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ABSTRACT 

 

 

 

 

Nowadays, there is a lot of interest on the research and development related 

to ultrawideband system due to the increasing demands on the applications with low 

power, low cost and low interference. Thus, to cope with these demands, various 

researches are required for the development of front-end microwave components, 

which include six-port network as an alternative to a mixer-based design. The 

configuration of a six-port network is constructed by combining coupler and power 

divider. In the interest to have a simple design and convenient usage to form the six-

port network with ultra wideband (UWB) operation, new power divider and coupler 

are designed by using microstrip-slot technique. All the proposed designs are 

simulated via the use of CST Microwave Studio 2010 and realized using Rogers 

TMM4 with a conductor coating of 35 µm, thickness of 0.508 mm and dielectric 

constant of 4.5. The developed prototypes of the proposed designs are verified by 

measurement using a vector network analyser (VNA). In this thesis, a design of two-

section power divideris proposed with a great UWB performance of -3.8 dB ± 0.5 dB 

transmission coefficient and 0º ± 2º phase difference. This power divider has 

bandwidth improvement of 11.9% and size reduction of 23.33% compared to the 

conventional design. Meanwhile, for the coupler design, a UWB coupled-line 

coupler with zig-zag-shaped slot that has 3 dB ± 2 dB coupling coefficient and -90º ± 

5º phase difference is proposed. The proposed coupler has 109.5% bandwidth 

improvement with the length reduction of 20% compared to the conventional 

coupler. The proposed UWB coupler is then implemented into a new proposed 

structure of UWB 90º power divider. Then, three configurations of six-port networks 

formed by UWB coupler, two-section power divider and 90º power divider are 

designed; which are named as Type I, Type II and Type III. From the observation, 

Type III demonstrates the best UWB performance with magnitude imbalance of ± 5 

dB and phase imbalance of ± 10° that achieving the specified UWB design goal. 

Furthermore, Type III has the respective size reduction of 57.16% and 34.67% 

compared to Type I and II. In addition, by comparing to the previous works, the 

proposed design has broadest bandwidth of 100% and smallest size of 50.92 mm x 

35 mm. Hence, the proposed six-port network has very well UWB performance with 

relatively compact size and simple design, which is easy to be fabricated. 
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ABSTRAK 

 

 

 

 

Pada masa kini, terdapat banyak permintaan ke atas penyelidikan dan 

pembangunan yang berkaitan dengan sistem jalur lebar ultra (UWB) yang 

disebabkan oleh permintaan yang semakin meningkat terhadap aplikasi berkuasa 

rendah, kos yang rendah dan gangguan yang rendah. Oleh itu, untuk memenuhi 

permintaan ini, pelbagai penyelidikan diperlukan pada komponen gelombang mikro 

bahagian-depan, termasuk rangkaian enam-pangkalan sebagai alternative kepada 

reka bentuk berasaskan pencampur. Konfigurasi rangkaian enam-pangkalan dibina 

dengan menggabungkan pengganding dan pembahagi kuasa. Untuk memperolehi 

reka bentuk yang ringkas dan penggunaan yang mudah bagi membentuk rangkaian 

enam-pangkalan dengan operasi jalur lebar ultra (UWB), reka bentuk pembahagi 

kuasa dan pengganding yang baru telah direka dengan menggunakan teknik 

mikrojalur-alur. Kesemua reka bentuk yang dicadangkan disimulasi dengan 

menggunakan CST Microwave Studio 2010 dan dilaksanakan dengan menggunakan 

substratum Rogers TMM4 dengan 35 µm salutan konduktor, 0.508 mm tebal dan 4.5 

pemalar dielektrik. Prototaip reka bentuk yang dicadangkan ditentusahkan dengan 

menggunakan Penganalisis Rangkaian Vektor (VNA). Di dalam tesis ini, reka bentuk 

pembahagi kuasa dua-bahagian yang dicadangkan mempunyai prestasi UWB terbaik 

dengan pekali penghantaran -3.8 dB ± 0.5 dB dan beza fasa 0º ± 2º. Pembahagi kuasa 

ini mempunyai 11.9% peningkatan jalur lebar dan 23.33% pengurangan saiz 

berbanding reka bentuk lazim. Manakala, bagi reka bentuk pengganding, 

pengganding UWB dengan menggunakan slot berbentuk zig-zag mempunyai -3 dB ± 

2 dB pemalar gandingan dan -90º ± 5º beza fasa telah direka. Reka bentuk 

pengganding yang dicadangkan mempunyai 109.5% peningkatan jalur lebar dengan 

pengurangan panjang sebanyak 20% berbanding dengan reka bentuk lazim. 

