BEHAVIOUR OF COLD-FORMED LIPPED C-CHANNEL WITH FERROCEMENT JACKET COMPOSITE COLUMN UNDER AXIAL COMPRESSION

KHALED KH D SH O ALENEZI

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > APRIL 2015

To My Parents Haji Khudair Alenezi & Asia Husain And My Wife and Children Ghadeer, Shahad Khaled, Fajer Khaled & Hoor Khaled

ACKNOWLEDGEMENT

First and foremost I would like to express my thanks to Almighty ALLAH upon the successful completion of this research work and thesis.

I hereby, express my sincere and profound gratitude to my supervisors Professor. Ir. Dr. Mahmood Md Tahir, and Professor. Dr. Mohamed Ragaee K. Badr (Egypt) for their continuing assistance, support, guidance, and understanding throughout my graduate studies. Their trust, patience, knowledge, great insight, modesty and friendly personalities have always been an inspiration for me and will deeply influence my career and future life.

The author is grateful to the staff of advanced material laboratory, National Research Center of Housing and Building (HBRC) Cairo for the support and facilities provided to carry the experimental work. The author is also grateful to the staff of structures and materials laboratory for their support, assistance and friendly treatment that not only facilitated the work, but also made it pleasant.

Above all, I would like to convey my indebtedness to my parents for their emotional support and blessings. To my lovely wife and my daughters who have been an inspiration to me. Without their blessing, I would not have made it through.

ABSTRACT

One of the major challenges for strengthening or upgrading steel structures is to increase column capacity to withstand large expected loads. The main objective of the present study was to investigate the behaviour of build-up lipped Cold Formed steel (CFS) C-channel column assembled with ferrocement jacket. Generally the data and information are limited on the behaviour and performance of CFS column in composite construction.. One of the limiting features of CFS is the thinness of its section that makes it susceptible to torsional, distortional, lateral-torsional, lateraldistortional and local buckling. Hence, a reasonable solution was to propose a composite construction of structural CFS section and ferrocement jacket, which would minimize the buckling of the web and reduce the distortion of CFS sections. This study comprised of three major components, i.e. experimental, theoretical and finite element analysis through ANSYS (version 11). Experimental work involved small-scale and full-scale laboratory testing. The first phase comprised of push-out test specimens while the second phase focussed on full-scale testing of eighteen CFS-ferrocement composite column specimens. All eighteen full-scale axially loaded column specimens with variable parameters were tested till failure. The experimental test results show good agreement with the predicted value calculated from AISI S100 (2007). It was found that the capacity of shear connector with 12 mm diameter bolts was the best in transferring shear force into steel section-ferrocement jacket interface. The strength capacity of CFS-ferrocement composite columns were improved by 245% than that of bare steel columns. Also it was found that axial load capacity of CFS-ferrocement jacket composite columns (CFFCC) increased with the increased thickness of CFS. The results of the finite element model agreed well with the experimental results based on the graphs plotted for load versus axial shortening of the proposed composite column system relationships.

ABSTRAK

Salah satu cabaran utama untuk menguatkan atau menaik taraf struktur keluli adalah untuk meningkatkan keupayaan tiang bagi menahan beban jangkaan yang besar. Untuk itu, objektif utama kajian ini adalah untuk menyiasat kelakuan bebibir besi tergelek sejuk (CFS) yang terbina bagi tiang saluran-C yang dipasang pada jaket simen-ferro. Pada umumnya, data dan maklumat mengenai tingkah laku dan prestasi tiang CFS dalam pembinaan komposit adalah terbatas. Salah satu ciri yang menghadkan CFS adalah seksyen yang tipis menjadikan ia mudah terdedah kepada kilasan, perubahan, sisi-kilasan, sisi-perubahan dan lengkokan tempatan. Oleh itu, penyelesaian yang munasabah adalah dengan memcadangkan pembinaan komposit dengan struktur CFS dan jaket simen-ferro, bagi mengurangkan lengkokan web dan mengurangkan mampatan tegasan lenturan dalam syeksyen CFS. Pengajaran disini terdiri daripada tiga komponen utama iaitu uji kaji eksperimen, teori dan analisa unsur terhingga menggunakan ANSYS(verse 1.1). Kerja eksperimen melibatkan ujian berskala kecil dan ujian berskala besar di makmal ujikaji. Fasa pertama yang mengandungi lapan spesimen ujikaji tolak keluar manakala fasa kedua yang mengandungi lapan belas spesimen berskala penuh CFS-simen-ferro tiang komposit diuji dalam makmal. Kesemua lapanbelas spesimen tiang dikenakan beban paksi berskala penuh dengan parameter yang berbeza telah diuji. Ujian ini telah menunjukkan bahawa kapasiti sambungan ricih bolt bersaiz 12mm adalah yang terbaik untuk digunakan untuk memindahkan daya ricihan pada permukaan seksyen keluliferrocement jaket. Kekuatan kapasiti bagi jaket telah diperbaiki lebih daripada 245% lebih besar daripada tiang yang tidak ada jaket. Ia juga telah ditemui bahawa kapasiti beban paksi bagi CFS-ferrocement jaket untuk tiang rencam(CFFCC) telah meningkat dengan peningkatan ketebalan CFS. Keputusan model unsur terhingga menunjukkan persetujuan yang sangat baik bila dibandingkan dengan keputusan ujian makmal berpandukan kepada graf yang dilukis bagi hubungan antara beban lawan pemendekan paksi bagi tiang rencam yang dicadangkan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE PAGE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	ADSTRAK TADI FOF CONTENTS	vi
	LIST OF TABLES	v11
		X11
	LIST OF FIGURES	X1V
	LIST OF SYMBOLS	XX
	LIST OFABBREVIATION	xxii i
	LIST OF APPENDICES	XXV
1	INTRODUCTION	1
	1.1 General Appraisal	1
	1.2 Background and Rationale	6
	1.3 Statement of the Problem	6
	1.4 Objectives of the Study	/
	1.5 Scope of the Study 1.5.1 Push out Test	0 8
	1.5.1 CFS-Ferrocement Composite Column Test	9
	1.6 Significance of Research	12
	1.7 Thesis Layout	13
2	LITERATURE REVIEW	15
	2.1 Introduction	15
	2.2 Cold-Formed Steel Structures	15
	2.2.1 Advantages of CFS Sections	17
	2.2.2 Modes of Failure Due To Buckling in CFS	19
	2.3 Steel-Concrete Composite Column	21
	2.3.1 Continement effect	23
	2.3.1.1 Confinement Model	24

	2.3.2	Concrete columns	e filled thin walled steel tube	27
		2.3.2.1	Local buckling in CFST	29
		2.3.2.2	Residual stresses in steel tubes	29
		2.3.2.3	Basic Effective width formula	31
	2.3.3	Stiffeneo	d CFST	33
		2.3.3.1	Stiffener rigidity requirement	40
	2.3.4 2.3.5 2.3.6 2.3.7	Bond str Push-ou Short Cl Slender	rength t test FST column CFST columns	42 43 45 46
2.4	Ferro	ement		46
	2.4.1	Introduc	tion al Background	46 47
	2.4.3	Mortar M	Mix	47
		2.4.3.1	Wire Mesh Reinforcement	47
		2.4.3.2	Skeletal Steel	48
	2.4.4	Ferrocer Characte	nent versus Reinforced Concrete (Distinct eristics)	49
	2.4.5	Ferrocer Structur	nent: A Composite and a Member of the all Concrete Family	49
	2.4.6 2.4.7	Ferrocer Mechan	nent as a Laminated Composite ical Property	50 51
		2.4.7.1	Tensile Strength	52
		2.4.7.2	Compressive Strength	56
	2.4.8	Strength	ening /Confinement by Ferrocement	
2.5	Summ	Jackets		57 63
RES	SEARC	H METH	IODOGY AND FULL SCALE	
	T Introd			64
3.1 3.2	Stiffer	ning Meth	od	65
	3.2.1	Preparat column	ion of Built-up cold formed steel	66
		3.2.1.1	Fabrication Process for Cold-formed steel (CFS) Specimens	68
3.3	Descr	iption of s	specimens in Phase 1	70
	3.3.1	Push out	t Test	70
		3.3.1.1	Test Specimens	70
		3.3.1.2	Encasement process by wire mesh for ferrocement jacketing	71
		3.3.1.3	Test Setup and instrumentation	76

