
 

FOAMS STABILIZED BY IN-SITU SURFACE 

ACTIVATION OF SILICA MICRO-PARTICLES WITH 

SURFACTANT 

 

 

 

 

LAM KOK KEONG 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA



   

FOAMS STABILIZED BY IN-SITU SURFACE ACTIVATION OF SILICA MICRO-

PARTICLES WITH SURFACTANT 

 

 

 

 

LAM KOK KEONG 

 

 

 

 

A report submitted in partial fulfillment of the 

requirements for the award of the degree of 

M.Sc. Petroleum Engineering 

 

 

 

Faculty of Petroleum and Renewable Energy Engineering 

Universiti Teknologi Malaysia 

 

 

 

FEBRUARY 2013 



  iii 

DEDICATION 
 

 

 

 

 

 

 

 

 

 

To my beloved Mother and Father 

 

 

 

 

 

 

 

 

 

 

 



  iv 

ACKNOWLEGMENT 
 

 

 

 

I would like to take this opportunity to express my gratitude to everyone who has 

been assisting me in preparing this master project report during this semester. First and 

foremost, I would like thank my supervisor, Prof. Dr. Ahmad Kamal Bin Idris for his 

continuous support, advises, motivation, encouragement and invaluable guidance. Not to 

forget, I also would like to highly express my gratitude to Prof Hadi, researcher from 

Ibnu Sina, for providing one of the main raw chemicals that is CAB-O-SIL M5 Fumed 

Silica to support this master project research. Besides that, I would like to appreciate the 

help from Dr. Salasiah, Nur Izzatie Hannah and Cassy from the Applied Chemistry 

Department for the sharing of knowledge on the surface properties of the silica 

molecules with the fluids. I would also like to convey my special appreciation to my 

parents for all the mental support and motivation to help me get through the challenges I 

faced throughout this master project. My exclusive appreciation is also extended to the 

Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi 

Malaysia for creating a platform of education opportunity. Last but not least, I am very 

appreciative for all my friends who provide support directly and indirectly in assisting 

me to complete this project. 



  v 

ABSTRACT 
 

 

 

 

Concept of applying gas foam in EOR was first proposed for gas mobility control 

to alleviate the challenges of gas flooding and WAG process due to its high viscosity 

and low mobility. Like surfactant, colloidal particles can be employed as surface-active 

agent to stabilize the foams and can provide better stability due to its irreversible 

adsorption to the interface. To get ultra-stable particle stabilized foams/emulsions, the 

surface wettability of commercial raw colloidal particles should be modified (surface 

activation) from hydrophilic to partially hydrophobic. However, the studies on the in-

situ surface activation for the micro-particles are yet to be widely performed. Therefore, 

the in-situ surface activation of unmodified CAB-O-SIL fumed silica micro-particles by 

using anionic surfactant such as Sodium dodecyl benzene sulfonate (SDBS) and alpha 

olefin sulfonate (AOS) has been studied. Its effects on the foamability and foam stability 

of dispersed solution were analyzed. The research methodology involves the 

characterization of aqueous foams, measurement of adsorption of particles at the air-

water interface, and measurement of surface tensions. The independent variables are 

concentration of anionic surfactants, concentration of silica micro-particles whereas the 

dependent variables are foam volume, foam quality, surface tension, and percentage of 

particles adsorbed at interface. The results showed that hydrophilic silica micro-particles 

can be surface activated by interacting with anionic surfactants resulting to synergistic 

effect in foamability and foam stability. The positive charges on the silica micro-

particles interact with negative charges of anionic surfactant to generate electrostatic 

interaction. This generates adsorption of surfactant at the particle-water interface making 

the particles to be surface active and bubble more stable. SDBS is more efficient anionic 

surfactant for the surface activation of silica micro-particles compared to that of AOS. 
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ABSTRAK 
 

 

 

 

Konsep yang menggunakan buih gas dalam EOR diperkenalkan bagi kawalan 

pergerakan gas supaya dapat mengatasi masalah yang dihadapi dalam pembajiran gas 

dan proses WAG.  Zarah koloid boleh digunakan sebagai ejen pengaktifan permukaan 

untuk menstabilkan buih dan boleh memberikan kestabilian buih yang lebih baik. Ini 

adalah disebabkan penjerapan zarah yang sehala di antara permukaan air dan udara. Bagi 

mendapatkan ultra stabil buih/emulsi yang dihasilkan oleh zarah-zarah, kebolehbasahan 

permukaan zarah koloid yang didapati dalam pasaran mesti diubah daripada hidrofilik 

kepada separuh hidrofobik. Namun Demikian, kajian tentang pengaktifan permukaan 

secara in-situ bagi miko-zarah belum dijalankan secara luas. Oleh itu, kajian tentang 

permukaan “CAB-O-SIL fumed silica” yang diaktifkan secara in-situ dengan surfactant 

anionik seperti “Sodium dodecyl benzene sulfonate” (SDBS) and “alpha olefin sulfonate” 

(AOS) dijalankan. Kesan-kesannya dalam keboleh-buihan dan kestabilan buih juga 

dikaji. The metodologi kajian sains melibatkan pencirian buih-buih, pengiraan peratusan 

penjerapan zarah di antara permukaan air-udara, pengiraan ketegangan permukaan. 

