmann et al.; 

Levenberg, 1944; Marquardt, 1963), Nelder-Mead downhill simplex searches, and 

conjugate gradient searches (Press, 2007) are the most widely used deterministic 

algorithms for ECD source localizations. If good initial starting points are assumed, 

the deterministic algorithms will be extraordinarily fast and robust. However, using 

gradient directions there is a large possibility that these algorithms will become 

trapped in local minima. On the other hand, different interacting sources must be 

observed and modelled via multiple dipoles in order to analyse the data from the 

cortex during a complicated task. Unless giving reasonably accurate initial locations, 

conventional deterministic algorithms are trapped in a local minima or even 
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divergence. Therefore, a series of stochastic optimization algorithms have been used 

to deal with this difficulty. Most common algorithms are: Genetic Algorithms 

(Goldberg, 1989), Simulated Annealing (Kirkpatrick, 1984), Evolution 

Strategies (Hansen et al., 2013) Particle Swarm Optimization (Kennedy and 

Eberhart, 1995).  ECD method not only has many good features explained earlier but 

also has some crucial restrictions as follows: 

i. The number of dipoles should be determined through a general 

principle to work out the expected facts. Most of the time it is chosen with respect to 

the knowledge of the experiment which is considered, but it can also be determined 

more or less automatically using the residual error between the model and the data or 

by analysing the spectrum of the data. It is particularly challenging because of the 

absence of initial data. 

ii. Eventual solutions highly depend on initial data of the ECDs (Uutela 

et al., 1998).  

iii. Since anatomical information of the brain is not regarded by ECD 

models, there is high possibility of localizing outside the grey area of the cerebral 

cortex. 

In contrast, the distributed source model not only assumes various dipole 

sources with fixed locations and/or orientations on the surface of cortex or in the 

whole volume of the brain, but also approximates their spatial parameters (moments) 

from the obtained information. The model requires neither a priori data on the 

number and locations of dipoles nor conjectures as to the shape or size of an 

activated area (Hämäläinen and Ilmoniemi ,1984).  A fundamental study on the 

distributed source model yielded several different methods such as: Low resolution 

electrical tomography (LORETA), Minimum norm estimate (MNE), Weight 

minimum norm estimate (WMNE), and Focal underdetermined system solution 

(FOCUSS).  This type of estimation is well suited to distribute source models where 

the dipole activity is extended over some areas of the brain (Pascual-Marqui, 1999).  

For improving the precision of ordinary algorithms, weighted minimum norm has 
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been proposed (Gorodnitsky et al., 1995; Jeffs et al., 1987) which is typically applied 

to normalize lead field regarding source positions. LORETA proposed by Pascual-

Marqui et al. (1994) functions as MNE, but it estimates deeper sources.  This method 

has been extensively used, but it has a problem over unclear images because of the 

smooth effects of the Laplacian operator.  Focal Underdetermined System Solution 

(FOCUSS) was planned by Gorodnitsky et al., 1995 to solve the underdetermined 

inverse problems more effectively and subsequently reorganize more focalized 

solutions and iterative focalization approaches. Although these techniques yielded 

better accuracy, they face the problem of omitting some small activations of the brain 

during the repetitive weighting procedures. 

Early studies on the distributed source model showed regular voxel inside all 

areas of the cortical surface; however, it was accounted that the reorganization brings 

some undesired sources, known as phantom sources or spurious sources. 

Unfortunately, even using special reconstruction technique, there is no approach to 

omit those types of phantom sources.  

As discussed above, each ECD model and distributed source model have important 

and unique advantages, but also significant limitations while detecting epileptogenic 

focus of the brain.  This in turn affects the localization accuracy.  

Meromorphic approximation has been categorized as ECD model.  Previous studies 

related to Meromorphic approximation deal with ECD model presented by Clerc et 

al. (2012)  without any consideration of distributed source model.  Her research 

attention has not been directed toward integration of two models; hence this study 

gives more attention and focus in order to improve the accuracy of meromorphic 

approximation model by new EEG source localization. 

Additionally, it seems that no research has yet addressed the integration of the 

meromorphic approximation model with distribution model in a holistic and 

comprehensive manner.  Previous studies dealt with a subset of this problem, or 

considered individual model for localizing sources from exterior electromagnetic 

measurements. 
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Therefore this study intends to fill this gap in the literature by conducting a 

comprehensive and integrative study to localize the epileptogenic focus.  It may be 

improved by integrating the previous models with some mathematical techniques.  

1.4 The Research Objectives   

The objectives of this research are as follows: 

1. To prove mathematical model of the spatial behavior of dipole 

sources located inside the brain from quasi-static approximation of 

Maxwell equations. 

2. To recognize the EEG source localization model (ECD model) by 

Meromorphic approximation technique in the complex plane. 

