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ABSTRACT 

 

 

 

 

Cellulose acetate (CA) polymeric membrane has been used as gas separator; 

however, the modest selectivity and trade-off between permeability and selectivity 

have reduced the utilization of this polymer. Thus, the objectives of this study were to 

investigate the effect of polymer concentration and formic acid (FA) crosslinking 

agent loading on the formation of the membrane morphology and gas separation 

performance. The CA in tetrahydrofuran (THF) flat sheet asymmetric membrane was 

fabricated by dry/wet phase inversion process with two conditions of dope solution 

formulation: (1) varying the polymer concentration ranging from 13 to 16 wt.% and 

(2) manipulating FA:THF ratio between 0:100 to 10:90. The prepared membrane was 

analyzed by using viscometer, field emission scanning electron microscopy, Fourier 

transform infrared spectroscopy (FTIR), thermogravimetric analysis, and tensile 

testing machine. The membrane gas permeation performance was tested using pure 

gases of hydrogen (H2), oxygen (O2), nitrogen (N2), carbon dioxide (CO2) and methane 

(CH4) by using soap bubble flow meter. The CA membrane produced possessed three 

layers consist of top skin layer, transition layer and porous support structure. The 

increase in polymer concentration had produced denser membrane with thicker skin 

layer and substructure, thus, significantly improved the selectivity. The optimum CA 

concentration obtained in this study was 15 wt.% that exhibited the highest selectivity 

for all gas pairs. Upon addition of FA, the membrane skin layer formation had further 

improved without severely sacrificed the gas permeability since the FA promotes the 

formation of more porous substructure. This was probably due to the crosslinking of 

the –OH group between CA and FA as confirmed by the FTIR. Moreover, all the gas 

pairs selectivities improved significantly as the FA loadings were increased. The 

highest selectivities obtained for H2/N2, O2/N2 and CO2/CH4 separation were 55.87, 

6.83 and 48.64, respectively. 
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ABSTRAK 

 

 

 

 

Membran polimer selulosa asetat (CA) telah banyak digunakan sebagai 

medium gas pemisah; namun, kememilihan yang sederhana dan keseimbangan 

pemisah antara kebolehtelapan dan kememilihan telah mengurangkan penggunaan 

polimer ini. Oleh itu, objektif kajian ini adalah untuk menyelidik kesan kepekatan 

polimer dan beban ejen rangkai silang asid formik (FA) terhadap morfologi membran 

dan prestasi pemisahan gas. Membran asimetrik CA dalam pelarut tetrahidrofuran 

(THF) telah dihasilkan melalui proses songsangan fasa kering/basah pada dua keadaan 

formulasi larutan dop iaitu: (1) kepekatan polimer dengan julat daripada 13 hingga 

16% berat dan (2) memanipulasi nisbah FA:THF antara 0:100 kepada 10:90. Membran 

yang dihasilkan telah dianalisis dengan menggunakan meter likat, mikroskop imbasan 

elektron pancaran medan, spektroskopi inframerah transformasi Fourier (FTIR), 

analisis termogravimetri, dan mesin ujian ketegangan. Prestasi penyerapan gas bagi 

membran telah diuji dengan gas-gas asli hidrogen (H2), oksigen (O2), nitrogen (N2), 

karbon dioksida (CO2) dan metana (CH4) dengan menggunakan meter aliran buih 

sabun. Membran CA yang terhasil mempunyai tiga lapisan iaitu lapisan kememilihan 

atas, lapisan peralihan dan struktur sokongan berliang. Peningkatan kepekatan polimer 

telah menghasilkan membran yang mempunyai lapisan kemilihan yang tebal serta 

substruktur yang lebih padat, jadi, kememilihan juga bertambah baik. Kepekatan 

optimum yang diperoleh dalam ujian ini adalah 15% berat yang memberikan 

kememilihan tertinggi bagi semua pasangan gas. Apabila FA bertambah, pembentukan 

lapisan kememilihan membran bertambah baik tanpa mengurangkan kebolehtelapan 

gas dengan ketara. Ini kerana kehadiran FA telah menggalakkan pembentukan 

substruktur yang lebih berliang. Ini berkemungkinan disebabkan oleh rangkaian silang 

