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Summary. The demand for Internet content rose dramatically in recent years. Servers
became more and more powerful and the bandwidth of end user connections and back-
bones grew constantly during the last decade. Nevertheless users often experience poor
performance when they access web sites or download files. Reasons for such problems
are often performance problems, which occur directly on the servers (e.g. poor per-
formance of server-side applications or during flash crowds) and problems concerning
the network infrastructure (e.g. long geographical distances, network overloads, etc.).
Web caching and prefetching have been recognized as the effective schemes to alleviate
the service bottleneck and to minimize the user access latency and reduce the network
traffic. In this chapter, we model the uncertainty in Web caching using the granularity
of rough set (RS) and inductive learning. The proposed framework is illustrated using
the trace-based experiments from Boston University Web trace data set.

1 Introduction

Good interactive response-time has long been known to be essential for user
satisfaction and productivity [1, 2, 3]. This is also true for the Web [4, 5]. A
widely-cited study from Zona Research [6] provides an evidence for the “eight
second rule” in electronic commerce, “if a Web site takes more than eight seconds
to load, the user is much more likely to become frustrated and leave the site”.

Lu et al.[7] has mentioned that most business organizations and government
departments nowadays have developed and provided Internet based electronic
services (e-services) that feature various intelligent functions. This form of e-
services is commonly called e-service intelligence (ESI). ESI integrates intelli-
gent technologies and methodologies into e-service systems for realizing intelligent
Internet information searching, presentation, provision, recommendation, online
system design, implementation, and assessment for Internet users. These intelli-
gent technologies include machine learning, soft computing, intelligent languages,
and data mining etc. ESI has been recently identified as a new direction for the
future development stage of e-services. E-services offer great opportunities and
challenges for many areas of services, such as government, education, tourism,
commerce, marketing, finance, and logistics. They involve various online service
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providers, delivery systems and applications including e-government, e-learning,
e-shopping, e-marketing, e-banking, and e-logistics.

A surprising fact is that many people tend to access the same piece of informa-
tion repeatedly [7, 8] in any ESI. This could be weather related data, news, stock
quotes, baseball scores, course notes, technical papers, exchange rate informa-
tion and so on. If too many people attempt to access a Web site simultaneously,
then they may experience problems in getting connected to the Web site. This
is due to slow responses from the server as well as incapability of Web site in
coping with the load.

An alternative way to tackle these problems is an implementation of Web
caching in enhancing Web access [9, 8]. Web caching is beneficial to broad users
including those who are relied on slow dial-up links as well as on faster broadband
connections. The word caching refers to the process of saving data for future
use. In other words, Web caching is the process of saving copies of content from
the Web closer to the end user for quicker access. Web caching is a fairly new
technology whose history is linked to that of the Web [10].

At the same time, Web prefetching is another well-known technique for reduc-
ing user web latency by preloading the web object that is not requested yet by
the user [8, 9, 11, 12]. In other words, prefetching is a technique that downloads
the probabilistic pages that are not requested by the user but could be requested
again by the same user. Conventionally, there is some elapse time between two
repeated requests by the same user. Prefetching usually performs the preloading
operation within an elapse time and puts web objects into the local browser or
proxy cache server to satisfy the next user’s requests from its local cache.

However, the Web caching and prefetching technologies are the most popular
software based solutions [11, 12]. Caching and prefetching can work individually
or combined. The blending of caching and prefetching (called as pre-caching)
enables doubling the performance compared to single caching [13]. These two
techniques are very useful tools to reduce congestion, delays and latency prob-
lems. There are three most important features of web caching [14]:

• Caching that reduces network bandwidth usage
• Caching that also reduces user-perceived delays
• Caching that reduce loads on the original server