3.4	Descr	iption of s Full scal	specimens i	in Phase 2 Cold-formed/Ferrocement compo	78 site
	5.1.1	columns	(CFFCC)	in tormed i enocement compo	78
	3.4.2	Sample	preparation	1	79
	3.4.3	Material	properties	and Mix Design	80
	3.4.4	Specime	en Labeling	2	81
		3.4.4.1	Preparing	g test specimens	87
		3.4.4.2	Casting o	f column	87
	3.4.5	Test Set	up and inst	rumentation	94
3.5	Descr	iption of s	specimens i	in Phase 3	100
TIN	3.3.1 ITE EI	Finite E	lement Mo	delling (FEM):	100
F IIN. 1 1	Gener	JEIVIEIN I val	METHU	D	101
4.1	Nonli	ai near Solut	tion Techni	anes	101
1.2	4 2 1	Increme	ntal Metho	d	102
	4.2.2	Newton	-Raphson I	terative Method	104
	4.2.3	Step-Iter	rative Meth	nod (Mixed Procedure)	105
	4.2.4	Converg	gence Crite	ria	106
	4.2.5	Analysis	s Terminati	on Criteria	107
4.3	Finite	Elements	Mesh		108
	4.3.1	CONBI	N39 AND	LINK8-Representation of shear	100
	122	connecto	OIS 12 Mataria	Modeling of CES	109
	4.3.2	SHELL ⁴	+3-Materia	I Modeling of CFS	112
	433	Ferrocer	nent Matri	x	112
	4.3.4	Steel W	ire Mesh	ά χ	116
	4.3.5	SOLID6	5 for Ferro	ocement jacket	117
	4.3.6	Represe	ntation Mo	rtar of Ferrocement	118
	4.3.7	LINK8-	Wire Mesl	h Reinforcement	119
	4.3.8	Modelin	g and Mes	hing	121
4.4	Bound	dary Cond	litions and	Loading	122
PUS	H-OU	Γ TESTS	-EXPERIN	MENTAL INVESTIGATION	AND
ANA 5 1	ALYSIS Juntana d) In ation			125
5.1 5.2		UCUON DIMENT	AT INVES	STICATION	120
5.2	5 2 1	Material	Properties		120
	0.2.1	5.2.1.1	Mixing N	Iortar	126
		5.2.1.2	Cement:		127
			5.2.1.2.1	Fine aggregate (sand):	128
			5.2.1.2.2	Water and Superplasticizer	128
		5.2.1.3	Mix Desi	gn of jacket	129
			5.2.1.3.1	Compressive Strength of Morta	r 131
		5.2.1.4	Reinforce 134	ement and Skeleton steel wire me	sh

			5.2.1.4.1	Mechanical Properties of steel welded wire mesh (WWM)	134
			5.2.1.4.2	Test setup for Tensile Test of (WWM)	136
		5.2.1.5	Cold-For	med Steel (CFS)	137
		5.2.1.6	Shear con	inectors:	138
	5.2.2	Failure N	Mechanism	S	140
		5.2.2.1	Failure M	lode 1: Shearing of connector	140
			5.2.2.1.1	Specimens with Bar Angle and S drilling screw connectors	Self 140
		5.2.2.2	Failure M Ferrocem	lode 2: Shear connector with ent Failure	142
		5.2.2.3	Failure M Failure	lode 3: Ferrocement crushing-spli	tting 144
	5.2.3	Analysis	of Experin	mental Results:	146
		5.2.3.1	Load-slip	curves	146
		5.2.3.2	Effect of	wire mesh layer	147
5.3	Design	n Equation	1		152
	5.3.1	Predicted	d Values of	f Push Specimens	153
5.4	FINIT	E ELEMI	ENT MOD		155
55	5.4.1 Summ	Compari	son with fi	nite element model results	150
LAR	Summ RGE-SC	CALE CC	DLUMN C	OMPRESSION TEST RESULT	rs
AND) ANAI	LYSIS			160
6.1	Introd	uction			160
6.2	Materi	ial propert	ties		162
0.3	DISCI	E I: EAP	EKIMENI	AL RESULTS AND	162
	6.3.1	Testing 1	Program ar	nd Procedure	162
	6.3.2	Axial Lo	ad Test		163
	6.3.3	Load-Ax	ial Displac	cement behaviour	163
	6.3.4	Failure r	nechanism		164
	6.3.5	Failure C	riteria:		167
	0.5.0			<i>,</i> . .	100
		6.3.6.1	(IN-web)	cross-section specimens	168
		6.3.6.2	(W-web)	cross-section specimens	171
	6.3.7 6.3.8	Verificat Compres	tion of She ssive Stren	ar Connector Capacity gth	173 174
		6.3.8.1	Load-Sho	ortening	176
			6.3.8.1.1	CFFCC specimens with N-web cross-section	176

			6.3.8.1.1.1	Group 1 specimens (CFF0 with column length 2000r 176	CC nm)
			6.3.8.1.1.2	Group 2 (N-web) specime (CFFCC with column leng 3000 mm)	ens gth 176
			6.3.8.1.1.3	Group 3 (N-web) specime (CFFCC with column leng 4000 mm)	ens gth 177
			6.3.8.1.2 CF	FCC specimens with W-we ss-section	b 183
			6.3.8.1.2.1	Group 4 specimens (CFF6 with column length 2000 183	CC mm)
			6.3.8.1.2.2	Group 5 specimens (CFF6 with column length 3000 183	CC mm)
			6.3.8.1.2.3	Group 6 specimens (CFF6 with column length 4000 184	CC mm)
		6.3.9 Effect 6.3.10 Effect 6.3.11 Comp results	of increasing the of increasing the arison of N-web a s 198	height of column thickness of CFS and W-web cross-sections	189 193
		6.3.12 Desig	n Equation		203
		6.3.12	2.1 Comparison o results	f experimental and predicte	d 204
	6.4	STAGE 2: FI	NITE ELELMEN	T ANALYSIS	208
		6.4.1 Ultima	ate Load		208
		6.4.2 Failur	e Mode		210
	65	6.4.3 Comp	ressive strength		212
7	CON	CLUSION A	ND RECOMME	NDATIONS FOR FURT	HER
	WOI	K			220
	7.1	Introduction			220
	7.2	Strength and	Ductility of Shear	Connectors	221
	7.3	Compressive	Strength of Comp	posite Columns (CFFCC)	222
DEFF	/.4	Kecommenda	itions for Future V	VOľK	225
Annend	ix A_F	סע		γ_{z}	40-254
· ppend	L			Σ-	10 <i>20</i> -T

LIST OF TABLES

TABLE N

TITLE

PAGE

3.1	Details of the specimens for the push out test	76
3.2	Description of composite column specimens	82
3.3	Details of composite column (CFFCC) specimens (N-web)	92
3.4	Details of composite column (CFFCC) specimens (W-web)	93
5.1	Mix proportion of mortar	127
5.2	Chemical composition of OPC	127
5.3	Properties of trial mixes of mortar by weight (kg/m ³)	129
5.4	Compressive and flexure strengths of mortar	133
5.5	Strength development of mortars cubes at various ages	133
5.6	Properties of wire mesh specimens	136
5.7	Materials Properties	138
5.8	Failure Mechanisms	140
5.9	Push-Out Test results and of shear capacity between 2 and 6 wire mesh layers	148
5.10	Comparison between of predicted and experimental load values	155
5.11	Experimental and ANSYS Results	159
6.1	Experimental results of CFFCC column testing (N-web specimens)	179
6.2	Experimental results of CFFCC column testing (W-web specimens)	185
6.3	Ultimate strength of composite columns with different column length	190
6.4	Ultimate strength of composite columns with different thickness of CFS (N-web)	194
6.5	Ultimate strength of composite columns with different thickness of CFS (W-web)	195
6.6	Comparison of N-web and W-web cross-sections	199

6.7	Comparison of experimental and theoretical analysis	206
6.8	Comparison of experimental and ANSYS results	209

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Details of concrete-filled steel tubular columns	3
1.2	Details of Ferrocement Jacketing	4
1.3	Details of different buckling modes that occur for lipped C- channel	5
1.4	Failure mode of non-composite columns tested under axial load	10
1.5	Flowchart illustrating the methodoly and scope of work	11
2.1	Details of different buckling modes that occur for lipped C- channel	20
2.2	Typical examples of composite column sections: (a) encased I-section; (b) concrete-filled circular steel section; (c) concrete-filled rectangular steel section (Oehler and Brandford)	22
2.3	Details of concrete-filled steel tubular columns	23
2.4	Constant confinement model (Mander, 1998)	26
2.5	Residual stress distribution (Shanmugam et al., 2002)	31
2.6	(a) Distribution of ultimate stress (b) The concept of effective width during compression	32
2.7	Types of stiffeners and previous	34
2.8	(a) unstiffened SHS; (b) inner stiffened SHS; (c) outer stiffened SHS; (d) inner stiffened RHS (Tao et al., 2005)	35
2.9	Square CFST with binding bars	37
2.10	(a) hollow steel tubes; (b) concrete filled tubes; using restraining rods for strengthening plastic hinge (Hsu and Yu, 2003)	38
2.11	Tao (2008) test specimens: (a) un-stiffened specimens; (b) stiffened specimens with one stiffeners on each face; (c) stiffened specimens with two stiffeners on each face; (d) stiffened specimens with binding bars; (e) stiffened specimens with anchor bars; and (f) saw-shape stiffeners (Tao et al. 2008)	20
	(1 a) Ci al., 2000)	39

