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ABSTRACT 
 
 
 
 

Internal corrosion causes the mechanical strength of natural gas steel pipelines 

to be reduced, leading to cracking.  Superior properties of polyvinylidene fluoride 

(PVDF) makes its as an excellent candidate for the anti-corrosion coating in natural 

gas steel pipelines.  Nevertheless, further development of PVDF nanocomposite is 

necessary to enhance the properties of neat PVDF in terms of wettability, mechanical 

strength, anti-corrosion and impermeable property.  In this research, monolayer 3-

aminopropyltriethoxysilane-graphene oxide (APTES-GO) with a thickness of 0.58 nm 

was successfully synthesized through surface functionalization of graphene oxide 

(GO).  APTES-GO was selected as the nanofiller to be incorporated into the PVDF 

matrix. This is because PVDF/APTES-GO nanocomposite displayed better anti-

corrosion performance than GO.  PVDF nanocomposites filled with various loadings 

of APTES-GO (0.1 to 0.5 wt%) were prepared using N,N-dimethylformamide as the 

solvent. The detailed anti-corrosion performance of PVDF/APTES-GO 

nanocomposites coated onto carbon steel plate was evaluated using Machu, salt spray 

and acid immersion tests.  X-ray diffraction and Fourier transform infrared 

spectroscopy  confirmed that the increment of APTES-GO from 0.1 to 0.5 wt% loading 

had transformed β- and 𝛾- to α-phase crystal.  Field emission scanning electron 

microscopy revealed that the PVDF nanocomposite films with a thickness of 73.0 ± 

3.61 µm exhibited features of the symmetric membranes.  Atomic force microscopy 

analysis also showed that the surface roughness of PVDF nanocomposite films 

increased with the increase of APTES-GO loading. Besides that, PVDF 

nanocomposite filled with 0.4 wt% APTES-GO showed the highest water contact 

angle of 102º and ~306% increase in tensile modulus as compared to the neat PVDF.  

This nanocomposite layer (66.67 ± 4.0 µm) was found to exhibit good adhesion 

property with the lowest corrosion rate of 6.65 mm/yr and highest corrosion protection 

efficiency of 51.16% in corrosive environments. 
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ABSTRAK 
 
 
 
 

Kakisan dalaman telah menyebabkan saluran paip keluli gas asli mengalami 

kurang kekuatan mekanikal dan mengakibatkan berlakunya retakan.  Sifat-sifat unggul 

polivinilidena fluorida (PVDF) telah menjadikan ia sesuai untuk digunakan sebagai 

salutan anti-karat dalam saluran paip gas asli.  Namun, keupayaan PVDF komposit 

nano perlu dipertingkatkan untuk menambahbaik PVDF dari segi kebolehbasahan, 

kekuatan mekanikal, anti-karat dan sifat ketakbolehtelapan. Dalam kajian ini, 

ekalapisan 3-aminopropiltrietoksisilana-grafen oksida (APTES-GO) dengan ketebalan 

0.58 nm telah berjaya disintesis melalui pengubahsuaian grafen oksida (GO).  APTES-

GO telah dipilih sebagai pengisi nano untuk dimasukkan ke dalam matriks PVDF.  Ini 

kerana PVDF/APTES-GO komposit nano mempunyai prestasi anti-karat yang lebih 

baik daripada PVDF/GO.  PVDF/APTES-GO komposit nano pelbagai muatan 

APTES-GO (0.1 hingga 0.5 % berat) telah disediakan dengan menggunakan N, N-

dimetilformamida sebagai pelarut.  Prestasi anti-karat terperinci PVDF/APTES-GO 

komposit nano bersalut ke plat keluli karbon telah dinilai menggunakan ujian Machu, 

semburan garam dan ujian rendaman asid.  Belauan sinar-x dan spektroskopi 

inframerah transformasi Fourier mengesahkan bahawa tambahan APTES-GO 

daripada 0.1 hingga 0.5 % berat telah mengubah fasa β- dan γ- kepada α-fasa kristal.  

Mikroskop elektron pengimbas pancaran medan mendedahkan bahawa lapisan PVDF 

komposit nano dengan ketebalan 73.0 ± 3.61 µm mempamerkan ciri-ciri membran 

simetri.  Mikroskop daya atomik juga mempamerkan bahawa kekasaran permukaan 

PVDF filem komposit nano meningkat dengan peningkatan muatan APTES-GO.  