Pengganding yang dicadangkan dilaksanakan ke dalam struktur baru pembahagi 

kuasa 90º UWB. Kemudian, tiga konfigurasi rangkaian enam-pangkalan direka 

daripada UWB pengganding, pembahagi kuasa dua-bahagian dan pembahagi kuasa 

90º, dinamakan sebagai Jenis I, Jenis II dan Jenis III. Daripada pemerhatian, Jenis III 

menunjukkan prestasi UWB terbaik dengan ketidakseimbangan magnitud ± 5 dB dan 

ketidakseimbangan fasa ± 10
0 

yang mencapai matlamat reka bentuk UWB yang 

ditentukan. Tambahan pula, Jenis III mempunyai 57.16% dan 34.67% pengurangan 

saiz berbanding Jenis I dan II. Di samping itu, dengan membandingkan reka bentuk 

yang sebelumnya, reka bentuk yang dicadangkan mempunyai lebar jalur yang paling 

luas sebanyak 100% dan saiz terkecil dengan 50.92 mm x 35 mm. Oleh itu, 

rangkaian enam-pangkalan yang dicadangkan mempunyai prestasi jalur lebar ultra 

yang sangat baik dengan saiz yang padat dan reka bentuk yang mudah untuk 

difabrikasi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

An unlicensed low power spectrum of ultra wideband (UWB) covering from 

3.1 to 10.6 GHz has been specified by Federal Communication Commission (FCC) 

in 2002 [1] [2]. It has given an high impact to the communication sector due to its 

benefits and attractive features. FCC in [2] defines ultra wideband (UWB) as a 

fractional bandwidth that greater than 0.25 or occupies 1.5 GHz or more frequency 

spectrums. The minimum 1.5 GHz bandwidth is relevant only when the centre 

frequency is higher than 6 GHz. The Commission has authorized frequency band of 

3.1 to 10.6 GHz for radar and wireless communication applications, which the major 

standards for wireless local area networks (LANs) are specified by IEEE 802.11 

family standards and the smaller-scale standards based on ultra-wideband (UWB) 

communication. Since then, rapid development had been conducted parallel to the 

technology invented nowadays. Thus, due to that, low power, low cost, and low 

interference have been the requirements in UWB system. One of the interests is on 

six-port network. 

 

 

A six-port network, or in more general case also known as, multi-port 

provides an alternative method to determine the complex voltage ratio of two signals 

[3] by performing mathematical transformations on power values measured at the 

output ports. This multi-port network is build from N-port networks, where the N 
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should be greater than 5, equipped with scalar power detectors at its output ports. 

Where, the multi-port network is extensively implemented in many applications such 

as microwave parameter measurements [4], [5], [6], phase detectors in positioning 

systems [7], [8], [9], modulators and demodulators [10]-[11] in radar system [12]-

[13] and wireless communications [14].  

 

 

In order to support the requirement such in wireless communication system, 

various thorough research works are needed in component designs including 

alternative to mixer. Commonly, the design of mixer will involve active device, 

which needs a certain biasing voltage to be in an active state. In order to reduce the 

complexity of the design, the mixer-based approach can be replaced by using a six-

port network in transceiver system particularly as modulator and demodulator as 

shown in Figure 1.1 [15]. A six-port, is formed by only using passive devices such as 

coupler, H-hybrid, and power divider [16]. By including these devices, it can reduce 

the complexity of the design and increase the performance of bandwidth. 