2.12	Effect of moment of inertia of stiffener on normalized ultimate strength (Tao et al., 2005)	41
2.13	Typical push-out test setup (Xu et al., 2007)	43
2.14	Distinctive forms of steel mesh applied in ferrocement (IFS-10, 2001)	48
2.15	Distinctive cross section of ferrocement and reinforced concrete compared, Adapted from Naaman (2000).	49
2.16	Ferrocement as a member of structural concrete family (Naaman, 2000).	50
2.17	Ferrocement as laminated composite (Naaman, 2000)	51
2.18	Typical cross sections of reinforced concrete and ferrocement	52
2.19	Schematic load-elongation curve of RC and FC in tension (Naaman, 2000)	54
2.20	Typical load-elongation curve of ferrocement.(Naaman, 2000).	55
2.21	Typical qualitative influence of specific surface of reinforcement on properties of ferrocement (Naaman, 2000)	56
2.22	Column details: (a) column with circular jacket; (b) column with square jacket	60
2.23	Details of Ferrocement Jacketing	63
3.1	Configuration of stiffener mode of cold-formed assembled with ferrocement composite column (CFFCC)	66
3.2	Two stiffness systems of build-up CFS	68
3.3	Geometric to Cold-formed columns	69
3.4	Details of built up cold-formed column including the shear connector	72
3.5	Fabrication of wire mesh layers into wooden box mould	73
3.6	The configuration details of push-out specimens	74
3.7	Types used of shear connectors, (a) Types of shear connection (b) Method of nuts fastening	75
3.8	The Layout of the push-out specimen	77
3.9	The Layout of setup for the push-out test	78
3.10	Geometric details of composite column (CFFCC) without longitudinal web stiffener (N-web); (a) CFS/ferrocement jacket composite column; (b) build-up of CFS column including method of connecting nuts; (c) Section of composite column; (d) Section of build-up CFS	83
3.11	Geometric details of composite column (CFFCC) with longitudinal web stiffener (W-web): (a) CFS/ferrocement jacket composite column, (b) build-up of CFS column	

	including method of connecting nuts, (c) Section of composite column, (d) Section of build-up CFS with stiffener	84
3.12	The details of (CFS/web-stiffener) specimens build-up	85
3.13	The details of mounting Bolt12 mm shear connector	86
3.14	Details of Styrofoam mounting and reinforcement wire mesh	89
3.15	Casting procedure details	90
3.16	Schematic view of axial loading CFFCC column set up	95
3.17	CFS-Ferrocement composite column test specimen; (a) side view; (b) isometric view	97
3.18	Test setup and instrumentation of columns tested under axial compression	98
3.19	Description of the bottom column; (a) hinge support; (b) horizontally LVDT for loading	99
3.20	Locations of transducers (LVDT) to measure buckling of composite column	99
4.1	Scheme of the solution procedure in a non-linear problem	104
4.2	Finite element modelling simulation	109
4.3	Modelling of shear connectors (longitudinal view)	111
4.4	Adopted uniaxial stress-strain curve for COMBIN39 (ANSYS 11)	111
4.5	SHELL43 geometry	111
4.6	Finite element model of build-up lipped C-channel of CFS	111
4.7	Idealized uniaxial stress-strain curve for ferrocement matrix	111
4.8	Idealized uniaxial stress-strain curve for steel wire mesh	111
4.9	Finite element ferrocement jacket mesh	111
4.10	Geometry of the brick element SOLID 65 (ANSYS)	111
4.11	Models for reinforcement in mortar; (a) discrete, (b) embedded and (c) smeared	111
4.12	Distributions of applied loads at full scale composite column and push out specimens	111
5.1	Cubes specimens for mixes	130
5.2	Casting cubes process for different trial mixes and the slump core test	131
5.3	Mortar cubes	132
5.4	Test compressive specimens	132
5.5	Cylinder testing	133

5.6	Square wire mesh dimension	134
5.7	Details of wire mesh tensile coupons	135
5.8	Fabrication details of wire mesh tensile coupons specimens	135
5.9	Fabrications schematic descriptions of mesh tensile yield stress and corresponding strain	136
5.10	Dimension of the tensile test coupon	138
5.11	CFS coupon tests	138
5.12	The shear connectors used	139
5.13	Specimens after push-out test (S5-S2L & S6-S6L)	141
5.14	Specimens after push-out test (S3-A2L & S4-A6L)	142
5.15	Specimen with 10mm bolt after test (S1-B2L & S2-B2L)	144
5.16	Close-up view of failure after removal of damaged ferrocement jacket (S7-B2L & S8-B6L)	146
5.17	Load-slip curve of wire mesh layers for 10 mm bolt diameter	149
5.18	Load-slip curve of different wire mesh layers of Bar angle specimens	149
5.19	Load-slip curves of different wire mesh layers of self drilling screw specimens	150
5.20	Load-slip curves of different wire mesh layers of Bolt 12 mm specimens	150
5.21	Load-slip curves of 2 layers of ferrocement wire mesh	151
5.22	Load-slip curves of 6 layers of ferrocement wire mesh	151
5.23	Comparison between of 2 and 6 wire mesh layers	152
5.24	Experimental and FEM simulation comparisons between load-slip curves of Self-drilling screw connector	157
5.25	Experimental and FEM simulation comparisons between load-slip curves of Bolt 10 mm connector	157
5.26	Experimental and FEM simulation comparisons between load-slip curves of Bolt 12 mm connector	158
6.1	Type of CFFCC columns ;(a) column with web-stiffener (W-web); (b) column without web stiffener (N-web)	161
6.2	Failure mechanism at the top part of the specimens	164
6.3	Local buckling mode in build-up CFS after removal the crushed ferrocement	165
6.4	Buckling mode in build-up CFS with (N-web cross-section)	166
6.5	Buckling mode in build-up CFS with (W-web cross-section)	166
6.6	Failure mode of short column	167

6.7	Failure mode of long column	168
6.8	Failure mode of composite columns (CFFCC) for Group (1), (2) and (3)	170
6.9	Failure mode of composite columns (CFFCC) for Groups (4), (5) and (6)	172
6.10	Shear connectors after test	173
6.11	Effect of ferrocement jacket of C2FN-S specimens with length 2000 mm	175
6.12	Crushing mode of the ferrocement jacket	177
6.13	Failure mode in Group 1 of composite columns (CFFCC)	180
6.14	Failure mode in Group 2 of composite columns (CFFCC)	181
6.15	Failure mode in Group 3 of composite columns (CFFCC)	182
6.16	Failure mode in Group 4 of composite columns (CFFCC)	186
6.17	Failure mode in Group 5 of composite columns (CFFCC)	187
6.18	Failure mode in Group 6 of composite columns (CFFCC)	188
6.19	Effect of ferrocement jacket heights on load-axial shortening response (N-web)	192
6.20	Effect of ferrocement jacket heights on load-axial shortening response (W-web)	193
6.21	Effect of CFS thickness on load-axial shortening response (N-web)	196
6.22	Effect of CFS thickness on load-axial shortening response (W-web)	197
6.23	Comparison between N-web and W-web when CFS thickness 2mm	200
6.24	Comparison between N-web and W-web when CFS thickness 3 mm	201
6.25	Comparison between N-web and W-web when CFS thickness 4 mm	202
6.26	Experimental and theoretical vales of (N-web specimens) Histogram	207
6.27	Comparison between experimental and theoretical vales of (W-web) specimens	207
6.28	Comparison of mode failure	211
6.29	load- shortening relation of Group 1 with length 2000 mm (N-web)	213
6.30	load- shortening relation of Group 2 with length 3000 mm (N-web)	214
6.31	load- shortening relation of Group 3 with length 4000 mm (N-web)	215

6.32	load- shortening relation of Group 4 with length 2000 mm (W-web)	216
6.33	load- shortening relation of Group 5 with length 3000 mm (W-web)	217
6.34	load- shortening relation of Group 6 with length 4000 mm (W-web)	218

LIST OF SYMBOLS

A_c	=	The cross-section area of core concrete
A_s	=	Cross-sectional area of steel
$A_{s,s}$	=	Cross -sectional area of steel stiffeners
$A_{s,t}$	=	Cross -sectional area of steel tube
B/t	=	Width thickness ratio
В	=	The width of the plate
b_{eff}	=	Effective width
b_s	=	Width of the steel stiffener
d_w	=	Diameter of wire mesh
D_s	=	Diameter of steel bar
E _c	=	Concrete modulus of elasticity
E_m	=	Mortar modulus of elasticity
Es	=	Steel modulus of elasticity
E_{co}	=	The tangent elastic modulus of unconfined concrete
$\frac{E_t}{E}$	=	The ratio of tangent modulus of elasticity
Е	=	Strain
E _{cc}	=	Axial strain of confined concrete
έ _{cc}	=	The strain at peak strength
ε_y	=	The axial strain when the composite section is at yield
$arepsilon_{85\%}$	=	The axial strain when the load falls to 85% of the ultimate
		load
$\mathcal{E}_{95\%}$	=	The axial strain when the load falls to 95% of the ultimate
		load
ξ	=	Confinement factor
f_{cc}	=	Incremental increase in peak compressive stress

$\acute{f_c}$	=	The peak axial compressive stress
f_{2A}	=	The hydrostatic confining stress
f_{cc}	=	Axial stress of confined concrete
$f_{y,t}$	=	Yield strength of steel tube
$f_{y,c}$	=	Yield strength of cold-formed steel
f _{y,st}	=	Yield strength of steels' stiffeners
f _{cu}	=	Cube crushing strength
f _{cm}	=	Cube crushing strength of mortar
f_{my}	=	Yield strength of wire mesh
f_s	=	Yield strength of steel bar
$f_{s,c}$	=	Yield strength of cold-formed steel
I_s	=	Stiffeners stiffness
I _c	=	The moment of inertia of un-cracked concrete core
I _{s,re}	=	Requirement on stiffener rigidity
Κ	=	The elastic buckling coefficient
L	=	Length of column
N_u	=	The ultimate strength capacity of the CFFCC column
Ν	=	Axial load
N _{u,e}	=	Experimental ultimate strength
σ	=	Stress
σ_R	=	Constant confining pressure
σ_{cr}	=	Critical buckling stress
σ_y	=	Material yield stress
P_o	=	The perimeter of concrete-steel interface
P_{cr}	=	The local buckling stress of the element
P_u	=	Ultimate load in compression
R_r	=	The strength reduction radio
t	=	Wall thickness of the steel
t_s	=	Thickness of the steel stiffeners
V_f	=	Volume fraction of wire mesh
υ	=	The Poisson's ratio

