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ABSTRACT 

One of the major challenges for strengthening or upgrading steel structures is 

to increase column capacity to withstand large expected loads.  The main objective of 

the present study was to investigate the behaviour of build-up lipped Cold Formed 

steel (CFS) C-channel column assembled with ferrocement jacket. Generally the data 

and information are limited on the behaviour and performance of CFS column in 

composite construction.. One of the limiting features of CFS is the thinness of its 

section that makes it susceptible to torsional, distortional, lateral-torsional, lateral-

distortional and local buckling. Hence, a reasonable solution was to propose a 

composite construction of structural CFS section and ferrocement jacket, which would 

minimize the buckling of the web and reduce the distortion of CFS sections. This study 

comprised of three major components, i.e. experimental, theoretical and finite element 

analysis through ANSYS (version 11). Experimental work involved small-scale and 

full-scale laboratory testing. The first phase comprised of push-out test specimens 

while the second phase focussed on full-scale testing of eighteen CFS-ferrocement 

composite column specimens. All eighteen full-scale axially loaded column specimens 

with variable parameters were tested till failure. The experimental test results show 

good agreement with the predicted value calculated from AISI S100 (2007).  It was 

found that the capacity of shear connector with 12 mm diameter bolts was the best in 

transferring shear force into steel section-ferrocement jacket interface. The strength 

capacity of CFS-ferrocement composite columns were improved by 245% than that of 

bare steel columns. Also it was found that axial load capacity of CFS-ferrocement 

jacket composite columns (CFFCC) increased with the increased thickness of CFS. 

The results of the finite element model agreed well with the experimental results based 

on the graphs plotted for load versus axial shortening of the proposed composite 

column system relationships.  
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ABSTRAK 

Salah satu cabaran utama untuk menguatkan atau menaik taraf struktur keluli 

adalah untuk meningkatkan keupayaan tiang bagi menahan beban jangkaan yang 

besar. Untuk itu, objektif utama kajian ini adalah untuk menyiasat kelakuan bebibir 

besi tergelek sejuk (CFS) yang terbina bagi tiang saluran-C yang dipasang pada jaket 

simen-ferro. Pada umumnya,  data dan maklumat mengenai tingkah laku dan prestasi 

tiang CFS dalam pembinaan komposit adalah terbatas. Salah satu ciri yang 

menghadkan CFS adalah seksyen yang tipis  menjadikan ia mudah terdedah kepada 

kilasan, perubahan, sisi-kilasan, sisi-perubahan dan lengkokan  tempatan. Oleh itu, 

penyelesaian yang munasabah adalah dengan memcadangkan pembinaan komposit 

dengan struktur CFS dan jaket simen-ferro, bagi mengurangkan lengkokan web dan 

mengurangkan mampatan tegasan lenturan dalam syeksyen CFS. Pengajaran disini 

terdiri daripada tiga komponen utama iaitu uji kaji eksperimen, teori dan analisa unsur 

terhingga menggunakan ANSYS(verse 1.1).  Kerja eksperimen melibatkan ujian 

berskala kecil dan ujian berskala besar di makmal ujikaji. Fasa pertama yang 

mengandungi lapan spesimen ujikaji tolak keluar manakala fasa kedua yang 

mengandungi lapan belas spesimen berskala penuh CFS-simen-ferro tiang komposit 

diuji dalam makmal. Kesemua lapanbelas spesimen tiang dikenakan beban paksi 

berskala penuh dengan parameter yang berbeza telah diuji. Ujian ini telah 

menunjukkan bahawa kapasiti sambungan ricih bolt bersaiz 12mm adalah yang terbaik 

untuk digunakan untuk memindahkan daya ricihan pada permukaan seksyen keluli-

ferrocement jaket. Kekuatan kapasiti bagi jaket telah diperbaiki lebih daripada 245% 

lebih besar daripada tiang yang tidak ada jaket. Ia juga telah ditemui bahawa kapasiti 

beban paksi bagi CFS-ferrocement jaket untuk tiang rencam(CFFCC) telah meningkat 

dengan peningkatan ketebalan CFS.  Keputusan model unsur terhingga menunjukkan 

persetujuan yang sangat baik bila dibandingkan dengan keputusan ujian makmal 

berpandukan kepada graf yang dilukis bagi hubungan antara beban lawan pemendekan 

paksi bagi tiang rencam yang dicadangkan.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 General Appraisal 

Compression members are the key elements of all skeletal structures, and the 

study of their behavior is usually based on testing of concentrically loaded columns. 