pada kumpulan –OH antara CA dan FA seperti yang disahkan oleh FTIR. Tambahan 

pula, kememilihan untuk semua pasangan gas telah bertambah dengan nyata apabila 

kandungan FA meningkat. Kememilihan pasangan gas tertinggi yang diperoleh untuk 

H2/N2, O2/N2, dan CO2/CH4 adalah masing-masing 55.87, 6.83 dan 48.64. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Gas separation process can be referred to any type of techniques used to 

separate gas mixture. Gas separation process has been contributing to our daily and 

commercial activities such as metal fabrication, metallurgy, petrochemicals, food 

processing, healthcare and many more by providing pure gases based on the 

specification of every sector. The global market for industrial gases was valued at 

$66.7 billion in 2014 and predicted to increase from $68.7 billion in 2015 to $80.9 

billion in 2020 with compound annual growth rate (CAGR) of 3.3% from 2015 to 2020 

(McWilliams, 2016b). Formerly, cryogenic distillation and absorption were the major 

processes for gas separation (Izumi et al., 2002), however, the increasing quantity of 

the large scale production plant had opened the door for a new types of gas processing 

technologies. 

 

One of the most significant unit operations for gas separation technology and 

has been rapidly growing for the last 15 years is membrane technology (Abedini and 

Nezhadmoghadam, 2010). According to McWilliams (2016a), the combined U.S. 

market for membranes used in gas and liquid separation applications was worth 

approximately $2.2 billion in 2013 and estimated to rise from nearly $2.4 billion in 

2014 to about $3.5 billion by 2019, with compound annual growth rate (CAGR) of 

7.9% during the five-year period from 2014 to 2019. Moreover, the global membranes 

market is projected to grow at a CAGR of 9.47% from 2015 to reach a value of USD 

32.14 billion by 2020 (MarketsandMarkets, 2015). The increasing market size for 

membrane technology is due to its advantages including cost effectiveness, energy 
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efficient, require small footprint, low maintenance, and environmental friendly process 

over the other unit separations. The major contribution of membrane-based technology 

is as an efficient tool to the gas purification systems (Sridhar et al., 2007). Membrane 

technology can be used either as a single process or complementing other conventional 

gas separation technologies. 

 

Membrane has been developed using various organic and inorganic material 

including natural and synthetic polymer, carbon, ceramic and metals. The 

effectiveness of membrane material can be measured by its chemical resistant, 

mechanical and thermal stability, high permeability and selectivity and stability during 

operation. The selection of membrane material is highly related to the individual  

separation process application and the respective capital and operating cost (Scott, 

1995c). Membrane material with high chemical and mechanical strength will have a 

longer operating lifetime reducing the capital cost while membrane with high 

selectivity require lower driving force thus lower the operating cost.  

 

Most of the current commercial membranes are made from polymeric material 

(Baker and Low, 2014). Polymer is a molecule composed of repeated monomer 

subunit that plays an essential and ubiquitous role in everyday life. Polymer can be 

divided into two categories, which are natural and synthetic polymer. Several polymers 

has been selected as a commercially relevant polymer for membrane fabrication such 

as polysulfones (PSF), cellulose acetate (CA), poly(2,6-dimethyl-phenylene oxide) 

(PPO), aramids, polycarbonates and polyimides (Sanders et al., 2013). However, most 

of the commercial polymeric membranes are having major drawback in which they are 

not able to economically produce gas with high purity in large scale operation as 

compared to cryogenic distillation and pressure swing adsorption (PSA) (Belaissaoui 

et al. 2014). Increasing both permeability and selectivity of gas production is critical 

issue in order to make membrane process more competitive and energy efficient. 