W	=	The width of the sup-panel plate, taken approximately as
		b/2
F_y	=	specified minimum yield stress of steel section
Fyr	=	specified minimum yield stress of reinforcing bars
EI _{eff}	=	Effective stiffness of composite section
R _{se}	=	The allowable horizontal load
A_{sc}	=	Cross-sectional area of stud connector
Fys	=	The yield stress of stud shear connectors

LIST OF ABBREVIATIONS

ACI	American Concrete Institute
ASCE	American Society of Civil Engineers
AISI	American Iron and Steel Institute
ASTM	American Standards for Testing of materials
BS	British Standards
BTTST	Bent-up Triangular Tab Shear Transfer
CFS	Cold-Formed Steel
CFFCC	Cold-formed Steel /Ferrocement Composite Column
CFST	Concrete Filled Steel Tube
DSM	Direct Strength Method
FC	Ferrocement
FRP	Fiber Reinforced Polymer
IFS	International Ferrocement Society
IBS	Industrialized Building System
LYLB	Lakkavalli and Liu Bent-up Tab
LVDT	Displacement Transducers
OPC	Ordinary Portland Cement
RC	Reinforced Concrete
SP	Superplasticizer
UTM	University Technology Malaysia
W/C	Water-Cement Ratio
W-web	With web-stiffener (column cross-section)
N-web	No web-stiffener (column cross-section)
NAS	North American Specification
PNA	Plastic Neutral Axis
EC 4	Euro code 4

CDAS	Control and Data Acquisition System
ENA	Elastic Neutral Axis
FEM	Finite Element Method
HRWR	High Range Water Range
SCM	Self-Compacting Mortar

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Sample calculations for predicted capacity, Mu, theory	
	and deflection, δ of CFS-ferrocement composite beam	239
Л	Sample calculation of predicted ultimate compression	
D	of full scale composite columns (CFFCC)	244

CHAPTER 1

INTRODUCTION

1.1 General Appraisal

Compression members are the key elements of all skeletal structures, and the study of their behavior is usually based on testing of concentrically loaded columns. Compression members, or columns, may be defined as members that carry axial compressive loads, and whose length is considerably greater than cross-sectional dimensions. Such members may carry other types of loadings, and may have end conditions and end moment of different kinds *(Saadon , 2010)*.

In construction industry, different materials can be integrated together in an optimum geometric configuration, aimed at utilizing only the desirable property of each material by virtue of its designated position. The structure is then known as a composite construction.

Composite construction is *a* combination of two or more materials in a unit structure to provide tangible benefits and a versatile solution to suit different applications. A composite system reduces the unnecessary and unwanted material properties, such as weight and cost, without sacrificing required capacity (*Yardim, Y et al., 2008*).

A structure can be considered composite only as long as various components are connected to act as a single unit. The structural performance depends upon the extent to which composite action can be achieved. Also, it has a higher stiffness and higher load bearing capacity when compared with their non-composite counterparts. Hence the size of the composite section could be reduced at the expense of greater stiffness and strength (*Baig et al., 2006*).

Composite action is characterized by an interactive behaviour between structural steel and concrete components designed to use the best load-resisting characteristics of each material. The steel and concrete composite system, which together resists the entire set of loads imposed on the structure, are generally more efficient in resisting the applied loads. Composite construction systems first appeared in the construction industry in the early 1900s (*Viest et al., 1997*). Continuous research and development all around the world over the past 100 years has made composite construction increasingly popular in bridges as well as residential and commercial high-rise buildings. (*Akram , 2010*).

The general term "composite column" refers to any compression member in which a steel element acts compositely with a concrete element, so that both elements resist compressive force. There is a wide variety of composite columns of varying cross-section in today's construction. In contrast to the encased composite column, the concrete-filled column has the advantage that it does not need any formwork or reinforcement as shown in Figure 1.1. The concrete-filled column offers several advantages, related to its structural behaviour over pure steel, reinforced concrete or encased composite column. The location of the steel and the concrete in the cross-section optimizes the strength and stiffness of the section. The steel lies at the outer perimeter where it performs most effectively in tension and in resisting bending moments (*Baig et al., 2006*).

Figure 1.1 Details of concrete-filled steel tubular columns

Ferrocement is a form of thin reinforced concrete structure in which a brittle cement-sand mortar matrix is reinforced with closely spaced multiple layers of thin wire mesh and /or small diameter rods, uniformly dispersed throughout the matrix of the composite (*Naaman, 2000*).

Ferrocement has taken a significant place among components used for construction, due to its durability, strength, and its lean thickness, which makes it a component suitable for constructing many lightweight structures. From the architectural stand-point, ferrocement is very useful, since it can be molded into different shapes for different designs. These facts point out its feasibility for future use in the construction industry.

Recent researches (*Billah, 2011*) have indicated that ferrocement jacketing may be used as an alternative technique to strengthen RC columns with inadequate shear strength. The external confinement using ferrocement has resulted in enhanced stiffness, ductility, strength, and energy dissipation capacity as shown in Figure 1.2. The mode of failure could be changed from brittle shear failure to ductile flexural failure by the use of ferrocement jacket. The axial loads influence the response of columns and the energy absorption capacity. The effect of axial compression on column response was the acceleration of strength and stiffness degradation under repeated inelastic load cycles (*Rathish Kumar et al, 2007*).

Figure 1.2 Details of Ferrocement Jacketing

Cold-formed steel (CFS) structural members are made by cold-forming steel sheets, strips, plates or flat bars in roll forming machines or by press brake operations. The typical thickness of cold-formed steel products ranged from 0.373 mm to 6.35 mm (*AISI, 2007b*). Presently, cold-formed steel sections are being extensively used in airplanes, automobiles, grain storage structures, and building structures (*Yu, W.W, 1999*).

CFS is currently being used widely in residential and light commercial building constructions instead of wood framing because of the decreasing supply of quality lumber (*Wei-Wen et al., 2000*). Besides, cold-formed steel has high strength-to weight ratio of any building material used in construction today. Cold-formed steel sections are economical, light weight, non-combustible and also recyclable (*Gregory et al., 2001*).

Usually, the nominal yield strength of steel ranges from 250 to 550 MPa, while thickness less than 1 mm is normally used. Nowadays, significant improvements in manufacturing technologies and development of thin, high strength steels are used therefore CFS structures have increased quickly in recent times (*Narayanan et al, 2003*).

Structural stability problems are not observed in hot-rolled steel sections, but such troubles have clearly been seen in cold-formed steel sections. Three structural unsteady modes namely local, distortional and flexural / flexural-torsional buckling are likely to happen in steel compression members, as shown in Figure 1.3. Distortional buckling usually occurs in the flanges of channel at the flange/web junction if the lip stiffener is inadequate. It prevents the normal movement of the flange's plane that it supports (*Schafer, 2000*).

Figure 1.3 Details of different buckling modes that occur for lipped C-channel

In the past, different buckling modes have been investigated by researchers who frequently used cold-formed steel sections. Past developments were designed at deriving simple calculation procedures using manual calculations or worksheet. This is however difficult as some aspects of behavior observed in cold-formed steel sections are very difficult (*Narayanan et al, 2003*).

It is thus noted that local buckling and flexural / flexural- torsional buckling behavior of cold-formed steel sections have been widely studied in the past. Recently, the focus has been extended to distortional buckling as well. (*Schafer, 2000*).

Hence this study aimed to combine the benefits of cold formed sections with those of ferrocement jacketing so as to utilize the betterment of both materials' composite action. It is hoped that the proposed study could be of value if a composite column is used in typical buildings, such as residential and commercial buildings.

1.2 Background and Rationale

The development of lightweight, industrialized and sustainable housing system is the need of our time all over the world. In Kuwait, development and construction activity is one of the most important economic activities needed for both the citizens and the huge foreign labor in the state. It has spurred the demand for fast, cost-effective and quality residential buildings. The supply of houses by both the public and private sectors is far from meeting their demand. Rising cost of both building materials and labor is another issue which makes it imperative to study the economic and systematic application of new construction materials and systems.

Industrialization of building system by developing efficient prefabricated composite structural elements may deal with the issue reasonably well. Fabrication of the elements takes place in the factory or workshops and the elements are installed with minimum time period and labor needed at the site. This may also lead to the reduction in foreign labor engaged by the country's construction industry resulting in economical and expertise problems for the country which hires foreign labor will face economic and training issues,

1.3 Statement of the Problem

Cold-formed steel columns have distinct structural stability problems. Buckling remains as the main issue. The cross-section of cold-formed steel developed from connecting the C-channel section as an I-section has not improved the axial capacity of the section. This is due to the formation of a weak axis which has a low degree of stiffness. As a result, researchers must overcome this problem to reap the benefits of cold formed sections, if used as columns or compression members (*Gregory et al., 2001*).

On the other hand, ferrocement was examined by some researchers as a method of jacketing to strengthen RC columns. Results showed promise and were inspiring (*Kondraivendhan & Pradhan , 2009*). The problem of weak axis as mentioned earlier can be solved by the formation of rectangular section. The integration of ferrocement as encased column in the C-channel connected back-to-back to form an I-section, positioned at the centre of the proposed composite column, has enhanced the stiffness as well as the axial capacity of the column.

Hence, cold-formed steel/ferrocement jacket composite columns (CFFCC) seem to represent a promising combination. This study aimed to integrate the benefits of cold formed sections and those of ferrocement cold formed composite column. It was hoped that the information gained from the study could be used to establish an alternative composite column construction for the actual buildings, such as residential and commercial buildings. The use of self-compacting concrete (SCC) was proposed instead of the normal concrete as the SCC would reduce the problem of developing "honey comb" usually occurring in normal concrete.