Selain itu, PVDF/APTES-GO komposit nano dengan 0.4 % berat APTES-GO telah 

menunjukkan sudut sentuhan air tertinggi 102º dan ~306% peningkatan modulus 

tegangan berbanding dengan PVDF.  Lapisan komposit nano tersebut (66.67 ± 4.0 µm) 

didapati mempamerkan sifat lekatan yang baik dengan kadar kakisan terendah iaitu 

6.65 mm/tahun dan kecekapan perlindungan kakisan yang tertinggi sebanyak 51.16% 

dalam persekitaan yang mengkakis.
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Background of the Research 
 
 
 Up to date, natural gas is continuous to remain as an important energy resource 

than other fuels.  In 2012, about 21 percent of fuel share is natural gas, which is 

equivalent to almost 2000 billion barrels of oil equivalent.  When reaching 2030, it is 

expected that the universal need for natural gas would be nearly 23-38 trillion barrels 

of oil every year (Papavinasam, 2013).  This phenomenon has urged oil and gas 

industries such as Shell and ExxonMobil to be involved actively in exploration 

activities to allocate the new gas fields.  However, natural gas steel pipelines require 

the advanced coating that can endure corrosive environments in order to transport raw 

natural gas from the gas fields to production facilities (Ajayi and Lyon, 2014). 

 
 
 In Malaysia, about 2 billion cubic feet (Bcf/d) natural gas are transported for 

each day through 2500 km long pipeline systems.  In the north, about 614 km Trans 

Thailand-Malaysia (TTM) Gas Pipeline network is connected to the Peninsular Gas 

Utilization Pipeline System (PGU).  In 2020, it is expected that natural gas can be 

transported from the East Natuna gas field, China to Kerteh, Malaysia through the 

Trans-ASEAN Gas Pipeline (Malaysia International Energy Data and Analysis, 2014).  

Meanwhile, it has been discovered that the concentration of hydrogen sulfide (H2S) 

and carbon dioxide (CO2) in the gas fields in Malaysia are very high.  These corrosive 

agents encourage corrosion to occur in the natural gas gathering and transmission 
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pipelines (Sass et al., 2005).  About $600 million was spent annually for the 

replacement and maintenance of corroded pipelines due to corrosion in oil and 

gas industry.  Without proper mitigation, corrosion can cause giant economic 

costs and enormous damage to health, safety and environment (Yuan et al., 

2016). 

 
 
 Even though cathodic protection is effective to protect the external surface of 

the natural gas steel pipelines from corrosion, it cannot prevent internal corrosion in 

pipelines.  16 years ago somewhere in August 2000, 12 people had been killed and 

property loss worth about USD 1 million due to an incident of natural gas transmission 

pipeline rupturing in Carlsbad, New Mexico (Sass et al., 2005) and (Ali et al., 2012).  

Moreover, pipelines cracking is one of the consequences that caused by the high 

severity of internal natural gas steel pipelines corrosion.  Subsequently, methane will 

be leaked and emitted into the environment.  Methane, which is one of the greenhouse 

gases can cause critical global warming.  The negative impact of methane is 86 times 

higher than carbon dioxide (CO2) (Jackson et al., 2014). 

 
 
 Currently, corrosion inhibitors, biocides, cathodic protection and process 

optimization have been utilized in oil and gas industry to cope with the internal 

pipelines corrosion (Papavinasam, 2013).  In order to further improve the performance 

of existing technologies for corrosion mitigation, the consideration for coating with 

superior properties is crucial.  The selected material should have high mechanical 

strength, anti-microbial and anti-corrosion (Bickerstaff et al., 2002).  On the other hand, 

high corrosion-resistant alloys (CRAs) such as duplex stainless steel are not 

ideal as the material for natural gas steel pipelines due to the extremely high 

capital expenditure (CAPEX).  On the other hand, corrosion inhibitors are 

sensitive to thermal degradation, difficult to monitor and non-environmentally 

friendly (Finšgar and Jackson, 2014). 

 
 
 So far, the polymer coating is one of the most commonly used approaches 

to reduce the corrosion rate by preventing direct contact between the inner 

surface of the pipelines and the corrosive environment.  However, traditional 

polymeric coatings such as epoxy and polyethylene are still permeable to 
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corrosive ions and water (Bayram et al., 2015). Recently, the development of 

polymer nanocomposites has represented a new paradigm shift in material 

science to address the corrosion issue (Chang, 2013).  Many researches have 

been carried out to incorporate novel nanofillers into polymer matrices, which 

may introduce new ways to develop the state-of-the-art coatings to improve the 

anti-corrosion performance by decreasing the permeability rate of water and 

corrosive species.  Polyvinylidene fluoride (PVDF) is one of the high-

performance polymers due to its extraordinary properties such as high mechanical 

strength, remarkable chemical corrosion resistance (acids and bases), low coefficient 

of friction, good resistance to stress cracking, good fatigue resistance, excellent 

electrochemical and thermal stability (Maccone et al., 2000). 