1.1 Problem in WWW Services

World Wide Web (WWW) has become the most ideal place for business and
entertainment to enrich their presentation with interactive features. This has
caused the evolution of Web growing and rising fast and drastically. Human
interaction with objects or so called interactive features has leaded the Web to
be more easily guided and capable to perform business task between distance
places. These pages are linked and managed for certain purposes that perform as
a Web application. These interactive Web pages consist of pages that are able to
perform application logical task. The rising popularity of using Web applications
in WWW causes tremendous demands on the Internet.
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A key strategy for scaling the Internet to meet these increasing demands is to
cache data near clients and thus improve access latency and reduce the network
and server load [15, 16]. Mohamed et. al [17, 18, 19] has proposed an intelli-
gent concept of Smart Web Caching with integrated modules of artificial neu-
ral networks (ANN), environment analysis and conventional caching procedure.
The results are convincing in reducing the internet traffic flow and enhancing
performances. However, implementing this integrated analyzer in Web caching
environment causes highly computational cost [20, 17, 21] due to the complexity
of the integrated process generation.

Caching is a technique used to store popular documents closer to the user.
It uses algorithms to predict user’s needs to specific documents and stores im-
portant documents. According to Curran and Duffy [22], caching can occur any-
where within a network, on the user’s computer or mobile devices, at a server,
or at an Internet Service Provider (ISP). Many companies employ web proxy
caches to display frequently accessed pages to their employees, as such to re-
duce the bandwidth with lower costs [22, 23]. Web cache performance is directly
proportional to the size of the client community [24, 22]. The bigger the client
community, the greater the possibility of cached data being requested, hence,
the better the cache’s performance [22].

Moreover, caching a document can also cause other problems. Most documents
on the Internet change over time as they are updated. Static and Dynamic
Caching are two different technologies that widely used to reduce download
time and congestion [20]. Static Caching stores the content of a web page which
does not change. There is no need to request the same information repeatedly.
This is an excellent approach to fight congestion. Dynamic Caching is slightly
different. It determines whether the content of a page has been changed. If the
contents have changed, it will store the updated version [23]. This unfortunately
can lead to congestion and thus it is possibly not a very good approach as it
does require verification on the source of the data prior to updating. If these two
technologies are implemented simultaneously, then the latency and congestion
can be diminished.

According to Davison [14] caching helps to bridge the performance gap be-
tween local activity and remote content. Caching assists improvement of Web
performance by reducing the cost and end-user latency for Web access within
a short term. However, in the long term, even as bandwidth costs continue to
drop and higher end-user speeds become available; caching will continue to ob-
tain benefits for the following reasons:

Bandwidth will always have some cost . The cost of bandwidth will never reach
zero, even though the competition is increasing, the market is growing, and
the economies of scale will reduce end-user costs. The cost of bandwidth at
the core has stayed relatively stable, requiring ISPs to implement methods
such as caching to stay competitive and reduce core bandwidth usage so that
edge bandwidth costs can be low.

Nonuniform bandwidth and latencies will persist. Because of physical limita-
tions such as environment and location as well as financial constraints, there
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will always be variations in bandwidth and latencies. Caching can help to
smooth these effects.

Network distances are increasing. Firewalls, other proxies for security and pri-
vacy, and virtual private networks for telecommuters have increased the num-
ber of hops for contents delivery, hence slow Web response time.

Bandwidth demands continue to increase. The growth of user base, the popu-
larity of high-bandwidth media, and user expectations of faster performance
have guaranteed the exponential increase in demand for bandwidth.

Hot spots in the Web will continue. Intelligent load balancing can alleviate
problems when high user demand for a site is predictable. However, a Web
site’s popularity can also appear as a result of current events, desirable con-
tent, or gossips. Distributed Web caching can help alleviate these “hot spots”
resulting from flash traffic loads.

Communication costs exceed computational costs. Communication is likely to
always be more expensive (to some extent) than computation. The use of
memory caches are preferred because CPUs are much faster than main mem-
ory. Likewise, the cache mechanisms will prolong as both computer systems
and network connectivity become faster.