Pembolehubah bebas dalan kajian ini ialah kepekatan surfactant anionik, kepekatan 

silica mikro-zarah. Pembolehubah tak bebas ialah isipadu buih, kualiti buih, ketegangan 

permukaan, dan peratusan zarah yang terjerap antara permukaan air-udara. Keputusan 

menunjukkan bahawa silika mikro-zarah yang hidrofilik boleh diaktifkan permukaannya 

dengan menginteraksikan dengan surfactant anionik dan menyebabkan kesan sinergistik 

dalam keboleh-buihan dan kestabilan buih. Caj positif di permukaan silika mikro-zarah 

berinteraksi dengan caj negatif surfactant anionik dan menjanakan elektostatic interaksi. 

Interaksi ini menyebabhan penjerapan surfactant di permukaan antara air-udara dan juga 

mengaktifkan permukaan zarah dan menghasilkan buih yang lebih stabil. SDBS 
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dibuktikan bahawa lebih effektif sebagai ajen pengakitfan permukaan bagi silika 

surfactant mikro-zarah daripada AOS. 
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CHAPTER 1 

 

 

 

 

1 INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Energy demand increased significantly from 1996 to 2012 reaching 89.6 million 

barrels per day. Oil and gas has been the global leading energy generating resources. By 

2035, it is expected by OPEC that the energy demand figure is increased to 109.7 

million barrels per day. It is due to the growing energy demand from developing 

countries. Nowadays, the global oil supply is gradually outpaced by the global oil 

demand and it imposes a threat of energy security in the world.  On the other hand, it 

becomes harder to discover new oil well to substitute the produced reserves (Alvarado 

and Manrique, 2010).  

 

 

Therefore, enhanced oil recovery (EOR) methods are the key techniques applied 

to increase the oil recovery from the existing oil reservoirs, and to increase the oil field 

production life cycle by mobilizing the remaining trapped oil. Enhanced oil recovery 

(EOR) involves the injection of fluids that are not present in the underground reservoir 

to mobilize the immobile remaining oil (Lake, 1989). There are several common types 
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of enhanced oil recovery techniques that are chemical flooding, thermal recovery 

processes, gas flooding, microbial enhanced oil recovery and vibro-seismic technology. 

 

 

Gas flooding is one of the most widely applied EOR methods in field 

applications. Gas flooding is normally applied on the reservoir that has been water-

flooded. The type of gas injected in this method can be hydrocarbon (light natural gas) 

and non-hydrocarbon. The non-hydrocarbon gas can be nitrogen, carbon dioxide, flue 

gas, hydrogen sulfide, and others. The fundamental mechanism of gas flooding method 

is to increase microscopic sweep efficiency of the oil displacement and reduce the 

residual oil saturation (Lake, 1989).  

 

 

The main issues of the gas flooding are the viscous fingering and gravity 

segregation of displacing gas due to frontal instability. To mitigate these problems, 

water alternating gas injection (WAG) has been used in several field applications 

(Dicharry et al, 1973, Warner, 1977). One of the drawbacks is that the contact between 

the resident oil (displaced fluid) and injected gas (displacing fluid) is blocked by the 

large quantity of injected water leading to a larger ROS. This water-blocking 

phenomenon is more detrimental in water-wet reservoir or the reservoir that has been 

water-flooded previously as secondary recovery technique (Stalkup, 1970). Some of the 

injected gas (such as CO2) has high solubility in water and it increases the consumption 

of that gas making the project less economically feasible.  

 

 

Concept of applying gas foam for mobility control was first proposed by Bond 

and Holbrook (1958). To alleviate the challenges of gas flooding and WAG process, 

foam flooding using the injected gas can be the potential solution to it (Fried, 1961; 

Kovscek and Radke, 1994; Rossen, 1996; Du et al., 2007; Farajzadeh et al., 2009).  It is 

very useful applying foams in EOR techniques to improve displacement efficiency 

because of its high viscosity and mobility during the displacement across a porous a 
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medium (Green et. al., 1998). Extensive experimental studies were performed on using 

surfactant as the foam generation agent to stabilize the foam to reduce the gas mobility 

in gas flooding (Kim et al., 2005). However, there are several weaknesses on surfactant-

stabilized foam that are high surfactant retention in porous media, relatively low foam 

stability, and degradation of surfactant at reservoir condition (Kim et al., 2004; 

Ransohoff et al., 1988; Wang, 1984). 

