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ABSTRACT

Data clustering is an unsupervised classification method aimed at creating

groups of objects, or clusters that are distinct.  Among the clustering techniques, K-

means is the most widely used technique.  Two issues are prominent in creating a K-

means clustering algorithm; the optimal number of clusters and the center of the

clusters.  In most cases, the number of clusters is pre-determined by the researcher,

thus leaving out the challenge of determining the cluster centers so that scattered

points can be grouped properly.  However, if the cluster centers are not chosen

correctly computational complexity is expected to increase, especially for high

dimensional data set. In order to obtain an optimum solution for K-means cluster

analysis, the data needs to be pre-processed.  This is achieved by either data

standardization or using principal component analysis on rescaled data to reduce the

dimensionality of the data. Based on the outcomes of the preprocessing carried out

on the data, a hybrid K-means clustering method of center initialization is developed

for producing optimum quality clusters which makes the algorithm more efficient.

This research investigates and analyzes the performance behavior of the basic K-

means clustering algorithm when three different standardization methods are used,

namely decimal scaling, z-score and min-max.  The results show that, z-score

perform the best, judging from the sum of square error. Further experiments on the

hybrid algorithm are conducted using uncorrelated and correlated simulated data sets

having low, moderate and high dimension and it is observed that the method

presented in this thesis gives a good and promising performance. It is also observed

that, the sum of the total clustering errors reduced significantly whereas inter-

distances between clusters are preserved to be as large as possible for better clusters

identification. The results and findings are validated using life data on infectious

diseases.
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ABSTRAK

Pengkelompokan data adalah kaedah pengkelompokan tak terselia yang

bertujuan membentuk kumpulan objek atau kluster yang berbeza.  Dalam banyak

kaedah pengkelompokan, kaedah K-means adalah kaedah yang paling kerap

digunakan.  Dua isu utama dalam membentuk algoritma K-means adalah penentuan

bilangan kluster yang optimum dan pusat kluster.  Dalam kebanyakan kes, bilangan

kluster telah ditentukan terlebih dahulu oleh pengkaji, dan cabaran seterusnya ialah

menentukan kedudukan pusat kluster supaya titik data dapat dikluster dengan

sempurna.  Jika pusat kluster tidak dipilih dengan betul ia akan meningkatkan

kerumitan pengiraan terutama bagi data berdimensi tinggi.  Bagi memperoleh

penyelesaian optimum K-means, data perlu diproses terlebih dahulu.  Matlamat ini

boleh dicapai dengan piawaian data atau menggunakan analisis komponen prinsipal

terhadap data yang diskala semula bagi mengurangkan dimensi data.  Kaedah hibrid

K-means ini seterusnya digunakan terhadap data terturun yang menghasilkan kluster

optimum berkualiti yang membuatkan algoritma ini lebih efisen.  Kajian ini

meninjau dan menganalisis keupayaan algoritma pengkelompokan apabila tiga

kaedah piawai iaitu K-means kaedah decimal scaling, z-score dan min-max

digunakan. Keputusan menunjukkan, z-score adalah yang terbaik berdasarkan

kepada jumlah ralat kuasa dua. Kajian lanjut mengenai algoritma hibrid ini terhadap

data berkorelasi dan tidak berkorelasi dalam keadaan dimensi rendah, sederhana dan

tinggi menunjukkan bahawa kaedah yang dibentangkan dalam tesis ini mempunyai

pencapaian yang memuaskan.  Keputusan ini juga mendapati jumlah ralat kuasa dua

dikurangkan dan jarak antara satu kluster ke kluster lain dijadikan semaksimum

mungkin yang memisahkan kluster dengan jelas.  Keputusan dan dapatan ini

ditentusahkan dengan menggunakan data penyakit berjangkit.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The K-means clustering algorithm is one of the most popular methods for

clustering multivariate observations (Tsai and Chiu, 2008). It is a system ordinarily

used to directly segment sets of data into k groups. K-means algorithm generates a

fast and efficient solution. The basic K-means algorithm works with the objective to

minimize the mean square distance from each data point to its nearest center.

There are two important issues in creating a K-means clustering algorithm:

the optimal number of clusters and the center of the cluster. In many cases, the

number of clusters is given, thus the important issue is where to put the cluster center

so that scattered points can be grouped appropriately. Center of the cluster can be

obtained by first assigning any random point and then optimizing the mean distance

to the center. The process is repeated until all the mean square distances are

optimized.