 

 

 

(a) 
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(b) (c) 

Figure 1.1 Block diagram of (a) conventional transceiver with mixer-based 

approach, and (b) transmitter and (c) receiver of six-port transceiver [15] 

 

 

Thus, in this thesis, a new design of six-port network by using a single 

substrate with slots formed in the ground plane, that offers an ultra wideband 

performance, compact size and better fabrication tolerance is presented. The ultra-

wideband operation of 3.1 to 10.6 GHz is chosen as the designated frequency band 

due to its unlicensed usage [17]. This led to the increment of spectral efficiency and 

more wireless applications can be introduced and enhanced. Besides, UWB can 

provide high data rate over a very short range and also UWB system consumes low 

power transmission and robustness against multipath fading and noise. By using 

operating frequency of 3.1 to 10.6 GHz (UWB), the proposed six-port can overcome 

the bandwidth limitation reported in Section 2.6.2 of Chapter 2. Design and the 

analysis on S-parameter performance of proposed six-port network, which formed by 

3-dB coupler and power divider is implemented in CST Microwave Studio.  

 

 

 

 

1.2 Problem Statement 

 

 

Particularly, in transceiver communication system, to be in active state, the 

design of mixer involves a certain biasing voltage. Consequently, this requirement 

leads to a more complex design. Thus, to solve the problem, the mixer-based 

approach can be replaced by using a six-port network. Six-port network is a passive 
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linear circuit, which can be constructed by the combination of the coupler, power 

divider and/or H-hybrid. These components must be designed to operate in the UWB 

frequency range to permit construction of the UWB six-port network. In the interest 

to have ultra wideband component, there are important issues need to be concerned.  

 

 

In the previous research, the designs of UWB quadrature coupler (Q) and 

divider (D) hybrids are accomplished by implementing a few of planar technologies 

such as multilayer microstrip-slot [18], [19], [20], [21], [22], [23] ground-slot 

technique [24], [25], [26] combination of step-impedance and parallel coupled-line 

approach [27], and floating potential method [28]. However, the configuration in 

[18], [19], [20], [21], [22], [23] which required two substrates, might difficult to be 

handled during fabrication process due to a very fine fabrication tolerance imposed 

by the air gap between each layer. The existence of the air gap degrades the actual 

measured performance and become incomparable to the simulated results. Even 

though, the best isolation performance is obtained by the design in [26], Bialkowski 

and Wang argued that this configuration requires a lot of care in aligning its two 

substrates [24]. This statement also supported by Zheng in [29]. Where, the author 

stated, the multilayer technology is difficult to be fabricated and the ineluctable gap 

between different layers may cause much more insertion loss, which is definitely 

undesirable in component designs. 

 

 

In last few years, there are efforts to design such ultra wideband device using 

only one substrate [24], [25], [26], [27], [28]. This will eliminate some of multilayer 

design technique limitations such as air gap and misalignment. Unfortunately, 

designing a device across ultra wideband frequency range using only one substrate is 

not an easy task. Many researchers faced difficulty in dealing with a very small 

design size such as too thin width of transmission line [26] and extremely narrow 

spacing between coupled-lines [27]. The design of H-hybrid presented by Aikawa 

and Ogawa in [26] has very thin size of coupled slot-lines and must be fabricated 

carefully to avoid an undesired result. While, the visible discrepancy shown by 

power divider design in [27] is mainly due to the zero fabrication tolerance in etching 

the tight coupled-line with small spacing of 0.06 mm. The design presented in [26] 

and [27] are difficult to be fabricated in common fabrication laboratory due to the 
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width and gap are tremendously thin. Thus, generally each dimension size of the 

fabricated designs must be accurate to ensure that the device can be operated across 

the desired operating frequency of 3.1 to 10.6 GHz. Meanwhile, in [25], the 

microstrip-slot technique is used to design power divider component. From the result 

between simulation and measurement, the proposed divider operated at UWB 

frequency range. However, the isolation between output ports is no better than 10 dB, 

which commonly required in the divider design [25]. Then, for the coupler design, in 

[30], the rectangular slot underneath coupled lines is proposed. The proposed design 

has increased the spacing between coupled lines to 0.12 mm. However, the design of 

[30] has some limitation of the leaked field, which may affecting the performance of 

device and at once cause unwanted interference with the other devices in the 

integrated system. Also, in [28], the 3 dB coupler using floating-potential method is 

proposed. Even though the performance is good across UWB frequency range, but 

the width of spacing must be exactly 0.13 mm to avoid the degradation of 

performance, when the spacing is increased or decreased more than 0.02 mm. 