Furthermore, caching is the most relevant technique to improve storage sys-
tem, network, and device performance. In mobile environments, caching can con-
tribute to a greater reduction in the constraint of utilization resources such as
network bandwidth, power, and allow disconnected operation [29]. A lot of stud-
ies are focused on developing a better caching algorithm to improve the choice of
item to replace, and simultaneously, building up techniques to model access be-
havior and prefetch data. From 1990’s until today, researchers on caching have
produced different caching policies to optimize a specific performance and to
automate policy parameter tuning. Prior to this, administrator or programmer
had to select a particular parameter to observe workload changes. However, an
adaptive and self-optimizing caching algorithm offer another advantage when
considered mobile environments, where users of mobile devices should not ex-
pect to tune their devices to response the workload changes [29]. The workload
depends on the current position of the mobile node in relation to other nodes
and stations, and also depends on the current location and context of the mobile
user.

Caching is effectively for data with infrequent changes. Besides, caching data
locally to mobile nodes helps the ability to retrieve data from a nearby node,
rather than from a more distant base station [28]. By simply retrieving data
using multiple short-range transmissions in wireless environments provides a
reduction in overall energy consumed. Santhanakrishnan et al. [29] illustrated
on the demand-based retrieval of the Web documents in the mobile Web.
They proposed caching scheme; Universal Mobile Caching which performed
the most basic and general form of caching algorithms and largely emphasize
the impact of the adaptive policy. This scheme is suitable for managing object
caches in structurally varying environments. Ari et al. [30] proposed Adaptive
Caching using Multiple Experts (ACME), which the individual experts were full
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replacement algorithms, applied to virtual caches, and their performance was
estimated based on the observed performance of the virtual caches. The term
expert refers to any mechanism for offering an answer to the question. For cache
replacement, the answer they seek is the identity of the object in the cache with
the least likelihood of subsequent future access.

Contrast to a single algorithm, there are not so many research works on inte-
grated schemes. Aiming at integrating caching and prefetching, Yang and Zhang
[26] employed a prediction model, whereas Teng et al. [31] presented a new cache
replacement algorithm, considering the impact of prefetching engine located at
Web server and a few cache parameters. Kobayashi and Yu [32] discussed the
performance model for mobile Web caching and prefetching and provided the
estimate of the total average latency, hit ratio, cache capacity and wireless band-
width required.

Prefetching is an intelligent technique used to reduce perceived congestion,
and to predict the subsequent page or document to be accessed [24, 12]. For
example, if a user is on a page with many links, the prefetching algorithm will
predict that the user may want to view associated links within that page. The
prefetcher will then appeal the predicted pages, and stores them until the actual
request is employed. This approach will display the page significantly faster
compared to the page request without prefetching. The only drawback is that if
the user does not request the pages, the prefetching algorithm will still implement
the prediction of the subsequent pages, thus causes the network to be congested
[25, 26, 27, 28].

In addition, Web prefetching method evolves from prefetching top-10 popular
pages [33] or hyperlinks [34] into prefetching by user’s access patterns. Statistical
prefetching algorithms [35] make use of Markov modeling, and establish a Markov
graph based on user’s access histories and make prefetching predictions based
on the graph which needs to be updated continuously while accessing Web.
Prefetching strategies in [25, 36] used data mining technique, to decide whether
to prefetch or not according to the probability of the pages accessed recently.
But it is possible that the prefetched pages are far away from the current page
sequence so that the cache hit ratio may not benefit from prefetching.

Hence, Web prefetching strategy need to achieve a balance between network
loads and performance gains. Some research studies have found that too aggres-
sive prefetching will increase Web access latency, since more prefetching will lead
to replacement of more cache items even including the pages that will be accessed
in near future. Under the wireless environment, Yin and Cao [37] proposed to
dynamically adjust the number of prefetching according to power consumption
for mobile data dissemination.