3. To identify the origins of the errors in Meromorphic approximation 

method. 

4. To propose new EEG source localization method based on 

integration of Meromorphic approximation with Cortical Brain 

Scanning (CBS) method. 

5. To compare the new EEG source localization method with other 

methods based on Receiver Operator Characteristics (ROC), Root 

Sum Square (RSS), and Mean Square Error (MSE) criteria. 

1.5 Significance of the Study 

This study will enrich the collection of methods and approaches based on 

mathematical modelling of EEG source localization during epilepsy. One of the 

significant methods for localizing EEG sources is Meromorphic approximation. 

Despite the importance of this method, it has some drawbacks such as: 

1. The spherical head model was applied, which is not based on the 

actual underlying brain anatomy. 
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2.  It uses single time slice to solve the problem; hence, large noises at 

some time slices may reduce the localization accuracy.  

The significance of this study is applying spatio-temporal dipole fit to 

improve the accuracy of source detection.  The integration of the spatial and 

temporal domains represents a unique challenge because of the existence of 

anatomically distinct processing regions that communicate across several time scales.  

Furthermore, using realistic head modelling techniques for estimating EEG forward 

solutions instead of spherical head model was another strong point of this research. 

This study is expected to contribute to the body of knowledge by providing 

new method for EEG source localization using integrated Meromorphic 

approximation.  Furthermore, the main beneficiary of this research is the healthcare 

industry for patients suffering from epilepsy. Neurosurgeons may be able to gain 

more information on abnormal tissue prior to performing surgery on epilepsy 

patients.  

1.6 Scope and Limitations of the Study 

In this research, location of the sources will be carried out based on simulated 

EEG data.  Realistic simulations were generated using EEG data obtained from a 

patient who suffered from focal epilepsy with focal sensory, secondarily generalized 

seizures since the age of eight years.  EEG and Magnetic Resonance Imaging (MRI) 

data was acquired during one night of non-invasive telemetry recording at the 

Epilepsy Centre of University Hospital Freiburg in Germany. In addition, there are 

several limitations that should be considered when interpreting the findings for 

generalizability and transferability purposes. 

First, the high computational cost of MRI is a limitation of forward model. It 

led to the consideration of a single case study. 

The second limitation of the study was access to medical information of 

epileptic patient (EEG and MRI).  It is not easy to access this information because of 
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the high confidential level for physician and patient.  Inevitably, free medical 

information from epileptic patients was used from (http://neuroimage.usc.edu/).  

Although data is free, it is real data obtained from epileptic patients with formal 

permission from relevant physicians.  

The third limitation related to conductivity of head as it may influence the 

performance of inverse method that was not studied in this research. The 

conductivity values for each layer, namely scalp, skull, and brain (1:0.0125:1, or 

0.33:0.0042:0.33) have been used for decades now.  Inverse results in this study were 

obtained using (1:0.0125:1) conductivity values. These values were set as a default 

value for brainstorm software. 

The forth limitation was the number of sources. In CBS method, process to 

scan neighbouring vertices requires considerable computation time especially when 

the number of sources were more than 5. Therefore, in this research, based on 

experience, 5 sources were considered. 

1.7 Thesis Outline 

This thesis is organized into 6 chapters as shown in Figure 1.1.  

In the first Chapter, an overview of background, statement of the problem, 

objectives of the study, significance and scope of the study are outlined, respectively. 

In Chapter 2, basic knowledge on epilepsy and seizure are explained.  In 

addition, history of seizure prediction and the modality that has been extended for 

measuring the brain electromagnetic field exterior of the head is dealt with in this 

chapter.  Various EEG source localization methods which have been used for 

imaging human brain functions in a non-invasive way are introduced.  Some related 

basic knowledge of mathematics is presented in this chapter.  In order to evaluate the 

performance of EEG source localization methods to localize sources regarding their 

ability, validation metrics as the assessment criteria are needed.  These criteria 

encompass Mean Square Error (MSE), Receiver Operating Characteristic (ROC) 
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curves, and Root Sum Square error (RSS) which are introduced in the rest of the 

chapter.   

In Chapter 3, the basic simulation set-up and pre-processing procedures that 

will be used in analyzing EEG data were described.  In addition, for localizing dipole 

sources located in the brain, a new approach, namely, integrated Cortical Brain 

Scanning (CBS) with Meromorphic approximation for inverse EEG problem was 

proposed.  In chapter 4, the results of proposed method with appropriate discussion 

were explained.  

In Chapter 5, the comparison of EEG localization methods used in this thesis 

with proposed method was presented.  In addition, validation metrics are used to 

evaluate the accuracy of other EEG source localization methods with proposed 

method by evoking RSS, MSE, and ROC.   

Finally, Chapter 6 provides a summary of the research. It also presents 

contributions of this study followed by suggestions for further researches.   
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