 
 
 Even though PVDF is not a common polymer used for internal coating in 

natural gas steel pipelines, many researchers have validated it to be an exceptional 

matrix to investigate due to its extraordinary properties (Liu et al., 2011).  However, 

PVDF suffers from several limitations due to the presence of free volumes in PVDF 

matrix. This makes PVDF exhibits membrane feature (selective barrier) (McCafferty, 

2010).  These undesired properties have resulted in easy penetration of the corroding 

agents for corrosion to take place (Das and Prusty, 2013).  Nanofillers help to 

improve anti-corrosion properties in several ways.  Nanofillers reduce the 

contact tension or wettability, minimize the penetration of water and corrosive 

species by increasing the tortuous pathway and lower the surface roughness for 

better water and oil repellence (Nazari and Shi, 2016). 

 
 
 Recently, the astounding properties of graphene-based nanomaterials due to 

their superior properties such as excellent mechanical strength and chemical stability, 

anti-microbial, anti-corrosion and impermeable features have paved the way for their 

applications in the field of anti-corrosion (Chang, 2013).  Based on these superior 

properties, platelet formed of graphene-based nanomaterials can serve as the potential 

nanofillers for polymer nanocomposite coating, even at very low loading due to their 

larger surface area compared to carbon nanotubes (CNTs).  Furthermore, graphene-

based nanomaterials can reduce the total free volumes, increase the overall mechanical 

strength, lower the possibility of matrix defects and cracks, assist in bridging to link 
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more matrix molecules and increase the cross-linking density of the resulting polymer 

nanocomposite (Ammar et al., 2016). Thus, incorporation of graphene-based 

nanomaterials into the polymer matrix can become the promising solution for natural 

gas steel pipelines anti-corrosion coating (Kuilla et al., 2010). 

 
 
	 In the current study, 3-aminopropyltriethoxysilane (APTES) was used as 

the precursor to functionalize graphene oxide (GO), which involved silane 

silanization and polycondensation in synthesizing monolayer of APTES-GO.  

The as-fabricated APTES-GO was characterized and the effects of the APTES-

GO on the surface morphology, wettability and mechanical strength of 

PVDF/APTES-GO nanocomposite were investigated.  Carbon steel (CS) plate, 

which has similar properties with commercial natural gas steel pipelines was 

used in the current study.  The detailed anti-corrosion performance of the novel 

PVDF/APTES-GO nanocomposite coated onto CS plate was evaluated through 

Machu, salt spray and acid immersion tests to determine the potential to be 

implemented as the anti-corrosion coating in natural gas steel pipelines. 

 
 
 
 
1.2 Problem Statement 
 
 
 In oil and gas industry, natural gas steel pipelines are made from low-CS 

that is low cost, readily available and easily fabricated.  CS is a metal alloy 

containing iron and carbon.  However, natural gas steel pipelines are vulnerable 

towards corrosion.  Corrosion occurs when the atoms of the CS in natural gas 

steel pipelines lose electrons continuously in the corrosive environments.  Many 

approaches have been implemented to protect the internal surface of natural gas steel 

pipelines.  The industry has established different approaches for corrosion mitigation 

strategies such as the implementation of the conventional corrosion inhibitors and 

scale inhibitors.  Nevertheless, these techniques are not effective to reduce the 

corrosion rate in natural gas steel pipelines.  In light of this, the PVDF coating can be 

coated in the natural gas steel pipelines, which provides a physical barrier to reduce 

penetration of corrosive species onto the metal surface. 
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 However, the neat PVDF coating suffers from several weaknesses due to the 

presence of free volumes in their matrixes that allow penetration of water and corrosive 

species, which can reduce the corrosion protection ability of the polymer due to 

hydrolytic degradation. Besides that, poor crack propagation resistance and 

vulnerability to comprise pinholes tend to decrease the adhesion strength of the 

resulting PVDF coating-metal interface.  Reduction of oxygen at the interface could 

result in delamination of the polymer coating from the metal surface. This 

phenomenon is referring to the electrochemically driven process whereby the bonds at 

the PVDF coating-metal interface are damaged by radicals (Ammar et al., 2016).  