Compression members, or columns, may be defined as  members that carry axial 

compressive loads, and whose length is considerably greater than cross-sectional 

dimensions. Such members may carry other types of loadings, and may have end 

conditions and end moment of different kinds (Saadon ,2010). 

In construction industry, different materials can be integrated together in an 

optimum geometric configuration, aimed at utilizing only the desirable property of 

each material by virtue of its designated position. The structure is then known as a 

composite construction.  

Composite construction is a combination of two or more materials in a unit 

structure to provide tangible benefits and a versatile solution to suit different 

applications. A composite system reduces the unnecessary and unwanted material 

properties, such as weight and cost, without sacrificing required capacity (Yardim, Y et 

al., 2008). 

A structure can be considered composite only as long as various components 

are connected to act as a single unit. The structural performance depends upon the 

extent to which composite action can be achieved. Also, it has a higher stiffness and  
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higher load bearing capacity when compared with their non-composite counterparts. 

Hence the size of the composite section could be reduced at the expense of  greater 

stiffness and strength (Baig et al., 2006). 

Composite action is characterized by an interactive behaviour between 

structural steel and concrete components designed to use the best load-resisting 

characteristics of each material. The steel and concrete composite system, which 

together resists the entire set of loads imposed on the structure, are generally more 

efficient in resisting the applied loads. Composite construction systems first appeared 

in the construction industry in the early 1900s (Viest et al., 1997). Continuous research 

and development all around the world over the past 100 years has made composite 

construction increasingly popular in bridges as well as residential and commercial 

high-rise buildings. (Akram ,2010). 

The general term "composite column'' refers to any compression member in 

which a steel element acts compositely with a concrete element, so that both elements 

resist compressive force. There is a wide variety of composite columns of varying 

cross-section in today’s construction. In contrast to the encased composite column, the 

concrete-filled column has the advantage that it does not need any formwork or 

reinforcement as shown in Figure 1.1. The concrete-filled column offers several 

advantages, related to its structural behaviour over pure steel, reinforced concrete or 

encased composite column. The location of the steel and the concrete in the cross-

section optimizes the strength and stiffness of the section. The steel lies at the outer 

perimeter where it performs most effectively in tension and in resisting bending 

moments (Baig et al., 2006). 



3 

 

Figure 1.1 Details of concrete-filled steel tubular columns 

Ferrocement is a form of thin reinforced concrete structure in which a brittle 

cement-sand mortar matrix is reinforced with closely spaced multiple layers of thin 

wire mesh and /or small diameter rods, uniformly dispersed throughout the matrix of 

the composite (Naaman, 2000). 

Ferrocement has taken a significant place among components used for 

construction, due to its durability, strength, and its lean thickness, which makes it a 

component suitable for constructing many lightweight structures. From the 

architectural stand-point, ferrocement is very useful, since it can be molded into 

different shapes for different designs. These facts point out its feasibility for future use    

in the construction industry. 

Recent researches (Billah, 2011) have indicated that ferrocement jacketing may 

be used as an alternative technique to strengthen RC columns with inadequate shear 

strength. The external confinement using ferrocement has resulted in enhanced  

stiffness, ductility, strength, and energy dissipation capacity as shown in Figure 1.2. 

The mode of failure could be changed from brittle shear failure to ductile flexural 

failure by the use of ferrocement jacket. The axial loads influence the response of 

columns and the energy absorption capacity. The effect of axial compression on 
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column response was the acceleration of strength and stiffness degradation under 

repeated inelastic load cycles (Rathish Kumar et al, 2007). 

 

Figure 1.2 Details of Ferrocement Jacketing  

Cold-formed steel (CFS) structural members are made by cold-forming steel 

sheets, strips, plates or flat bars in roll forming machines or by press brake operations. 

The typical thickness of cold-formed steel products ranged from 0.373 mm to 6.35 mm 

(AISI, 2007b). Presently, cold-formed steel sections are being extensively used in 

airplanes, automobiles, grain storage structures, and building structures (Yu, W.W, 

1999).  

CFS is currently being used widely in residential and light commercial building 

constructions instead of wood framing because of the decreasing supply of quality 

lumber (Wei-Wen et al., 2000). Besides, cold-formed steel has high strength-to weight 

ratio of any building material used in construction today. Cold-formed steel sections 

are economical, light weight, non-combustible and also recyclable (Gregory et al., 

2001). 