 

 

Solid particles can be employed as surface-active agent to stabilize the foams 

besides surfactant. Like the surfactant, the solid particles can be adsorbed at the interface 

between aqueous and non-aqueous phases, which makes it surface active. The solid-

stabilized foams have been applied in a variety of industries due to its higher adhesion 

energy for the particle adsorption at the foam interface. Surfactants and solid particles 

have been compared for their ability to stabilize foams/emulsions (Binks et al., 2002, 

Horozoy 2008). Furthermore, colloidal particles can provide better stability because 

when the colloidal particles are held at the interface, the adsorption can be irreversible 

and the particles are not easily desorbed from the interface. Bink and Horozov (2005) 

reported that a particle with size of larger than 100 nm could be irreversibly adsorbed on 

the interface. Furthermore, Wilson (1980), and Sun and Gao (2002) reported that solid 

micro-particles with size of several µm could be employed as the foam stabilizer to 

generate stable foam or emulsion dispersion.  

 

 

However, the raw commercial particles are normally not surface active at most of 

the liquid interfaces. For silica particles, they are normally extremely hydrophilic. To get 

ultra-stable particle stabilized foams/emulsions, the particle surface must be activated by 

the wettability modification. The surface activation can be performed by several 

methods: homogeneous surface coating, Janus particles and in-situ surface activation. 

Homogeneous surface coating can be done on the silica by having surface silylation to 

modify the surface hydrophobicity to be more hydrophobic but it costs highly in 

commercial scales. Janus particles is the particles at which part of surface is coated to be 
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hydrophilic and part of the surface is treated to be hydrophobic but there is a limitation 

to have large commercial scale of production. In-situ surface activation is the well –

known as an easy wettability modification method, which is to just interact the particles 

with amphiphilic compounds. In-situ surface activation can be relatively less 

complicated and much cheaper methods to produce the surface-active particles. 

 

 

Cui et al. (2010) highlighted that the unmodified silica particle can be surface 

activated by the anionic surfactant. The anionic surfactant can provide the negative 

charges to have electrostatic interaction and form monolayer adsorption of the surfactant 

at the particle-water interface. The electrostatic interaction modifies the surface 

properties of the particle from hydrophilic to partially hydrophobic forming an ultra-

stable foam or emulsion stabilizer. 

 

 

 

 

1.2 Problem Statement 

 

 

The implication of foam in mobility control was brought up by Bond and 

Holbrook (1958). One of the foaming agents commonly used is surfactant. There were 

many extensive research efforts carried out on surfactant-stabilized foams and they 

presented several weaknesses that are unstable foam properties, high surfactant retention 

in porous media and surfactant degradation at reservoir condition (Kim et al., 2004; 

Ransohoff et al., 1988; Wang, 1984). The surfactants of small molecular weight had 

been widely researched and applied in the industries; solid particulate stabilizers pique 

the interest of researchers in their applications.  
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Bink and Horozov (2005) reported that a particle with size of larger than 100 nm 

could be irreversibly adsorbed on the interface. Furthermore, Binks (2005) highlighted 

that there are only two examples in which solid micro-particles are used as foam 

stabilizers. The functions of micro-particles were reported by Wilson (1980), and Sun 

and Gao (2002) to be used as the effective foam stabilizer to generate stable foam or 

emulsion dispersion. However, the raw commercial micro-particles are not surface-

active and highly hydrophilic. To obtain ultra-stable particle stabilized foam or emulsion, 

the surface properties of the particles must be modified to be partially hydrophobic. Cui 

et al. (2010) shows that in-situ surface activation with anionic surfactant can efficiently 

increase the foamability and foam stability of the particles. However, the studies on the 

in-situ surface activation for the micro-particles are not widely performed. 

 

 

 

 

1.3 Objectives 

 

 

In this research, anionic surfactants such as Sodium dodecyl benzene sulfonate 

(SDBS) and alpha olefin sulfonate (AOS) are used as the in-situ surface activation agent 

for unmodified CAB-O-SIL fumed silicas with size range of 0.1 – 0.3 µm. The main 

objectives of this study are: 

• To investigate the impact of the treated micro-particles on the foamability 

and foam stability 

• To compare anionic surfactants SDBS and AOS and identify which of it 

is more efficient. 
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1.4 Scope of Work 

 

 

The focus of this study is to examine the behavior of anionic surfactants on the 

foamability and foam stability without and with the presence of micro-particles. It is also 

to study the in-situ surface activation of the untreated CAB-O-SIL fumed silicas (micro-

particles) by interaction with anionic surfactant, and to assess the impact on the 

foamability and foam stability of the aqueous dispersions.  
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