1.4 Objectives of the Study

The chief aim of this research was to manufacture and study the behavior and properties of cold formed assembled with ferrocement jacket composite column (CFFCC) structural system. Hence, an extensive analytical and experimental study was required as follows:

- 1. To propose new viable shear connectors for ferrocement jackets and cold formed steel column that can function as composite column.
- 2. To model the behavior of the proposed composite column by Finite Element Analysis using ANSYS software

3. To validate the experimental results of the proposed composite column with AISI-S100 (2007) that can predict the strength load capacity of the proposed ferrocement jacket/cold formed steel column system.

1.5 Scope of the Study

The scope of the study consisted of intensive experimental work on the proposed composite column by integrating together CFS with ferrocement. The experimental program was designed to provide a better understanding of the behavior and properties of CFS with ferrocement jacket as composite column .The proposed column focused on the strength capacity of the axial load by introducing a new stiffening system of longitudinal ferrocement jacket stiffeners. The experimental program comprised of two phases:

1.5.1 Push out Test

The main scope of this phase focused on the shear strength of (CFFCC) with the proposed shear connector system. Push out test was used to determine the ultimate slip and strength of shear connector with large diameter, for connecting ferrocement jacket and cold-formed steel column. The main aim was to investigate the strength characteristics of the proposed shear connectors embedded in the ferrocement slab and connected to the cold-formed lipped C-channel section. The bond strength between ferrocement and the cold-formed column was determined. These tests were meant to determine the design values of the shear connections (stiffness, resistance and ductility) as well to study the effect of connection's stiffness in the performance of the composite system.

Eight push-out specimens of CFS with lipped C-channel sections assembled with ferrocement jacket were prepared and tested. In addition, various types of shear connectors namely, bolts (10 mm and 12mm in diameters), bar angle bolts (10mm in diameter), and self-drilling screw (6.3 mm in diameter x 12 mm long) were evaluated.

The typical welded shear connector such as shear stud was not suitable for use as shear connector due to thinness of CFS section. The objectives of this phase were to study load-slip behaviour and to determine the shear strength and stiffness of the design. The results and discussion are presented by varying the numbers of wire mesh used and types of installed shear connector.

1.5.2 CFS-Ferrocement Composite Column Tests

The second scope was designed to evaluate the behaviour of full scale (CFFCC) that was subjected under axial loads into two systems (column with web stiffener and column without web stiffener). The stiffening of column web was proposed since CFS is known for its slender section making the possibility of web failure very high. This phase was divided into two parts namely; <u>experimental tests</u> and <u>numerical analysis</u>.

<u>The experimental part of shear connector</u> comprised of cold-formed lipped Cchannel assembled with ferrocement jacket by using shear connector to form a composite column. The control specimens with two, four and six layers of wire mesh for ferrocement jacketing were tested. Then the best number of wire mesh that had high strength and resistance to the applied axial force was chosen. Finally, it was fixed with different lengths and thicknesses of cold-formed lipped C-channel. The increasing number of wire mesh layers were purposely tested so as to understand the extent of improvement they showed in the axially load column. Wire mesh in ferrocement is known to reduce the formation of cracks in concrete.

The proposed lengths of full scale columns used were 1000 mm, 2000 mm and 3000 mm. Differing lengths of the column were studied so as to understand the relation of length to capacity of the proposed tested columns. The stiffness of column is dependent on the column length as the crushing failure when compared to overall buckling, could result in different values of axial load capacity. Moreover, the use of shear connectors in the proposed column could enhance the stiffening of CFS column designed as composite column. Bare steel column could develop the problem of low

axial load due to buckling failure (*Gregory et al., 2001*) as shown in Fig. 1.4. All webs were connected back-to-back and fastened by self-drilling-screws while all surrounding flange and web were strengthened by ferrocement jacket and connected by shear connectors. Eighteen specimens were tested under axial load until failure occurred.

Figure 1.4 Failure mode of non-composite columns tested under axial load.

<u>Numerical analysis</u> by Finite Element using ANSYS was done to verify the experimental results obtained with different parameters. Details of the research involved were divided into several smaller tasks, which were subsequently organized into relevant chapters as described in section 1.7. A brief methodology and scope of work of the study is illustrated in Figure 1.5.

Composite Column Specimens, Instrumentation setup:

-Universal Testing Machine

-Strain gauge, testing: Axial load test.

Theoretical Work:

Develop equations that expressed the behavior of the proposed ferrocement jacket/cold formed steel column system, Regression Analysis, Validation of The Prediction Model, study the structural buckling modes of CFS-Ferrocement composite column, Discussion of Theoretical Analysis base on code AISI S100-2007.

<u>Data Analysis:</u> Analysis of material properties, column behavior, Slip and load Analysis, Ferrocement jacket characteristic.

Parametric study: (i) Effect of shear connectors (ii) layers of wire mesh in jacket (iii) Dimension of CFS (different length & fixed height web). Theoretical Analysis and experimental results compared and simulation by Finite Element Analysis through **ANSYS**.

Figure 1.5 Flowchart illustrating the methodology and scope of work

1.6 Significance of Research

In recent years society has begun to re-evaluate built environment with the purpose of achieving higher performance, sustainability specifically to minimize loss attributed to natural hazards. In order to seek sustainable solutions for long-term needs in the built environment, more efficient low-rise structures in general and residential housing in particular, the research being reported was undertaken. In the past, cultural norms largely drove the materials and systems employed for residential housing.

In lightweight residential and commercial buildings cold formed steel members are used as floor and joists, and designed as non-composite columns (Popo-Ola, et al., 2000. Ghersi ,et al.,2002). Most columns need to be checked for buckling and most likely they failed due to local or lateral-torsional buckling for incapability to the attainment of their capacities. Ferrocement is the solution to overcome of this frequent problem.

Ferrocement was examined by some researchers as a method of jacketing to strengthen RC columns. Results were good and inspiring (Kondraivendhan & Pradhan , 2009). Thus, the validation of using cold formed steel sections with ferrocement as a composite column could significantly increase the axial load capacity as well as improve appreciably the stiffness and slenderness of the proposed column. Since such column can be produced as a pre-cast column, commercial value of the column is supposedly high. A mass production of the proposed composite system is possible in the factory. Cost saving could be possible as less labour would be needed and the quality of the product can be controlled. The ferrocement jacket could also provide lateral restrain that prevents the cold formed steel section to fail under lateral-torsional buckling. Furthermore, improvement in the resistance of top flange and reduction of its tendency to buckle under compression can be expected. The proposed composite column could also be an alternative solution in facilitating CFS's fire resistance capacity. But that aspect was not explored in this research.

1.7 Thesis Layout

In this section, a synopsis is provided for each chapter of the thesis

<u>Chapter One</u> presents the general introduction, background of the study and outlines the aim and objectives and scope of this research. Significance of the study and thesis layout is also described in this chapter.

<u>Chapter Two</u> surveys the literature involving the historical development of conventional composite column construction and construction incorporating cold-formed steel tube filled with concrete which describes the background information about concrete filled steel tubes. Also it is followed by details of previous work done for concrete column in terms of confinement and jacketing by ferrocement.

<u>Chapter Three</u> contains a detailed description of the experimental investigation carried out in this study. The chapter also describes the proposed stiffening system for CFS and details of the fabrication method. Details of test specimens, experimental setup and testing procedure according to the actual sequence of each type of experimental investigation are provided.

<u>Chapter Four</u> presents the relationship between the basic finite elements, derived from the governing equilibrium equations, and the mathematical modeling of the materials used in the tested composite column (CFFCC).

<u>Chapter Five</u> presents the observations and discussion of the first phase that describes the results of the experimental work for push-out test. It includes analysis of the push-out test results and evaluates the strength and behaviour of a shear connector's enhancement.

<u>Chapter Six</u> constitutes the result and discussion of the second phase of experimental work based on investigation of the behaviour of full scale specimens of (CFFCC) columns. Observation of the physical failure mechanism and the effect of ferrocement jacket, loading conditions and columns' cross sections to the ultimate

strength and ductility are discussed in details. Finally a comparison of all the experimental results with analytical values by using Finite Element analysis using (ANSYS) and (AISI S100-2007) code are included

<u>Chapter Seven</u> present conclusions, recommendations and future work development.

REFERENCES

- Abdullah and Takiguchi, K,. (2003)." An Investigation into the Behavior and Strength of Reinforced Concrete Columns Strengthened with Ferrocement Jackets", Cement and Concrete Composites, (25):233-242.
- Abdullah, and Takiguchi, K. (2002a). Strength and Behaviour of Concrete Confined by Ferrocement Boxes. Journal of Ferrocement. 32(3): 193-203.
- Ali, M. S., (2010) "Experimental and Theoretical Investigation of Concrete Slabs on Grade ", Ph.D.Thesis, University of Basrah.
- ACI Concrete Institute (2008). Building Code Requirements for Reinforced Concrete). Detroit, American Concrete Institute; ACI 318–08.
- ASCE-ACI Task Committee. (1982)."State of the Art Report on Finite ElementAnalysis of Reinforced Concrete", ASCE special Publication, New York
- ANSYS, (2007)."Analysis Guide", Version 11, Swanson Analysis System, Inc.
- ANSI/AISC 360-05. (2005). Specification for structural steel buildings. Annual Book of AISC standards.
- ACI Committee 224. (1986)."Cracking of Concrete in Direct Tension", ACI Journal, Proceeding ,86(1):3-13.
- ACI Committee 224, 1986, "Cracking of Concrete Members in Direct Tension (ACI 224.2R-86)," American Concrete Institute, Detroit, 11 pp.
- ACI Committee 549. (1988). Guide for the Design, Construction, and Repair of Ferrocement. ACI Structural Journal, 85(3).
- ACI Committee 549.1–R88.(1988). Guide for the design, ."Construction and repair of ferrocement." ACI Structural Journal.5 (3): 325–51.
- American Iron and Steel Institute, AISI. North american specification for the design of cold-formed steel structural members. Washington, DC: American Iron and Steel Institute; 2001.