 

Cellulose acetate (CA) is one of the first membrane materials that has been 

introduced to the industry. It is one of the world’s oldest bio-based polymers that firstly 

invented in 1865 by Paul Schutzanberger via esterification (Erdmann et al., 2014). The 

first CA commercialization was as a coating lacquer for airplanes in World War 1 and 

as a spun fiber for clothing materials (Edgar et al., 2001). CA was first made into 
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membrane by Brown in 1910 (Shibata, 2004) and developed into asymmetric 

membrane for reverse osmosis by Loeb and Sourirajan in 1960 (Williams, 2003). 

 

CA membrane has been used extensively covering many applications such as 

medical application, wastewater treatment and gas separation process. The first CA 

based gas separation membrane application was in 1982 by Separex for carbon 

dioxide/hydrogen (CO2/H2) gas separation and has been used in the largest plant for 

CO2/natural gas separation developed by Pakistan UOP in 1995 (Bernardo and 

Clarizia, 2013). CA membrane has been dominating 80% of the market for natural gas 

processing (Scholes et al., 2012). CA membrane has became one of the industrial 

comparison standards for membrane gas separation due to the wide acceptance from 

various industry. The usage of CA based gas separation membrane is commonly used 

for natural gas processing industry, air separation process and syngas process. Hence, 

for this study, the fabrication of formic acid (FA) crosslinked CA defect-free 

asymmetric membrane is focusing on the separation of CO2/CH4 for natural gas 

processing, O2/N2 for air separation process and H2/N2 for syngas process. 

 

One of the desirable characteristic of high selectivity gas separation 

asymmetric membrane is the defect-free selective layer that avoid the nonselective 

pore flow where gas transport occurs by viscous or Knudsen mechanisms (Kurdi and 

Tremblay 1999). For defect-free membrane, ideally, the skin layer will be responsible 

for the selective separation and the porous substructure provides mechanical support 

(Pan et al., 2009). Many attempts have been made in fabricating defect-free membrane 

ever since the development of defect-free high-flux asymmetric membrane developed 

by Loeb and Sourirajan in 1960. The production of defect-free asymmetric membrane 

reported can be achieved by manipulating dope formulation and preparation 

conditions. Until now, only a few of advanced polymers have been successfully 

fabricated into defect-free membranes (Xu et al., 2014).  

 

According to Xu et al., (2014), sufficient viscosity is the first factor required 

to form a defect-free membrane skin layer. Sufficient viscosity is a viscosity that 

exhibits a significant degree of chain entanglement required for the proper formation 

of membrane skin layer and well-interconnected pores of the membrane substructure. 

(Hołda and Aernouts 2013). One of the key parameters to achieve a sufficient dope 
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viscosity is by manipulating the polymer concentration during dope preparation. 

Polymer concentration significantly affects the dope solution viscosity through the 

interaction between solvent, non-solvent and polymer.  

 

Chemical crosslinking is one of the methods used for polymer modification for 

the fabrication of defect-free gas separation membrane. Chemical crosslinking plays 

role in restraining the polymer chain mobility by changing the backbone structure of 

interest (He et al., 2016; Staudt-Bickel and Koros, 1999). The changes in polymer 

backbone structure through the incorporation of new covalent bond between the 

polymer chain has influenced the formation of membrane structure, thermal and 

mechanical stabilities as well as gas separation performance.  

 

 

 

 

1.2 Problem Statement 

 

 

According to Baker and Low (2014), despite the research on thousands of new 

materials, fewer than 10 membrane materials were commercialized and have been in 

use for decades. One of the reasons might be due to the reduce in membrane 

performance in terms of gas selectivity when tested with the industrial gas mixture. 

Other possibility is the membrane low mechanical strength that will results in 

membrane rupture when subjected to high pressure during an actual gas separation 

process. Higher material cost, complicated fabrication process and membrane 

performance affected by impurities are the other possibility that prevents the gas 

separation membrane from being commercialized. (Pabby et al., 2015). 