Usually, the nominal yield strength of steel   ranges from 250 to 550 MPa, 

while thickness less than 1 mm is normally used. Nowadays, significant improvements 

in manufacturing technologies and development of thin, high strength steels are used 

therefore CFS structures have increased quickly in recent times (Narayanan et al, 

2003). 
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Structural stability problems are not observed in hot-rolled steel sections, but 

such troubles have clearly been seen in cold-formed steel sections. Three structural 

unsteady modes namely local, distortional and flexural / flexural–torsional buckling 

are likely to happen in steel compression members, as shown in Figure 1.3. 

Distortional buckling usually occurs in the flanges of channel at the flange/web 

junction if the lip stiffener is inadequate. It prevents the normal movement of the 

flange’s plane that it supports (Schafer, 2000). 

 

Figure 1.3 Details of different buckling modes that occur for lipped C-channel 

In the past, different buckling modes have been investigated by researchers 

who frequently used cold-formed steel sections. Past developments were designed at 

deriving simple calculation procedures using manual calculations or worksheet. This 

is however difficult as some aspects of behavior observed in cold-formed steel sections 

are very difficult (Narayanan et al, 2003). 

It is thus noted that local buckling and flexural / flexural- torsional buckling 

behavior of cold-formed steel sections have been widely studied in the past. Recently, 

the focus has been extended to distortional buckling as well. (Schafer, 2000). 
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Hence this study aimed to combine the benefits of cold formed sections with 

those of ferrocement jacketing so as to utilize the betterment of both materials’ 

composite action. It is hoped that the proposed study could be of value if a composite 

column is used in typical buildings, such as residential and commercial buildings. 

1.2 Background and Rationale 

The development of lightweight, industrialized and sustainable housing system 

is the need of our time all over the world. In Kuwait, development and construction 

activity is one of the most important economic activities needed for both the citizens 

and the huge foreign labor in the state. It has spurred the demand for fast, cost-effective 

and quality residential buildings. The supply of houses by both the public and private 

sectors is far from meeting their demand. Rising cost of both building materials and 

labor is another issue which makes it imperative to study the economic and systematic 

application of new construction materials and systems.  

Industrialization of building system by developing efficient prefabricated 

composite structural elements may deal with the issue reasonably well.  Fabrication of 

the elements takes place in the factory or workshops and the elements are installed 

with minimum time period and labor needed at the site. This may also lead to the 

reduction in  foreign labor engaged by  the country’s construction industry  resulting 

in economical and  expertise problems for the country which hires foreign labor will 

face economic and training issues,  

1.3 Statement of the Problem 

Cold-formed steel columns have distinct structural stability problems. 

Buckling remains as the main issue. . The cross-section of cold-formed steel developed 

from connecting the C-channel section as an I-section has not improved the axial 

capacity of the section.  This is due to the formation of a weak axis which has a low 

degree of stiffness. As a result, researchers must overcome this problem to reap the 
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benefits of cold formed sections, if used as columns or compression members (Gregory 

et al., 2001). 

On the other hand, ferrocement was examined by some researchers as a method 

of jacketing to strengthen RC columns. Results showed promise and were inspiring 

(Kondraivendhan & Pradhan , 2009).  The problem of weak axis as mentioned earlier 

can be solved by the formation of rectangular section. The integration of ferrocement 

as encased column in the C-channel connected back-to-back to form an I-section, 

positioned at the centre of the proposed composite column, has enhanced the stiffness 

as well as the axial capacity of the column.  

Hence, cold-formed steel/ferrocement jacket composite columns (CFFCC) 

seem to represent a promising combination. This study aimed to integrate the benefits 

of cold formed sections and those of ferrocement cold formed composite column. It 

was hoped that the information gained from the study could be used to establish an 

alternative composite column construction for the actual buildings, such as residential 

and commercial buildings.   The use of self-compacting concrete (SCC) was proposed 

instead of the normal concrete as the SCC would reduce the problem of developing 

“honey comb” usually occurring in normal concrete.  

1.4 Objectives of the Study 

The chief aim of this research was to manufacture and study the behavior and 

properties of cold formed assembled with ferrocement jacket composite column 

(CFFCC) structural system. Hence, an extensive analytical and experimental study 

was required as follows: 

1. To propose new viable shear connectors for ferrocement jackets and cold 

formed steel column that can function as composite column.  

2. To model the behavior of the proposed composite column by Finite 

Element Analysis using  ANSYS software  
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3. To validate the experimental results of the proposed composite column 

with AISI-S100 (2007) that can predict the strength load capacity of the 

proposed ferrocement jacket/cold formed steel column system. 

