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ABSTRACT

Fuzzy Topographic Topological Mapping (FTTM) was first developed by 

Fuzzy Research Group (FRG) of UTM. FTTM is a novel method for solving 

neuromagnetic inverse problems to determine the current source, i.e. epileptic foci in 

epilepsy disorder patient. FTTM consists of four components which are connected by 

three algorithms. FTTM is specially designed to have equivalent topological structures 

between its components. In addition, FTTM was generalized as a set of vertices 

which led to infinitely many forms of FTTM. This includes the possibilities of finite 

vertices of FTTM. In this research, the structure for finite vertices of FTTM, namely 

F K  where K  represents the number of vertices is established. Firstly, the sequences 

of FK, given by FKn are constructed as sequences of polygons. In this process, 

geometrical and algebraic structures for some FKn are obtained and proven in this 

thesis. Some patterns on FKn are observed and defined recursively. Several new 

features for sequences of FKn are introduced, such as sequence of vertices, sequence 

of faces, and sequence of cubes. Consequently, some theorems are proven in order to 

describe patterns for the sequence of cubes for FKn. Interestingly, the cube of FK„, 

appears to be an example of generaUzed Fibonacci sequence, namely the fc-Fibonacci 

sequence. Furthermore, the number of new elements produced from the combination 

of sequences of FK^ can be expressed as a combination of cubes of FKn-
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ABSTRAK

Pemetaan Topologi Topografi Kabur (FTTM) telah dibangunkan oleh 

Kumpulan Penyelidikan Kabur (FRG), UTM. FTTM merapakan kaedah untuk 

menyelesaikan masalah neuromagnetik songsang untuk menentukan kedudukan titik 

tumpuan aras di dalam otak bagi pesakit epilepsi. FTTM terdiri daripada empat 

komponen yang dihubungkan oleh tiga algoritma. FTTM direka khas untuk 

mempunyai struktur topologi yang setara di antara komponennya. Sebagai tambahan, 

FTTM kemudian diklasifikasikan sebagai satu set bucu dan ini membawa kepada 

pelbagai bentuk FTTM termasuklah bilangan bucu yang terhingga FTTM. Dalam 

kajian ini, pelbagai struktur bagi bucu terhingga FTTM iaitu F K  dengan K  mewakili 

bilangan bucu diperkenaUcan. Pertama, jujukan bagi FK, yang dinamakan sebagai 

FKn dibina sebagai suatu jujukan poUgon. Dalam proses itu, beberapa struktur 

geometri dan aljabar jujukan FKn diperolehi dan dibuktikan dalam thesis ini. 

Sebilangan corak pada FKn telah diperhatikan dan ditakrifkan secara jadisemula. 

Beberapa gambaran baharu bagi jujukan FK^ diperkenaUcan seperti jujukan bucu, 

jujukan muka, dan jujukan kiub. Seterusnya, beberapa teorem dibuktikan untuk 

menggambarkan corak jujukan kiub bagi FKn- Menariknya, kiub FKn didapati 

menyerupai contoh bagi jujukan teritlak Fibonacci, iaitu jujukan k- Fibonacci. Selain 

daripada itu, bilangan elemen baharu yang dihasiUcan daripada gabungan jujukan FKn 

boleh diungkapkan sebagai satu gabungan daripada kiub bagi FKn.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motiyation

The human brain (see Figure 1,1) is the most important structure in our body. 

It is also the most complexly organized structure known to exist [1]. There are four 

lobes in both halves of the cortex: frontal, pariental, temporal and occipital.

The outermost layer of the brain is called the cerebral cortex. The cerebral 

cortex has a total surface area of about 2500cm^, folded in a complicated way, so that 

it fits into the cranial cavity formed by the skull of the brain. There are at least 10̂ ® 

neurons in the cerebral cortex. These neurons are the active units in a vast signal- 

handling network [1]. When information is being processed, small currents flow in the 

neural system, producing a weak magnetic field (see Figure 1.2).