Hence, GO can be incorporated into the PVDF matrix with the purpose of improving 

the corrosion protection and barrier properties.  

 
 
	 In addition, hydrophilicity nature of GO does not possess good corrosive 

solution-repellency feature.  In other words, adsorption of water molecules and 

corrosive ions are likely to occur in the resulting PVDF/GO nanocomposite, which can 

increase the rate of corrosion.  So, GO is functionalized with hydrophobic APTES 

functional groups to increase its hydrophobicity before incorporating into the PVDF 

matrix.  The presence of numerous reactive sites on the surface of GO enables 

surface modification or covalent functionalization to fabricate hydrophobic GO 

that can repel and impermeable to corrosive solutions.  This can delay the 

penetration of electrolyte containing corrosive ions and water to an underlying 

metal surface and reduce the corrosion rate. 

 
 
 
 
1.3 Objective of Study 
 
 

The objectives of this study are: 

 
a) To synthesize and characterize monolayer APTES functionalized GO. 

 
b) To fabricate and characterize hydrophobic PVDF/APTES-GO nanocomposite.  

 
c)  To evaluate the anti-corrosion performance of APTES-GO nanocomposite as 

the coating layer for natural gas steel pipelines. 
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1.4 Scope of Study 
 
 

To achieve the above-mentioned objections, the scope of the study is outlined 

as below: 

 
a) Synthesize GO through modified Hummer’s method, which involves oxidation 

of graphite. 

 
b) Modify GO with hydrophobic APTES functional group.  

 
c) Characterize GO and APTES-GO using x-ray diffractometer (XRD), 

thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy 

(FTIR), atomic force morphology (AFM) and scanning transmission electron 

microscopy (STEM). 

 
d) Incorporate hydrophobic APTES-GO into PVDF matrix to fabricate 

PVDF/APTES-GO nanocomposite using solvent casting approach. 

 
e) Study the effect of APTES-GO loadings from 0.1 to 0.5 wt% towards the 

properties of the resulting PVDF nanocomposites. 

 
f) Study the surface morphologies, crystal structure, thermal stability, surface 

roughness and infrared spectra of PVDF/APTES-GO nanocomposites using 

Field Emission Scanning Electron Microscopy (FESEM), XRD, TGA, AFM 

and FTIR respectively. 

 
g) Determine the wettability (water contact angle) and mechanical (tensile 

modulus and tensile strength) behaviors of PVDF/APTES-GO nanocomposites. 

 
h) Dip coat PVDF/APTES-GO nanocomposites onto CS plate, which has similar 

properties as commercial carbon steel pipelines. 

 
i) Assess the anti-corrosion behavior of PVDF/APTES-GO nanocomposite 

coatings/carbon steel system using Machu, salt spray and acid immersion tests. 

 
j) Determine the optimized APTES-GO loading to be incorporated into PVDF 

matrix for anti-corrosion coating in natural gas steel pipelines. 



 

	

7 
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k) Investigate the adhesion of PVDF nanocomposite filled with optimized 

APTES-GO loading with neat PVDF using Machu test. 

 
 
 
 
1.5 Significance of Study 
 
 

The excellent properties of graphene have incited more research in this field.   

Up to now, the performance of polymer/graphene nanocomposites in applications such 

as supercapacitors, lithium-ion batteries, solar cells, electrochemical sensing and 

membrane-based separation applications are widely investigated.  Presently, most of 

the research of PVDF/graphene nanocomposites is predominantly focusing on their 

electrical conductivity features in fuel cells, transistors and photocatalytic applications.  

So far, there is no research being reported on the incorporation of graphene-based 

nanomaterials as nanofillers in the fabrication of PVDF nanocomposites for anti-

corrosion coating in natural gas steel pipelines up to date.  Since many researches 

outcomes have revealed that graphene exhibited anti-corrosion properties, the present 

study would focus on the covalent functionalization of GO with hydrophobic silane 

molecules such as APTES to increase the hydrophobicity of GO (APTES-GO).  This 

can, in turn, heighten the performance of GO as the coating material. 

 
 
Moreover, the mechanism of formation of monolayer APTES-GO has 

not been reported so far.  Most of the researches are focusing on the multilayer 

APTES-GO as a reinforcement agent in the polymer.  Therefore, it is anticipated 

that the current research will provide insight into PVDF/APTES-GO nanocomposite, 

specifically in the field of anti-corrosion. 

.
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