The drawback of the basic K-means algorithm is that it is sensitive to the

selection of the initial partition and may converge to a local minimum of the criterion

function value if the initial centroids are not properly chosen. A local minimum is

the least value that is located within a set of points which may or may not be a global

minimum and it is not the lowest value in the entire set. Its computational complexity

is also very high, especially for large data set. In addition the number of distance



2

calculations increases exponentially with the increase of the dimensionality of the

data. An ad-hoc solution to these problems is by choosing a set of different initial

partition and the initial partition that gives the smallest sum of squares error is taken

as the solution but this ad-hoc solution does not guarantee the solution will give the

smallest sum of square error (SSE) because it is just a mere guessing approach.

When a random initialization of centroids is used, different runs of K-means

typically produce different total SSEs, therefore choosing the proper initial centroids

is the key step of the basic K-means procedure (Zhu et al. 2009). The result of the K-

means algorithm is highly dependent upon its initial selection of cluster centers and

before clustering it must be previously known and fixed (Tsai and Chiu, 2008).

Fahim et al. (2009) proposed a method to select a good initial solution by

partitioning data set into blocks and applying K-means to each block. But here the

time complexity is slightly more.

Tajunisha and Saravanan (2010) proposed a method to improve the

performance of the K-means algorithm, using principal component analysis (PCA)

for dimension reduction and to find the initial centroid for K-means. The method

partitioned the data set into K sets and the median of each set were used as initial

cluster centers and then assign each data point to its nearest cluster centroid.

Heuristic approach was also used to reduce the number of distance calculation in the

standard K-means algorithm to assign the data point to the cluster.

Mohammed and Wesam (2012) proposed a visual clustering framework using

C++ Builder 2009, for initialization of the K-means clustering algorithm.  The

method generates K points using semi random technique. It makes the diagonal of

the data as a starting line and selects the points randomly around it. But this method

did not suggest any improvement to the time complexity for K-means algorithm.

The above algorithms are quite complex and used the K-means algorithm as part of

their algorithm, which still need to use the random method for cluster center

initialization.
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To obtain an optimum solution for K-means clustering, the data need to be

pre-processed before the K-means clustering analysis (Chandrasekhar et al. 2011).

This pre-processing process consists of data standardization method to rescale the

dataset and principal component analysis method for outliers’ detection. Outliers are

the data that are numerically distant from the rest of the data. If they are not properly

detected and handled, the clustering result will be affected in a great manner (Sairam

et al. 2011).

An approach to handle outlier is data standardization, it rescale the data set to

fall within a specified range of values so that any attribute with larger value will not

dominate the attribute with a smaller value. However, for a very high dimensional

data set, PCA can be used to initially reduce this dimension (Chris and Xiaofeng,

2006). They further proved that principal components are the continuous solutions to

the discrete cluster membership indicators for K-means clustering and showed that

unsupervised dimension reduction is closely related to unsupervised learning. On

dimension reduction, the result provides new insights to the observed effectiveness

of PCA-based data reductions, beyond the conventional noise-reduction explanation.

As K-means is highly dependent on its initial center position (Rana et al.

2010), an alternative way of center initialization method for K-means cluster analysis

is also required to make the algorithm more effective and efficient. To overcome the

above drawback the current research focused on developing a K-means clustering

technique by data preprocessing and the initialization of the center points for high

dimensional datasets.

1.2 Problem Statement

As mentioned in the research background, K-means clustering has

shortcomings especially when implemented on large dataset. This is best seen in that

the basic K-means algorithm for cluster analysis developed for low dimensional data,

often do not work well for high dimensional data and most of the times the results
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may not be accurate due to noise and outliers associated with the initial dataset.  This

brings about an increase in computational complexity and also resulting in some

attributes with larger domain dominating those attributes with lower domain.

Outliers are the data that are numerically distant from the rest of the data and if they

are not detected and handled, they tend to affect the clustering result.

In the creation of a K-means clustering algorithm two main issues are

prominent, these are: the optimal number of clusters and the cluster center points.  In

most cases, the number of clusters is given, thus leaving the challenge where to put

the cluster centers so that scattered points can be grouped properly and to avoid its

convergence to a local minimum of the objective function. Furthermore, the random

initialization results in different total SSEs value from several runs of the K-means.