1.5 Scope of the Study 

The scope of the study consisted of intensive experimental work on the 

proposed composite column by integrating together CFS with ferrocement. The 

experimental program was designed to provide a better understanding of the behavior 

and properties of CFS with ferrocement jacket as composite column .The proposed 

column focused on the strength capacity of the axial load by introducing a new 

stiffening system of longitudinal ferrocement jacket stiffeners. The experimental 

program comprised of two phases: 

1.5.1 Push out Test 

The main scope of this phase focused on the shear strength of (CFFCC) with 

the proposed shear connector system. Push out test was used to determine the ultimate 

slip and strength of shear connector with large diameter, for connecting ferrocement 

jacket and cold-formed steel column. The main aim was to investigate the strength 

characteristics of the proposed shear connectors embedded in the ferrocement slab and 

connected to the cold-formed lipped C-channel section. The bond strength between 

ferrocement and the cold-formed column was determined. These tests were meant to 

determine the design values of the shear connections (stiffness, resistance and 

ductility) as well to study the effect of connection’s stiffness in the performance of the   

composite system. 

 Eight push-out specimens of CFS with lipped C-channel sections assembled 

with ferrocement jacket were prepared and tested. In addition, various types of shear 

connectors namely, bolts (10 mm and 12mm in diameters), bar angle bolts (10mm in 

diameter), and self-drilling screw (6.3 mm in diameter x 12 mm long) were evaluated. 
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The typical welded shear connector such as shear stud was not suitable for use as shear 

connector due to thinness of CFS section.  The objectives of this phase were to study 

load-slip behaviour and to determine the shear strength and stiffness of the design. The 

results and discussion are presented by varying the numbers of wire mesh used and 

types of installed shear connector.  

1.5.2 CFS-Ferrocement Composite Column Tests 

The second scope was designed to evaluate the behaviour of full scale 

(CFFCC) that was subjected under axial loads into two systems (column with web 

stiffener and column without web stiffener).  The stiffening of column web was 

proposed since CFS is known for its slender section making the possibility of web 

failure very high. This phase was divided into two parts namely; experimental tests 

and numerical analysis. 

The experimental part of shear connector comprised of cold-formed lipped C-

channel assembled with ferrocement jacket by using shear connector to form a 

composite column. The control specimens with two, four and six layers of wire mesh 

for ferrocement jacketing were tested. Then the best number of wire mesh that had 

high strength and resistance to the applied axial force was chosen.  Finally, it was fixed 

with different lengths and thicknesses of cold-formed lipped C-channel.  The 

increasing   number of wire mesh layers were purposely tested so as to understand the 

extent of improvement they showed in the axially load column. Wire mesh in 

ferrocement is known to reduce the formation of cracks in concrete. 

The proposed lengths of full scale columns used were 1000 mm, 2000 mm and 

3000 mm.   Differing lengths of the column were studied so as to understand the 

relation of length to capacity of the proposed tested columns. The stiffness of column 

is dependent on the column length as the crushing failure when compared to overall 

buckling, could result in different values of axial load capacity. Moreover, the use of 

shear connectors in the proposed column could enhance the stiffening of CFS column 

designed as composite column.  Bare steel column could develop the problem of low 
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axial load due to buckling failure (Gregory et al., 2001) as shown in Fig. 1.4.  All webs 

were connected back-to-back and fastened by self-drilling-screws while all 

surrounding flange and web were strengthened by ferrocement jacket and connected 

by shear connectors. Eighteen specimens were tested under axial load until failure 

occurred. . 

 

Figure 1.4 Failure mode of non-composite columns tested under axial load. 

Numerical analysis by Finite Element using ANSYS was done to verify the 

experimental results obtained with different parameters. Details of the research 

involved were divided into several smaller tasks, which were subsequently   organized 

into relevant chapters as described in section 1.7. A brief methodology and scope of 

work of the study is illustrated in Figure 1.5. 
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Figure 1.5 Flowchart illustrating the methodology and scope of work 

 

  

Laboratory Test: Properties of Material: 

-Cold-Formed Steel –tensile test 

-Mortar-cube compressive 

-Wire mesh - tensile test 

-Welded wire mesh fabric reinforcement- 

tensile test 

 

 

Laboratory Test: Push-out test: 

-Materials and specimens preparation:  

- Three types of shear connectors, 

Instrumentation setup: 

-Universal Testing Machine  

-Testing: EC4 test procedure 

Investigation of the Behaviour of Composite Columns with built up back-to-

back Cold-Formed lipped C-Channel / Ferrocement Jacket 

Data Analysis: Analysis of material properties, Failure mechanisms, General Analysis of 

push-out test results, parametric study: (i) effect of shear connectors (ii) number of layers 

of wire mesh. 