- Arther H. Nilson, David Darwin, and Charles W. Dolan. (2003). "Design of Concrete Structures", 13th ed., Copyright.
- Al-Salloum, Y. A. (2006). Influence of edge sharpness on the strength of square concrete columns confined with FRP composite laminates, Composites Part B: Engineering, Vol.38: 640-650.
- Amar, P., Anandavalli, N., Madheswaran, C. K., Lakshmanan, N. (2012). "Modified Push-out Tests for Determining Shear Strength and Stiffness of HSS Stud Connector-Experimental." International Journal of Composite Materials. 2(3): 22-31.
- American Society of Testing and Material (ASTM). (2003) "Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle". ASTM C-191, West Conshohocken, PA
- ASTM C496/C496M-04. (2004). Standard test method for splitting tensile strength of cylindrical concrete specimens. Annual Book of ASTM standards. vol. 04.02.
- ASTM A370-03a. (2004). Standard test methods and definitions for mechanical testing of steel products. Annual book of ASTM standards, vol. 01.04.
- American Society for Testing and Materials (2000)." Standard Test Methods and Definitions for Mechanical Testing of Steel Products". ASTM 370-03a, Philadelphia
- American Society of Testing and Material (ASTM). (2003). "Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates". ASTM C136, West Conshohocken, PA.
- American Society of Testing and Material (ASTM). (2003) "Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency ". ASTM C-305, West Conshohocken, PA.
- ASTM C39/C C39M-04. (2004). "Standard test method for compressive strength of cylindrical concrete specimens". Annual Book of ASTM standards, vol. 04.02.
- American Iron and Steel Institute. (2007)."Commentary on North American Specification for the Design of Cold-Formed Steel Structural Members", Washington, D.C.
- American Iron and Steel Institute. (1996)."Cold-Formed Steel Design Manual". American Iron and Steel Institute,.

- American Iron and Steel Institute, AISI. (2001)." North american specification for the design of cold-formed steel structural members". Washington, DC: American Iron and Steel Institute
- ACI Committee 318. (1999). Building code requirements for reinforced concrete (ACI 318-99) and commentary (ACI 318R-99). Detroit, American Concrete Institute.
- ACI Committee 549.1–R88. (1988). Guide for the design, .Construction and repair of ferrocement. ACI Struct J 5 (3): 325–51.
- Billah, A. H. M. M. (2011). Seismic performance evaluation of multi column bridge bent retrofitted with different alternative. Okanagan, The University of British Columbia. Master of applied science: 176.
- Bro, M. and Westberg, M. (2004). Influence of fatigue on headed stud connectors in composite bridges, Master's thesis, Dept. Civil & Environmental Engineering, Lulea University of Technology, Sweden.
- British Standard Institute, (1983)."Method of Testing Concrete", Part 118, BS 1881.
- Baig, M. N.,Fan, J. and Nie,J. (2006)."Strength of Concrete Filled Steel Tubular Columns" Tsinghua Science & Technology 11(6): 657-666.
- Baldassino, N., Hancock, G. (1999). "Distortional Buckling of Cold-Formed Steel Storage Rack Section including Perforations".
- Balaguru P. (1988).Use of ferrocement for confinement of concrete. Proc. of the 3rd International Conference on Ferrocement. Roorkee, India; 296–305.
- Balaguru, P. (1989)." Use of Ferrocement for Confinement of Concrete", Journal of Ferrocement", Vol. 19, No. 2, April, pp.135-140.
- Bentize, M. A., Darwin, D., and Donahey, R. C. (1998). "Deflection of Composite Beams with Web Openings.". Journal of Structural Engineering, ASCE, 124(10): 1139-1147.
- BlueScope Lysaght (Malaysia) Sdn. Bhd (2006). LYSAGHT: Selection Guide. Shah Alam, Malaysia: 13
- Brahmachari, K. (1997). "Connection and flexural behaviour of steel RHS filled with high strength concrete." School of construction and building sciences, Faculty of science, Technology and Agriculture. Hawkesbury, University of Western Sydney. PhD: 168.
- BS8110: 1985. Parts I and II. Code of Practice for Structural Concrete. British Standards Institution, London.

- BS1881-116. (1983). Testing concrete-Part 116: Method for determination of compressive strength of concrete cubes. British Standard Institution London.
- BS1881-121. (1983). Testing concrete-Part 121: Method for determination of static modulus of elasticity in compression. British Standard Institution London.
- BS 5950-5. (1998). Structural use of steelwork in building. Part 5, Code of practice for design of cold formed thin gauge section. British Standard Institution London, UK.
- Choi, Y. H. 2004."A modified AISC P-M Interaction Curve for Square Concrete Filled Tube Beam-Columns." Civil and Environmental Engineering. Urbana, Illinois, University of Illinois. Phd: 223.
- Cai, J. and He, Z. Q. (2006). "Axial load behaviour of square CFT stub column with binding bars." Journal of Constructional Steel Research 62(5): 472-483.
- Cai, J. and Long, Y. L. (2009). "Local buckling of steel plates in rectangular CFT columns with binding bars." Journal of Constructional Steel Research 62(5): 472-483.
- Chen, W.F. (1985)."Plasticity in Reinforced Concrete", McGraw-Hill Book m Company,.
- Chen, W. F. and Saleeb, A. F., (1981)."Constitutive Equations for Engineering Materials", West Lafayette, Indiana, December.
- Cervera, M. and Hinton, E. (1986)."Non-Linear Analysis of Reinforced Concrete Plates and Shells Using a Three Dimensional Model", In the Computational Modeling of Reinforced Concrete Structures, Eds. Hinton, E. and Owen, R., Pine ridge Press, Swansea, U. K: 237-370.
- Desayi, P., and Krishnan, S., (1964)."Equation for the Stress-Strain Curve of Concrete", Journal of the American Concrete Institute.(61) :345-350.
- Dabaon, M. A., El-Boghdadi, M. H. and Hassanein, M. F. (2009) . "Experimental investigation on concrete-filled stainless steel stiffened tubular stub columns." Engineering Structures 31(2): 300-307.
- Desmond, T. P., Pekoz, T. and Winter, G. (1981). "Intermediate stiffeners for thinwalled members." Journal of Structural Engineering. ASCE 107(4): 627-647.
- Egyptian code (2001).Code of practice for steel construction and bridges (Allowable Street Design). Ministry of Housing, Utilities, Cairo –Egypt. 205
- Egyptian Code of practice for Steel Construction and Bridges (Allowable Stress Design), Code no. Ecp (205), 1st Edition 2001, Edition 2008.

- Elchalakani, M., Zhao, X. L. and Grzebieta, R. (2002) . "Tests on concrete filled double-skin (CHS outer and SHS inner) composite short columns under axial compression." Thin-Walled Structures 40(5): 415-441.
- Ellobody, E. (2007) . "Nonlinear behavior of concrete-filled stainless steel stiffened slender tube columns." Thin-walled Structures 45(3): 259-273.
- El-Tawil S, Deierlein G.G.(1999). "Strength and Ductility of Concrete Encased Composite Columns." Journal of Structural Engineering 125 (9): 1009-1019.
- Eurocode 4, Ed.(2004) . Design of composite steel and concrete structures Part 1-1: General rules and rules for building, BSI.
- Eurocode 4-(1994). Design of composite steel and concrete structures. Part 1.1: General rules and rules for buildings. European Communities for Standardisation, Brussels, Belgium.
- Fabiana, L.D.O. and De Hanai, J.B. (2002). Experimental Analysis of Concrete Block Masonry Walls with Rectangular Openings Strengthened by Ferrocement Overlays. Journal of Ferrocement. 32(3): 179-191.
- Fahmy, E. H., Shaheen, Y.B. and Korany, Y.S., (1999). "Repairing Reinforced Concrete Columns Using Ferrocement Laminates" Journal of Ferrocement. 29(2)
- Fam. A. Z. Y. H. (2000)." Concrete-filled fibre-reinforced polymer tubes for axial and flexural structural members." Canada, the University of Manitoba (Canada)
- Furlong, R. W. (1967)." Strength of steel-encased concrete beam columns." Journal of structural division 93(ST5): 113-1224.
- Furlong, R. W. (1968)." Design of steel encased concrete beam columns." Journal of structural division, ASCE 94(11): 113-1224.
- Gardner, N. J. (1968)."Use of spiral welded steel tubes in pipe columns. "ACI Structural Journal 65(70): 937-943.
- Ganesan, A. and Anil, J. (1993)."Strength and behavior of reinforced concrete columns confined by ferrocement." Journal of Ferrocement, 23 (2):99–108.
- Ge, H. B. and Usami, T. (1992) . "Strength of concrete filled thin-walled steel box column: experiment." Journal of Structural Engineering ASCE 118(11): 3036-54.
- Gardner, N. J. and Jacobson, R. (1967)."Structural Behaviour of concrete filled steel tubes."ACI Structural Journal 64(38): 404-414.