Figure 1.1: Human brain (source from http://www.newscientist.com)

http://www.newscientist.com
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Figure 1.2: Neuromagnetic field

Different parts of brain produce different patterns of magnetic fields [2], The 

small area of brain tissues that triggers epileptic seizures is called epileptic foci. It 

is very important to accurately locate the epileptic foci in the cortical region for a 

successful surgery [1]. Both invasive and noninvasive methods of locating the epileptic 

foci have been used in the past, but only the invasive pathway has yielded necessary 

results for surgical removal.

Magnetoencephalography (MEG) is one of the noninvasive neuroimaging 

techniques used to identify epileptic foci (see Figure 1.3). This study was first 

conducted by the University of California [3]. MEG is the study of magnetic field 

generated by currents in the neurons [4]. MEG consists of the superconducting 

quantum interface device (SQUID) detectors coupled with flux transformers. The 

recorded magnetic fields help in determining where the electrical currents originate 

and the strength of currents. MEG is completely noninvasive and non-hazardous. 

The recorded magnetic field gives information in the process to determine location, 

direction and magnitude of a current source. Estimating the cereberal current sources 

underlying a measured distribution of the magnetic field is called the neuromagnetic 

inverse problem [1].

There is a method for solving this problem, called Bayesian, that needs a priori 

information (data based model), and it is time consuming [5]. By using Bayesian, 

forward calculation is used to calculate the magnetic field caused by the current dipole 

at every possible point. The best location of the current source is determined by 

minimizing the sum of the squares of the difference between the measured and the
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Figure 1.3: MEG Systems (source from http://infocenter.nimh.nih.gov)

calculated value similar to the least squares method. Then, a point with a minimum 

least square is the location of a current source. On the other hand, Fuzzy Topographic 

Topological Mapping (FTTM) is a model for the solving neuromagnetic inverse 

problem. It does not need priori information and is less time consuming [6].

1.2 Research Background

FTTM was first developed by Fuzzy Research Group (FRG) group in 1999 in 

order to determine the location of epileptic foci in epilepsy disorder patients [6]. The 

model consists of four components, which are magnetic contour plane (MC), base 

magnetic plane (BM), fuzzy magnetic plane (FM), topographic magnetic field (TM) 

and three mathematical algorithms (see Figure 1.5). In 2002, Zakaria has developed 

FTTM version 1 (see Figure 1.4) to present a 3-D view of an unbounded single current 

source [7], and later, Rahman developed FTTM version 2 (see Figure 1.5) to present 

a 3-D view of a bounded multi current source [8]. The structure of FTTM will be 

discussed in detail in Chapter 2.

http://infocenter.nimh.nih.gov


Figure 1.4: FTTM version 1

Figure 1.5: FTTM version 2

1.3 Problem Statement

FTTM version 1 and FTTM version 2 (See Figure 1.6) are specially designed 

to have equivalent topological structures between its components. This was proven by 

Yun [9]. In other words, FTTM version 1 and FTTM version 2 are homeomorphic 

component-wise. Yun also noticed that if there are two elements of FTTM 

that are homeomorphic to each other component-wise, it would generate more 

homeomorphisms [10]. The number of generating new elements of FTTM is

[g:2\  / 2\  / 2
X X — 2 = 14 elements. (1.1)
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Figure 1.6: Equivalance of Structure of F TTM  Componentwise

Consequently, Yun proposed a conjecture such that if there exist n elements of 

FTTM, then the number of new elements are — n [10]. This conjecture is proven by 

Jamaian [11]. Consequently, Jamaian proposed an open problem as follows:

given cube of two, three, and four FTTM given by FTTM2/„, FTTMs/n and 

FTTM4/n . Thus for every nonzero of FTTM2/n, FTTMa/n and FTTM4/n appears in 

the third, fourth, and fifth main diagonal of Pascals triangle respectively, therefore for 

every nonzero sequence of FK^jn^ FK 4^jn,..,,FKijn they also obey the third,

fourth, fifth, until {I 1)*̂  main diagonal of Pascals triangle with K  representing the 

number of components [12]. The number of new elements of FKn can be written as,

I)
where n > k  with k the number of component and Ci, C2, C3,..., Cp are the coefficient 

for each combination. Since FTTM exists in a sequence, therefore the need to analyse 

the sequence of finite vertices of Fuzzy Topographic Topological Mapping (FKn) is 

paramount.