Wu et al. [38] introduced a rule-based modular framework for building self-
adaptive applications in mobile environments. They developed techniques that
combine static and dynamic analysis to uncover phase structure and data access
semantics of a rule program. The semantic information is used to facilitate in-
telligent caching and prefetching for conserving limited bandwidth and reducing
rule processing cost. As well, Komninos and Dunlop [39] found that calendars
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can really provide information that can be used to prefetch useful Internet con-
tent for mobile users. While it is expected that such an approach cannot fulfill
the whole of Internet content needs for a user, the work presented provided ev-
idence to the extent to which a mobile cache can be populated with relevant
documents that the user could find of interest. However, a foreseeable problem
with the current system is that the current adaptation algorithm adjusts the sys-
tem gradually, and not immediately, to the needs of a user. Thus, if a dramatic
change of circumstances was to occur, or if a user was to require information
from a very specific and known source, it is likely the system would fail to provide
the necessary information.

2 Why Web Caching?

Web caching is the temporary storage of Web objects (such as HTML docu-
ments) for later retrieval. There are three significant advantages to Web caching:
reduced bandwidth consumption (fewer requests and responses that need to go
over the network), reduced server load (fewer requests for a server to handle),
and reduced latency (since responses for cached requests are available immedi-
ately, and closer to the client being served). Together, they make the Web less
expensive and better performing.

Caching can be performed by the client application, and is built in to most
Web browsers. There are a number of products that extend or replace the built-
in caches with systems that contain larger storage, more features, or better
performance. In any case, these systems cache net objects from many servers
but all for a single user.

Caching can also be utilized in the middle, between the client and the server
as part of a proxy. Proxy caches are often located near network gateways to
reduce the bandwidth required over expensive dedicated Internet connections.
These systems serve many users (clients) with cached objects from many servers.
In fact, much of the usefulness (reportedly up to 80% for some installations) is
in caching objects requested by one client for later retrieval by another client.
For even greater performance, many proxy caches are part of cache hierarchies,
in which a cache can inquire of neighboring caches for a requested document to
reduce the need to fetch the object directly.

Finally, caches can be placed directly in front of a particular server, to reduce
the number of requests that the server must handle. Most proxy caches can be
used in this fashion, but this form has a different name (reverse cache, inverse
cache, or sometimes httpd accelerator) to reflect the fact that it caches objects
for many clients but from (usually) only one server [21].

2.1 How Web Caching Works?

All caches have a set of rules that they use to determine when to serve an object
from the cache, if it’s available. Some of these rules are set in the protocols
(HTTP 1.0 and 1.1), and some are set by the administrator of the cache (either
the user of the browser cache, or the proxy administrator).
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Generally speaking, these are the most common rules that are followed for a
particular request [21]:

1. If the object’s headers notify the cache not to keep the object, then it will
do so. Simultaneously, if there is no validation, then most caches will mark
that as uncacheable item.

2. If the object is authenticated or secured, then it will not be cached.
3. A cached object is considered fresh (that is, able to be sent to a client without

checking with the origin server) if:
• It has an expiry time or other age-controlling directive set, and is still

within the fresh period.
• If a browser cache has already seen the object, and has been set to check

once a session.
• If a proxy cache has seen the object recently, and it was modified rel-

atively long ago. Fresh documents are served directly from the cache,
without checking with the origin server.

4. If an object is stale, the origin server will be executed to validate the object,
or notify the cache whether the existing copy is still good.

Mutually freshness and validation are the most important mechanisms that
make cache works with content. A fresh object will be available instantly from
the cache, while a validated object will avoid sending the entire object all over
again if it has not been changed.

3 Performance Measurement for Web Optimization

Performance measurement of Web caching is needed to establish the efficiency of
a Web caching solution [9, 17, 32]. Some performance benchmarks or standards
are required for a particular Web caching solution to be evaluated. Such bench-
marks may assist in choosing the most suitable Web caching solution for the
problem we encounter. In this situation, a possibility of a particular structure
will beneficial for certain applications while other applications may require some
other substitutes.