This makes the result from the algorithm of the K-means to depend greatly on the

initial selection of the cluster centers which must be known and fixed beforehand.

Therefore, the choice of proper initial centroids is pertinent to the basic K-means

procedure.

As fallout from the above, a new technique of centers initialization for K-

means clustering is required to make the algorithm more effective and efficient.

Hence this research focus on an alternative way of handling the K-means clustering

technique by data pre-processing and the initialization of the center points for high

dimensional datasets.

1.3 Objectives of the Study

The objectives of this study consist of three parts, the computational (data pre-

processing), centre points initialization, and practical aspects. The main objective of

the first aspect is to come up with a suitable data preprocessing method for K-means

cluster analysis that is able to obtain good clustering with reduced complexity, and

also provides better accuracy.
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The second part consists of the followings:

i. Centers initialization using singular value decomposition (SVD) to avoid

random initialization and convergence to a local minimum, this will make the

algorithm more effective and efficient.

ii. Simulation experiment and comparison of the optimality for the basic and the

proposed techniques.

The third part is the application of the technique to Nigerian data of infectious

diseases to demonstrate the use of this technique.

1.4 Scope of the Study

This research covers the following three aspects, computational (data pre-

processing), initialization of centre points, and practical aspects. Furthermore, the

number of clusters required is always pre-determined throughout the thesis.

i. Computational aspect (Data pre-processing)

In computational aspects, we used a real data of infectious diseases consisting

of seven variables and a sample size of 20 to come up with a good method of

data pre-processing for K-means cluster analysis and a simulation

experiments to validate and test the proposed hybrid K-means technique.

ii. Centre point initialization aspect

In order to have a better understanding about K-means, we give an overview

of clustering. Then we show its drawback. This motivates us to propose a

technique of center point initialization. Afterwards, we come up with a

hybrid K-means algorithm. We equally investigate the CPU time taken and

the SSE for the basic and new techniques.
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iii. Practical aspect

Application in real data of infectious diseases from hospital was used to show

the performance and advantage of the hybrid K-means method developed in

this thesis.

1.5 Contribution of the Study

This thesis offers a contribution in two aspects:

1. The main contributions are

i. New method in choosing the initial centroids for K-mean cluster analysis.

ii. A technique of K-means clustering algorithm for high dimension dataset.

Simulation experiments proved that the proposed technique is optimum and

converges faster than the basic method.

iii. The computational complexity of the proposed K-means clustering technique

is far lower than the basic K-means algorithm. This is another advantage of

the proposed method especially when the data sets are of higher dimensions.

2. This thesis used infectious diseases data sets. Therefore we hope that the

finding results will be useful and assist the government to embark on health

policy formulations that will address the problems of the intensity of diseases

in the states and to plan adequately for the provision of welfare services such

as good pipe borne water, good drainage system and environmental

protection.

1.6 Thesis Organization

This thesis is organized into six chapters. Chapter 1 briefly overviews the

two issues in creating a K-means clustering algorithm: The optimal number of
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clusters and the center of the cluster. The drawback of the basic K-means algorithm

is also stated, the research objectives are defined, and the scope of this research is

also presented. However, the chapter presents the significance of this study and ends

with the contribution of the study.

Chapter 2 presents a comprehensive literature review. The target is to review

current literatures to identify what has previously been attained and recognize the

gap in our research. The existing theories of the K-means clustering technique,

similarity measures, principal component analysis, data standardization methods and

the evolution of ideas in the initialization of the K-means cluster centers are

presented, this ends with a research framework.

Chapter 3 focuses on an in depth explanation of the methodologies. It

concentrates on how this research is carried out in order to arrive at the findings and

conclusions. This chapter describes the data pre-processing methods and how to

implement the proposed K-means technique.

Chapter 4 concentrated on the data pre-processing methods, implementation

of the proposed hybrid K-means clustering method and validation of the method

using simulation experiment with correlated and uncorrelated in Chapter 5.  After

that, Chapter 6 demonstrates the use of this method to Nigerian data of infectious

diseases.  This thesis closes with the conclusion and recommendation for future

research in Chapter 7.

1.7 Chapter Summary

This chapter overviews the drawback of a basic K-means algorithm and

addresses the two issues when creating a K-means clustering, that is, the optimal

number of clusters and the center of the cluster. We also highlight the problem

statement, research objectives, the research scope and significance of the research.

The Chapter ends with the thesis organization.
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