Ffe„ =  C i Q + C 2 ( 3 ) + C 3 (



1.4 Research Objectives

The aims of this research are as follows:

(i) To develop sequences of finite vertices of Fuzzy Topographic 

Topological Mapping (FKn).

(ii) To prove the theorem on sequences of FKn using difference 

equation.

(iii) To find the relation between sequences of cubes of FKn and k- 

Fibonacci sequences.

(iv) To prove the conjecture proposed by Jamaian.

1.5 Scope of the Study

This research focuses on the goal to prove the conjecture proposed by Jamaian 

in [12] and the relation between generalized FTTM and /c-Fibonacci sequence. This 

form of sequence for FKn was only limited to the form that were adopted by Jamaian 

in [12].

1.6 Significance of Findings

By proving the conjecture, other versions of FTTM can be introduced. In 

other words, a new version of FTTM besides FTTM version 1 and version 2 can 

be developed. The relation between sequences of FTTM, Pascal’s Triangle and also 

Fibonacci sequences are obtained.
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Figure 1.7: Sequences of FTTM„

1.7 Research Methodology

The research starts by studying different types of FTTM and the geometry for 

sequences of FTTM. There are three methods used in order to prove the theorem which 

are constructive, di^erence equation, and mathematical induction.

1.7.1 Constructive

According to Hein [13], a constructive proof is a method of proving that 

demonstrate the existence of a mathematical object with certain properties by creating 

or providing a method for creating such an object. In addition, the constructive method 

can be identified by certain keywords that appear in the statement such as there is, there 

are, there exist, for all, for each and for every [14]. Furthermore, this method never 

puts any condition that the statement of a problem should be identified first.

1.7.2 Difference Equation

A difference equation (also called a recurrence equation) is the discrete analog 

of a differential equation [13]. A difference equation involves an integer function f{n)



in a form, such as the following:

For non-homogenous equation

Un+i + aUn = fin)

where a is constant, the solution is given by

Un =

general solution of 

associated homogeneous 

equation

+

/

of the non — homogeneous 

equation

(1.3)

(1.4)

(1.5)

1.7.3 Mathematical Induction

Mathematical induction is a way to prove statements for all positive integers 

[15]. There are two steps in mathematical induction: the basis and the inductive steps.

(i) The basis (base case): showing that the statement holds when n is 

equal to the lowest value that n is given in the question. Usually,

n =  0 or n = 1 .

(ii) The inductive step: showing that if the statement holds for some n, 

then the statement also holds when n + 1 is substituted for n.

1.8 Thesis Organization

In general, the thesis contains seven chapters. The first chapter serves as an 

introduction to the whole thesis. This chapter includes the background of the research, 

problem statements, objectives, scope and importance of the research.



Chapter 2 presents the literature review of this research. Various works by 

different researchers regarding FTTM are discussed in this chapter. Some definitions 

on A:-Fibonacci sequence are also presented in this chapter.

Chapter 3 consists the geometrical features of FKn- It consists of 

generalization of FK^. The geometrical feature of FK^ is discussed in this chapter. 

Several definitions on sequence of FK^ are also provided.

Chapter 4 provides the theorems on sequences of FK^. The proofs for the 

theorems are provided in this chapter.

In Chapter 5, the proofs of sequence of cubes FK^ are provided. It reveals 

the relation between cube of FKn, Pascal’s triangle, and A:-Fibonacci sequence. This 

chapter covers the proof to the theorem and corollaries of cube FKn.

Chapter 6 covers on the elements of FK^ and the relation to cubes of FKn- 

Finally, Chapter 7 consists of conclusions and recommendations for future work.

The framework of this research is summarized in Figure 1.8.



10

Figure 1.8: Research Framework
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