 

CA membrane has been used in gas separation for decade due to its unique 

properties of high carbon dioxide (CO2) and hydrogen sulfide (H2S) solubility within 

the CA polymer matrix that lead to high CO2 and H2S permeability (Ahmad et al., 

2014). Nevertheless, the number of plant that used this membrane has been decreasing 

due to the modest selectivity of CA membrane thus reducing CA membrane 

performance under mixed gas condition due to the competitive sorption and 

plasticization effect (Scholes et al., 2012; Scholes et al., 2009). In addition, the trade-

off between the gas permeability and separation performance causing it to be replaced 
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by membrane that is more selective and permeable such as polysulfone, polyimides 

and polyethylene oxide. 

 

Therefore, several methods have been implemented in order to produce CA 

membrane with high permeability and selectivity including polymer blending, mixed-

matrix membrane, polymer modification, composite membrane, additive addition and 

many more. Thus, for this study, the effect of CA polymer concentration and formic 

acid (FA) crosslinking agent loading were investigated for the improvement of gas pair 

selectivity for CA flat sheet asymmetric membrane.  

 

 

 

 

1.3 Research Objective 

 

 

The general aim for this project is to develop defect-free CA based asymmetric 

membrane for high performance gas separation application. The specific objectives of 

this project are: 

 

1. To investigate the effect of powder form cellulose acetate concentration on 

the formation of the membrane morphology, mechanical properties and gas 

separation performance. 

2. To examine the effect of formic acid (crosslinking agent) loading on the 

membrane morphology, mechanical strength and gas separation 

performance. 

 

 

 

 

1.4 Scope of Study 

 

 

In order to achieve the objective of this research, the following scopes were 

outlined: 

1. Preparing the polymer dope solution by varying CA concentration and FA 

loading. 

2. Measuring the CA dope solution viscosity using viscometer. 
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3. Fabricating the flat sheet asymmetric membrane by dry/wet phase 

inversion technique. 

4. Coating the prepared membranes (polymer concentration parameter only) 

using silicone rubber coating. 

5. Observing the membrane morphology using field emission scanning 

electron microscopy (FESEM). 

6. Characterising the membrane molecular crosslinking using Fourier 

transform infrared spectroscopy (FTIR). 

7. Determining the membrane thermal properties using thermogravimetric 

analysis (TGA) for crosslinked CA membrane. 

8. Measuring the membrane mechanical properties using tensile test. 

9. Determining the membrane gas separation performance using soap bubble 

flow meter. 

 

 

 

 

1.5 Significant of the Study 

 

 

Cellulose acetate (CA) is a common polymer used as raw material for the 

fabrication of gas separation membrane. The usage of CA polymer in powder form has 

significantly reduce the amount of CA polymer required for the fabrication of CA 

membrane by 35% as compared to the CA polymer in pellet form. As the membrane 

separation becomes more important for various applications, this study proves that 

polymer crosslinking using formic acid (carboxylic acid) is an excellent alternative for 

the improvement of CA gas separation membrane. As there are limited studies have 

been conducted on the effect of crosslinking on the separation performance of 

membrane, this study provides a better understanding in fabrication of crosslinked CA 

asymmetric membrane with improved gas separation performance. The incorporation 

of formic acid (FA) improved the CA membrane structure formation and led to the 

improvement of gas separation. The use of FA as crosslinked agent was done in-situ 

during dope solution preparation, thus, does not require any other additional step or 

catalyst to induce the crosslinking reaction. The incorporation of FA induced the 

formation of defect-free membrane surface and does not require any additional skin 

layer coating for the improvement of gas separation. In addition, the usage of CA 
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biopolymer from renewable resources can reduce the dependent on non-renewable 

synthetic polymer.  

 

 

 

 

1.6 Limitation of the Study 

 

 

The limitations of this study are as follows: 

 

1. Gas separation performance for all membrane samples were tested only 

using pure gases of hydrogen, oxygen, nitrogen, carbon dioxide and 

methane. 

2. The maximum pressure for the gas separation performance testing is 10 bar 

due to the capability limitation of gas permeation system. Operating above 

10 bar can cause leakage to the system. 
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