 

Laboratory Test:  Large –: Material and specimens preparation: 

Composite Column Specimens, Instrumentation setup: 

-Universal Testing Machine  

-Strain gauge, testing: Axial load test. 

 

 

 Theoretical Work: 

Develop equations that expressed the behavior of the proposed ferrocement jacket/cold formed 

steel column system, Regression Analysis, Validation of The Prediction Model, study the structural 

buckling modes of CFS-Ferrocement composite column, Discussion of Theoretical Analysis base 

on code AISI S100-2007. 

 

 

 Data Analysis: Analysis of material properties, column behavior, Slip and load Analysis, 

Ferrocement jacket characteristic. 

 

Parametric study: (i) Effect of shear connectors (ii) layers of wire mesh in jacket (iii) Dimension 

of CFS (different length & fixed height web). Theoretical Analysis and experimental results 

compared and simulation by Finite Element Analysis through ANSYS.  
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1.6 Significance of Research  

In recent years society has begun to re-evaluate built environment with the 

purpose of achieving higher performance, sustainability specifically to minimize loss 

attributed to natural hazards. In order to seek sustainable solutions for long-term needs 

in the built environment, more efficient low-rise structures in general and residential 

housing in particular, the research being reported was undertaken. In the past, cultural 

norms largely drove the materials and systems employed for residential housing.  

 In lightweight residential and commercial buildings cold formed steel members 

are used as floor and joists, and designed as non-composite columns (Popo-Ola, et al., 

2000. Ghersi ,et al.,2002). Most columns need to be checked for buckling and most likely 

they failed due to local or lateral-torsional buckling for incapability to the attainment of 

their capacities. Ferrocement is the solution to overcome of this frequent problem. 

Ferrocement was examined by some researchers as a method of jacketing to 

strengthen RC columns. Results were good and inspiring (Kondraivendhan & Pradhan , 

2009). Thus, the validation of using cold formed steel sections with ferrocement as a 

composite column could significantly increase the axial load capacity as well as improve 

appreciably the stiffness and slenderness of the proposed column. Since such column can 

be produced as a pre-cast column, commercial value of the column is supposedly high.  A 

mass production of the proposed composite system is possible in the factory.  Cost saving 

could be possible as less labour would be needed and the quality of the product can be 

controlled.  The ferrocement jacket could also provide lateral restrain that prevents the 

cold formed steel section to fail under lateral-torsional buckling. Furthermore, 

improvement in the resistance of top flange and reduction of its tendency to buckle under 

compression can be expected. The proposed composite column could also be an alternative 

solution in facilitating CFS’s fire resistance capacity. But that aspect was not explored in 

this research.    
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1.7 Thesis Layout 

In this section, a synopsis is provided for each chapter of the thesis  

Chapter One presents the general introduction, background of the study and 

outlines the aim and objectives and scope of this research. Significance of the study 

and thesis layout is also described in this chapter. 

 Chapter Two surveys the literature involving the historical development of 

conventional composite column construction and construction incorporating cold-

formed steel tube filled with concrete which describes the background information 

about concrete filled steel tubes. Also it is followed by details of previous work done 

for concrete column in terms of confinement and jacketing by ferrocement.  

Chapter Three contains a detailed description of the experimental 

investigation carried out in this study. The chapter also describes the proposed 

stiffening system for CFS and details of the fabrication method. Details of test 

specimens, experimental setup and testing procedure according to the actual sequence 

of each type of experimental investigation are provided.  

Chapter Four presents the relationship between the basic finite elements, 

derived from the governing equilibrium equations, and the mathematical modeling of 

the materials used in the tested composite column (CFFCC). 

Chapter Five presents the observations and discussion of the first phase that 

describes the results of the experimental work for push-out test. It includes analysis of 

the push-out test results and evaluates the strength and behaviour of a shear connector's 

enhancement. 

Chapter Six constitutes the result and discussion of the second phase of 

experimental work based on   investigation of the behaviour of full scale specimens of 

(CFFCC) columns.  Observation of the physical failure mechanism and the effect of  

ferrocement jacket, loading conditions and columns' cross sections to the ultimate 



14 

strength and ductility are discussed in details.  Finally a comparison of all the 

experimental results with analytical values by using Finite Element analysis using 

(ANSYS) and (AISI S100-2007) code are included  

Chapter Seven present conclusions, recommendations and future work 

development.  
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