 

 

Meanwhile, in six-port network design, there are several techniques have 

been proposed in order to produce a six-port network that can operate in ultra 

wideband operating frequency range. Such as in [31], the multilayer techniques is 

proposed. The excellent performance has been achieved across UWB frequency 

band. However, due to the use of two substrates in the multilayer structure, it is 

facing the challenges of misalignment and air gap problem. Then, in [32], Palencia 

et. al used a combination technique of planar and coaxial technology. The proposed 

design has achieved good performance, which operates in the frequency band of 0.7 

to 6 GHz. However, the appearance is bulky, as it uses a power divider and couplers 

connected with the coaxial cables. Then, in [33]-[34], several six-port network 

designs employing single layer technique has been designed, where the good result 

has been obtained across wider frequency range. However, the UWB coverage is still 

not achievable. 

 

 

Therefore, by considering these problems in designing UWB components, 

new coupler and power divider with the consideration of simple design shape and 
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method will be proposed with the goal to have simple design and convenient usage to 

form a multi-port network.  

 

 

 

 

1.3 Objective of the Research 

  

 

The works undertaken in this thesis are aiming on the following objectives: 

 

 

1) To design new UWB coupler and power divider that will be used to 

form a six-port network. 

2) To apply the designed coupler and power divider in constructing the 

six-port network. 

3) To investigate the performance of six-port network across UWB 

frequency band of 3.1 to 10.6 GHz. 

 

 

By achieving the stated objectives, the new designed six-port network with 

very well UWB performance can be used in many applications. One of the 

applications is to replace mixer-based approach in the communication transceiver 

design to act as modulator and demodulator. Thus, this will subsequently reduce the 

design complexity and increase the bandwidth performance. Therefore, 

communication transceiver with capability of wideband operating frequency, low 

power consumption, lower manufacturing cost and low interference can be 

accomplished.  

 

 

 

 

1.4 Scope of the Research 

 

 
This research focuses on the design of a UWB six-port network that can be 

operated within the UWB frequency range from 3.1 GHz to 10.6 GHz. A UWB six-port 

network, is comprised of UWB power divider and UWB coupler. In order to develop a 

UWB six-port network, the scope of this research is divided into five parts. Firstly, 
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the characterization and formulation of a microstrip-slot impedance are studied. The 

study are performed in order to derive new equations of microstrip-slot impedance, 

Zms. Then, the various structures of couplers and power dividers are designed, simulated, 

optimized, fabricated, and measured. The novel components of UWB power divider 

and UWB coupler will be selected to form a UWB six-port network. The simulation 

and optimization process of individual components and the six-port network is 

performed using Computer Simulation Technology (CST). Next, the analytical study 

of coupler and power divider will be performed to observe the behaviour of UWB 

performance, which also has been carried out using Computer Simulation 

Technology (CST).  

 

 

Planar dielectric materials, also known as substrates play an important role in 

designing microwave circuits and sub-system. As it is crucial to select the best 

substrate, this proposed study will also look into the investigation of substrates. 

Followed by that, fabrication of the designed power divider and coupler will be 

carried out by implementing the most suitable substrate.  

 

 

The performance of the fabricated components are then verified and 

experimentally tested by using a vector network analyzer (VNA). The last stage is to 

use the designed power divider and coupler to form the six-port network. The 

performance of six-port network will be investigated across UWB frequency band. 

All simulated and measured results, including transmission coefficients, reflection 

coefficients and phase differences between the output ports of all designed 

components, are analyzed and carefully discussed.  

 

 

 

 

1.5  Contributions of the Research 

 

 

In this thesis, there are five major contributions are presented. The first 

contribution is the characterization and formulation of a microstrip-slot impedance, 

which not yet done by other researchers and reported in other works. The equations 

are derived by using completing square curve fitting method, in which, the relation 
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between characteristic impedance of microstrip-slot (Zms) with the slot of width (Ws) 

and microstrip-impedance (Zm) is studied based on the substrates with different 

thickness of 0.508 mm, 0.762 mm and 1.542 mm and relative permittivity between 2 

to 5. 