- Giakoumelis, G. and Lam, D. (2004) ."Axial capacity of circular concrete-filled tube columns." Journal of Constructional Steel Research 60(7): 1049-1068.
- Ganesan, A. and Anil, J. (1993). Strength and behavior of reinforced concrete columns confined by ferrocement. J Ferrocement, 23 (2):99–108.
- Ghersi, A., Londolfo, R. and Mazzoloni, F. M. (2002)." Design of metallic Cold-Formed Thin-Walled Members." London: Spon Press,
- Gourley, B. C., Tort, C., Hajjar, J. F. and Schiller, P. H. (2001). "A synopsis of studies of the monotonic and cyclic behaviour of concrete filled steel tube beamcolumns." Structural Engineering Report No. ST-01-4.Minneapolis, Minnesota Department of Civil Engineering, Institute of Technology, University of Minnesota, 55455.
- Gregory J. Hancock, Thomas M. Murray, Duane S. Ellifritt, Marcel Dekker Inc. (2001). "Cold-Formed Steel Structures to the AISI Specification"
- Hancock, G.J., Kwon, Y.B., Bernard, E.S. (1994). "Strength Design Curves for Thin-Walled Sections Undergoing Distortional Buckling". J. of Constructional Steel Research, Elsevier, 31(23):169-186.
- Hancock, G. J., Murray, T. M. and Ellifritt, D. S. (2001)."*Cold-Formed Steel structures to the AISI specification.*" USA: Marcel Dekker
- Hiap Teck Venture Bhd, Products Catalogue. Klang, Malaysia: 11-14 UAC Steel Systems Sdn. Bhd, Company Profile. Shah Alam, Malaysia
- Hawkins, N. M., (1973) .The strength of stud shear connectors, Civil Engineering Transactions, Institution of Engineers, Australia. 33:46-52.
- Han, L. H. and Yang Y. F. (2003). "Analysis of thin-walled steel RHS columns filled with concrete under long-term sustained loads." Thin-Walled Structures 41(9): 849-870.
- Hibbeler, R. C. (2004). Mechanical of Materials. Singapore, Pearson Prentice Hall.
- Hinton, E. and Owen, D. R. J., (1977). "Finite Element Programming", Academic Press Inc. Ltd., London
- Hinton, E. and Owen, D. R. J., (1979)."An Introduction to Finite Element Computations", Pine ridge Press Limited, Swansea, U. K
- Hsu, H. L. and Yu, H. L. (2003). "Seismic performance of concrete-filled tubes with restrained plastic hinge zones." Journal of Constructional Steel Research 59(5): 587-608.

- Hu, H. T., Huang, C. S. and Chen, Z. L. (2005). "Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination." Journal of Constructional Steel Research 61(12): 1692-1712.
- Huang, C. S., Yeh, Y. K., Liu, G. Y., Hu, H. T., Tsai, K. C., Weng, Y. T., Wang, S. H. and Wu, M. H. (2002). "Axial load behaviour of stiffened concrete-filled steel columns." Journal of Structural Engineering 128(9): 1222-1230.
- Hunaiti, Y. M. 1991. "Bond strength in battened composite columns." Journal of Structural Engineering 117: 699-714.
- Hunaiti, Y. M. 1996. "Composite action of foamed and lightweight aggregate concrete." Journal of Materials in Civil Engineering 8: 111-113.
- Ibrahim, A. M., Mohaisen ,Saad k., Ahmed, Qusay W. (2012). "Finite element modeling of composite steel-concrete beams with external prestressing." International Journal of Civil and Structural Engineering 3(1): 110-116.
- Jaafer, A. A. (2012)." Behaviour of Short Concrete Columns Strengthened with Ferrocement".Ph.D thesis, University of Basrah
- Jin J. (2002). Properties of mortar for self-compacting concrete. University College London.
- Jawahar, J. Guru., Sashidhar, C., Ramana Reddy, I.V., Annie Peter, J. (2013). "Optimization of superplasticiser and viscosity modifying agent in self compacting mortar." Asian Journal of Civil Engineering (BHRC) 14(1): 71-86.
- Johnson S. M. (1965).Deterioration, maintenance and repair of structures, New York: McGraw-Hill.
- Kabir, A. and Hasan, M.M, (1999)." Precast Ferrocement Jackets for Brick Masonry Columns", Affordable Village Building Technologies. : 41-49
- Keisuke, T., Katsuki, T., Shingo, H. and Abdullah, (2002). "Behavior of Concrete Confined by Ferrocement Boxes", Architectural Institute of Japan, Structure
- Alenezi, Khaled. ,Alhajri, T., Tahir, Mahmood.M., Badr, Mohamed Ragaee K., Bamaga, S.O. (2013)."Strengthen of cold-Formed Steel Column with Ferrocement Jacket". Push out Tests International Conference on Civil and Environmental Engineering (ICCEE). Pattaya, Thailand. 7: 4.
- Kondraivendhan, B. and Pradhan, B. (2009). "Effect of Ferrocement Confinement on Behavior of Concrete" .Construction and Building Materials (23) :1218 1222.
- Kumar, P. R., Oshima, T., Mikami, S. and Yamazaki, T., (2005) "Seismic Retrofit of Square Reinforced Concrete Piers by Ferrocement Jacketing", Structure and

Infrastructure Engineering-Maintenance, Management, Life Cycle Design and Performance, Taylor and Francis group Ltd.(4):253-262.

- Kumar, R. P., Oshima T., Mikami S. (2004). "Ferrocement confinement of plain and reinforced concrete." Progress in Structural Engineering Materials. 6 (4): 241– 51.
- Kumar, R. P., Rao, C.B.K.(2006)."Constitutive behavior of high-performance ferrocement under axial compression." Magazine of Concrete Research. 58 (10): 647–56.
- Kumar, P.R., Oshima, T., Mikami, S. and Yamazaki, T., (2007)."Studes on RC and Ferrocement Jacketed Columns Subjected to Simulated Seismic Loading", Asian Journal of Civil Engineering.8 (2):215-225.
- Karsan ID, Jirsa JO. (1969)." Behavior of Concrete under Compressive Loadings", Journal of Structural Division, 95(12):2543-63.
- Khudair, J. A., (2004). "Structural Behavior of Reinforced Flanged Continuous Deep Beams Failing in Shear", Ph.D.Thesis, University of Basrah,.
- Kwak, H. G. and Filip C. Filippou. (1990)."Finite Element Analysis of Reinforced Concrete Structures under Monotonic Loads", Report No. UCB/SEMM-90/14 Structural Engineering, Mechanics and Materials Department of Civil Engineering University of California, Berkeley, November.
- Kupfer, H. P., Hilsdorf, H. K., and Rusch, H. (1969)."Behavior of Concrete under Biaxial Stresses", ACI journal, Proceedings. 66 (8):656-666.
- Lloyd, R. M., Wright, H. D. (1990)."Shear connection between composite slabs and steel beams." Journal of Structural Engineering. 15(4): 255-285.
- Li, A., and Cederwall, K. 1996. Push-out tests on studs in high strength and normal strength concrete, Journal of Constructional Steel Research, Vol. 36 (1),15-29.
- Lau SCW, Hancock GJ. (1986). "Buckling of thin flat-walled structures by a spline finite strip method". Thin Walled Structures; 4:269–94.
- Mansur, M. and Paramasiva, P. (1990). "Ferrocement Short Column under Axial and Eccentric Compression," ACI Structural Journal.87(5) :523-529
- Mourad, S. M.,"Performance of Plain Concrete Specimens Externally Confined with Welded Wire Fabric", Final Research Report No. 47/426,
- Mcateer, M. P. (2002) ." Axially loaded circular high-strength concrete columns confined by steel tube: Mechanics, modeling, and slenderness effects." Canada, University of Toronto (Canada).

- Mander, J. B., Priesty, M. J. N. and Park, R. (1988) ." Theoretical stress-strain odel for confined concrete." ASCE Journal of Structural Engineering 114(8): 1804-1826.
- Moen, C.D., and Grey, C.D. (2011)."Elastic Buckling Simplified Methods for Cold-Formed Columns and Beams with Edge-Stiffened Holes". Annual Stability Conference, Structural Stability Research Council, Pittsburgh, Pennsylvania, United states. May 10 - 14
- Mursi, M. and Uy, B. (2004). "Strength of slender concrete filled high strength steel box columns." Journal of Constructional Steel Research 60(12): 1825-1848.
- Narayanan, S. a. M., Mahen. (2003). "Ultimate Capacity of Innovative Cold formed Steel Columns." Journal of Constructional Steel Research 59(4): 489-508
- Naaman, Antoine. E,(2000)."Ferrocement and laminated cementitious composites", Second edition, University of Michigan, Michigan.
- Ngo, D., and Scordelies, A. C. (1967). "Finite Element Analysis of Reinforced Concrete Beams", American Concrete Institute, 65(3):757-766.
- Nilson, A. H., (1968)."Nonlinear Analysis of Reinforced Concrete by the Finite Element Method", Journal of American Institute, 65:757-766.
- O'Shea, M. D. and Bridge, R. Q. (2000) . "Design of circular thin-walled concrete filled steel tubes." Journal of Structural Engineering 126(11): 1295-1303.
- Ollgaard, J.G., Slutter, R. G., Fisher, J.W., (1971) ."Shear strength of stud connectors in lightweight and normal weight concrete." Engineering Journal AISC. 8:55-64.
- Ong, K.C.G., Kang, J. (2004). "Jacketing of preloaded steel columns." Journal of Constructional Steel Research, 60 (1): 109-124
- Oehler, D.J. and Bradford, M.A. (1999). "Elementary behaviour of composite steel and concrete members. New South Wales, Australia, Butterworth Heinemann.
- Oehlers, D. J., Park, S. M., (1992)."Shear connectors in composite beams with longitudinally cracked slabs." Journal of Structural Engineering. 118(8):2004-2022.
- Oehlers, D. J., Johnson, R. P. (1987). "The strength of stud shear connections in composite beams." Journal of Structural Engineer .Part B. 65 (14).
- Pallares, L. and Hajjar, J. F. (2010). Headed steel stud anchors in composite structures, Part I. Journal of Constructional Steel Research. 66: 198-212.