 

 

The second contribution is a compact design of two-section power divider, 

which operates over ultra wideband frequency range of 3.1 - 10.6 GHz. The 

microstrip-slot technique is applied to reduce the size of circuit and achieve wide 

bandwidth coverage. Where, the rectangular slots are implemented at the ground 

plane, which positioned symmetrically underneath second and third arms of each 

microstrip quarter-wave transformer to reduce its length up to 33.34%. This attribute 

leads to a compact and reduced-size power divider by 23.33% with the dimension of 

20 mm x 23 mm and ease of fabrication. The bandwidth performance is improved up 

to 11.94% compared to the conventional divider. 

 

 

The third contribution is a new design and analysis of compact ultra 

wideband (UWB) 3 dB coupled-line coupler. The design of proposed coupled-line 

structure with zig-zag-shaped slot at the ground plane has shown a greater efficiency 

for allowing operation at a wider bandwidth, producing a compact size component 

and minimizing the need of narrow spacing between the coupled lines, which lead to 

easier fabrication process. In addition, the proposed structure of 3 dB coupled-line 

coupler is analyzed in order to achieve a strong coupling factor. From the analysis, 

by adjusting the dimension of the proposed 3-dB coupled-line coupler, the coupling 

strength can be varied in order to satisfy the strong coupling of 3 dB. 

 

 

The fourth contribution is a new 90º power divider design that requires an 

appropriate phase difference of -90º
 
with equal power division, which has being 

implemented from the proposed ultra wideband 3 dB coupler. The 90º phase 

difference between the output ports is maintained, which contributed by the quarter 

wavelength of coupled-line and slotted line underneath. 
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Then, for the last contribution is concerning the design of new UWB six-port 

network. The designed six-port is formed by the designed individual components 

which are proposed divider and coupler. The performance of the proposed six-port is 

observed and analysed. 

 

 

 

 

1.6 Thesis Outline 

 

 

This section discusses the thesis outline, where the outline is divided into 

seven chapters. For Chapter 1, the overview of the whole project is discussed, which 

includes the research background, problem statement, objectives of the research, 

scope of the research, contributions of the research, and lastly, thesis outline. 

 

 

Meanwhile in Chapter 2, it is focusing on the literature reviews, where the 

basic concept of microstrip line, slotline, power divider, H-hybrid, coupler, and six-

port network are discussed. Furthermore, the previous related works are reviewed, 

which mainly focus on the design techniques and characteristics in designing power 

divider, H-hybrid, coupler, and six-port network. 

 

 

In Chapter 3, the methodology of this research is discussed. The research 

work flows of the whole research are presented, which includes design 

specifications, flow charts and substrate used. 

 

 

 Next, in Chapter 4, the characterization and formulation of a microstrip-slot 

impedance is presented. The equations are derived by using completing square curve 

fitting method, based on the relation between characteristic impedance of microstrip-

slot (Zms) with the slot of width (Ws) and microstrip-impedance (Zm) with different 

thickness of substrates and relative permittivity. These proposed equations are used 

in the design of power divider. Next, in this chapter, four designs of power dividers 

are presented. A simple analysis on suitable length of two-section quarter-wave 

transformer that formed by microstrip-slot lines is conducted and elaborated in detail.  
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In Chapter 5, there are several designs of quadrature couplers are proposed. 

All the performance of the designed quadrature coupler is observed across the 

designated frequency range. In the quadrature coupler design, several analyses are 

performed, which are the effect of the techniques, the coupling and the even- and 

odd-mode characteristic impedance. The analysis and performance of the designed 

quadrature couplers are described and discussed thoroughly in this chapter. 

 

 

Furthermore in Chapter 6, three types of six-port networks are designed and 

presented. The results of the whole six-ports are elaborated and analysed. The 

comparison of the designs and the performances is further conversed in this chapter. 

 

 

Lastly, in Chapter 7, the conclusion is drawn. The findings from the research, 

contributions and recommendations for future works are proposed and described. 

Moreover, the list of references and appendices are provided at the end of this thesis. 
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