- Peleska, K. (1999). "Partial connection of steel and concrete composite beams with HVB shear connectors", Department of Steel Structures, CVUT Praha. In Proceedings of 2nd European Conference on Steel Structures, Praha, Czech Republic, May (pp. 26-29).
- Popo-Ola, S.O., Biddle, A. R. and Lawson, R.M. (2000). Building Design Using Cold Formed Steel Sections: Durability of Light Steel Framing in Residential Building, Berkshire, UK, The Steel Construction Institute.
- Popovic D, Hancock GJ, Rasmussen KJR. (1999). "Axial compression tests of coldformed angles". J Struct Engng; 125(5):515–23.
- Popovic D, Hancock GJ, Rasmussen KJR. (2001).Compression tests on cold-formed angles loaded parallel with a leg. J Struct Engng; 127(6):600–7.
- Pham CH, Hancock GJ. (2009). "Shear buckling of thin-walled channel sections". Journal of Constructional Steel Research; 65(3):578–85.
- Pham CH, Hancock GJ. (2009)."Shear buckling of thin-walled channel sections with intermediate web stiffener". Proceedings of Sixth International Conference on Advances in Steel Structures, Hong Kong, China:417–424,.
- Rajamane, N.P. Ramachandarmurthy, D.S and Ravi, S. (2003). "Application of Ferrocement and Polymeric Materials for Repair of Corrosion Damaged Hyperboloid Overhead Water Tank Structure". Journal of Ferrocement. 33(1): 43-54.
- Rao, C. B. K. and Rao, A.K. (1988).Stress–strain curve in axial compression and Poisson's ratio of ferrocement. J Ferrocement. 16 (2):117–28.
- Rathish Kumar, P., Oshima, T., Mikami, Sh., and Yamazaki, T. (2007). "Studies on RC and Ferrocement Jacketed Columns Subjected to Simulated Seismic Loading." Asian Journal of Civil engineering Building and Housing 2(8): 215-255
- Rashid, Y. R., (1968)."Analysis of Prestressed Concrete Pressure Vessels".Nuclear Engineering and Design, 7(4)
- Rhodes, J. (1991). "Design of Cold Formed Steel Members." Great Britain: Elsevier Science Publisher.
- Rohini, S., Thenmozhi, R., Shri, S.D. (2012). "Finite element modeling of ferrocement slabs in flexure using ANSYS." International Journal of Energing trends in Engineering and Development 4(2): 500-508.

- Rochette, P. and Labossiere, P. (2000). "Axial testing of rectangular columns models confined with composites". Journal of Composite Construct 21(2),129–36.
- Saadon, A. S., (2010)."Experimental and Theoretical Investigation of PVC Concrete composite Columns", Ph.D. Thesis, University of Basrah
- Schafer, B.W. (2000). "Distortional Buckling of Cold-Formed Steel Columns." Final Report to the American Iron and Steel Institute, Washington, D.C
- Sherif, E. T. and Gregory, G. D. (1999)." Strength and ductility of concrete encased composite columns." ASCE. 125: 1009-1019.
- Shah, A.A., (2011)."Applications of Ferrocement in Strengthening of Unreinforced Masonry Columns", International Journal of Geology, 5(1):21-27.
- Shanmugam, N. E., & Lakshmi, B. (2001). State of the art report on steel–concrete composite columns. Journal of Constructional Steel Research, 57(10), 1041-1080.
- Singh, K. K. and Kaushik, S. K. (1988). Ferrocement composite columns. Proc. of 3rd International Conference on Ferrocement, Roorkee, India; 216–25.
- Stasa, F. L., (1985). "Applied Finite Element Analysis for Engineers" Holt, Rinehart and Winston
- Shams, M. and Saadeghvaziri, M. A. (1997) ." State of the art of concrete-filled steel tubular columns." ACI Structural Journal 94(5): 558-571.
- Shim, C. S., Lee, P. G., Yoon, T. Y. (2004)." Static behaviour of large stud shear connectors." Journal of Engineering Structures. 26 (12): 1853-1860.
- Sundarraja, M. C.and Prabhu, G. G. (2012). "Experimental study on CFST members strengthened by CFRP composites under compression." Journal of Constructional Steel Research 72: 75-83.
- Tao, Z., Han, L. H. and Wang, D. Y. (2008)." Strength and ductility of stiffened thinwalled hollow steel structural stub columns filled with concrete." Thin-Walled Structures 46(10): 1113-1128.
- Tao, Z., Han, L. H. and Wang, Z. B. (2005)." Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns." Journal of Constructional Steel Research 61(7): 962-983.
- Tao, z., Han, L. H. and Wang, D. (2007)." Experimental behaviour of concrete-filled stiffened this-walled steel tubular columns." Thin-Walled Structures 45(5): 517-527

- Tasuji, M. E., and Nilson, A. H., (1978). "Stress-Strain Response and Fracture of Concrete in Biaxial Loading", ACI Journal, Proceeding.75 (3):306-312.
- Takiguchi, K., Abdullah and Fujita, S., (2001)." On Strengthening and Repair of Shear Failure Type R/C Columns with Circular Ferrocement Jacket", Journal of Structural Construction Engineering, Architectural Institute of Japan. (541):145-153.
- Teng, J.E., Lam L. (2000)."Compressive behavior of carbon fiber reinforced polymer confined concrete in elliptical columns." Journal of Structural Engineering 128 (12): 1535–43.
- Unterweger H. (1999)."Ultimate load capacity of columns strengthened under preload" .International Conference on Advances in Steel Structures. 1: 117–24.
- Uy, B. (1998). "Local and post-local buckling of concrete filled steel welded bow columns." Journal of Constructional Steel Research 47(1-2): 47-72.
- Uy, B. (2001). "Strength of short concrete filled high strength steel box columns." Journal of Constructional Steel Research 57(2): 113-134.
- Uy, B. and Das, S. (1999). "Bracing of thin walled steel box columns during pumping of wet concrete in tall building." Thin-Walled Structures 33(2): 127-154.
- Viest I.M., Colaco J.P., Furlong R.W., Griffis L.G., Leon R.T., and Wyllie L.A. Jr. (1997)."Composite Construction: Design for Buildings". McGraw-Hill, New York.
- Wang, L. (2007)."Effect of corner radius on the performance of CFRP-confined square concrete column." M. Phil Thesis, Dept. Building and Construction, City University of Hong Kong.
- Wei-Wen Yu, John Wiley and Sons Inc. (2000)."Cold-Formed Steel Design". John Wiley & Sons, New York, NY.
- Willam, K. J. and Warnke, E. P., (1975)."Constitutive Model for the Triaxial Behavior of Concrete", Proceedings, International Association for Bridge and Structural Engineering, ISMES, Bergamo, Italy, 19:174.
- Wolanski, A. J. (2004)."Flexural Behavior of Reinforced and Prestressed Concrete Beams Using Finite Element Analysis", Master Thesis, University of Marquette.
- Wright, H. (1993) . "Buckling of plates un contact with a rigid medium." The Structural Engineering 71(12): 209-215.

- Young B, Rasmussen KJR. (1999). "Behaviour of cold-formed singly symmetric columns". Thin Wall Structural.; 33(2):83–102.
- Young B, Rasmussen KJR. (1999). "Shift of effective centroid of channel columns". J Struct Engng.125(5):524–31.
- Young B, Rasmussen KJR. (2000). "Inelastic bifurcation of cold-formed singly symmetric columns". Thin Wall Struct; 36(3):213–30.
- Yu, W. K., Chung, K. F. and Wong, M. F. (2005). "Analysis of bolted moment connections in Cold-Formed Steel beam-column sub-frames." Journal of Constructional Steel Research.(61):1332-1352.
- Yu, W. W. (2001). "CFS Design. 3rd Edition." USA: John Wiley & Sons
- Yu, W.W. (1999). "Cold-Formed Steel Structures" Structural Engineering Handbook Ed. Chen Wai-Fah Boca Raton: CRC Press LLC,
- Yu, Q., Tao, Z. and Chen, Z. B. (2010)." Analysis and calculations of steel tube confined concrete (STCC) stub columns." Journal of Constructional Steel Research 66(1): 53-64.
- Yu, Z. W., Ding, F. X. and Cia, C. S. (2007)." Experimental behavior of circular concrete-filled tube stub columns." Journal of Constructional Steel Research 63(2): 165-174.
- Zhong, S. T. (2003)."The advantage of concrete filled steel tubes (CFST) applied in residential building."Advantage in Structures. ASSCCA'03.
- Zienkiewicz, O. C., (1977)."The Finite Element Method", 3rd Ed., McGraw-Hill Book Company, New York,