Some organizations may choose for proxy based caching solutions. They may
try to overcome the problem of configuration Web browsers by forcing the use
of browsers that provide auto-configuration. For massive organizations, network
components such as routers and switches [9, 10] might be considered; otherwise,
transparent caching can be employed. Some organizations may prefer highly
scalable solutions for anticipating future needs. Besides, organizations which Web
sites contain highly dynamic content might occupy Active Cache [41] or possibly
will utilize Web server accelerators. Obviously, the subject of measurement of
performance is controlled not just to find the competence of a given Web caching
solution but also to cover evaluation of the performance of cache consistency
protocols, cache replacement algorithms, the role of fundamental protocols such
as HTTP and TCP and others.
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3.1 Parameters for Measuring Web Performance

Several metrics are commonly used when evaluating Web caching policies [41].
These include [42]:

1. Hit rate is generally a percentage ratio of documents obtained by using the
caching mechanism and total documents requested. If measurement focuses
on byte transfer efficiency, then weighted hit rate is a better performance
measurement [43].

2. Bandwidth utilization is an efficiency metric measurement. The reduction
bandwidth consumption shows that the cache is better.

3. Response time/access time –response time is the time taken for a user to get
a document.

The are various parameters such as user access patterns, cache removal policy,
cache size and document size that can significantly affect cache performance.
Other common metrics that are used to quantify the performance of Web caching
solutions proposed by Mohamed [17] include hit ratio, byte hit ratio, response
time, bandwidth saved, script size and current CPU usage.

Performance of Web caching solutions may be quantified by measuring pa-
rameters as follows [9]:

1. price
2. throughput (e.g. the number of HTTP requests per second generated by

users, the rate at which a product delivers cache hits etc.)
3. cache hit ratio (the ratio of the number of requests met in the cache to the

total number of requests)
4. byte hit ratio (the fraction of the number of bytes served by the cache divided

by the total number of bytes sent to its clients)
5. the number of minutes until the first cache hit/miss after a breakdown
6. the cache age (the time after which the cache become full)
7. hit ratio/price (e.g. hits/second per thousand dollars)
8. downtime (e.g. time to recover from power outrages or cache failures)

Techniques for measuring the efficiency and usefulness of Web caching solu-
tions have been evolving slowly since this field is relatively a new discipline; the
theory of Web Caching has advanced much faster than practice [9].

Despite quantifying the performance of caching clarifications, other aspects
such as client side latencies, server side latencies, aborted requests, DNS lookup
latencies, cookies, different popularity characteristics among servers, the type of
content, network packet losses should not be disregarded since there are some pa-
rameters are interrelated. For illustration, hit ratio is affected by inadequate disk
space in a cache server, and these lacking in the object placement/replacement
policies can cause the network to be overloaded. Hence, by maximizing a single
parameter alone may not be adequate [9].
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4 Uncertainty in Web Caching

Uncertainty, as well as evolution, is a part of nature. When humans describe com-
plex environments, they use linguistic descriptors of cognized real-world circum-
stances that are often not precise, but rather “fuzzy”. The theory of fuzzy sets
[44] provides an effective method of describing the behavior of a system, which
is too complex to be handling with the classical precise mathematical analysis.
The theory of rough sets [61] emerged as another mathematical approach for
dealing with uncertainty that arises from inexact, noisy or incomplete informa-
tion. Fuzzy set theory assumes that the membership of the objects in some set
is defined as a degree ranging over the interval [0,1]. Rough Set Theory (RST)
focuses on the ambiguity caused by the limited distinction between objects in a
given domain.

Uncertainty occurs in many real-life problems. It can cause the information
used for problem solving being unavailable, incomplete, imprecise, unreliable,
contradictory, and changing [46]. In computerized system, uncertainty is fre-
quently managed by using quantitative approaches that are computationally
intensive. For example, a binary that processes ‘TRUE or FALSE’, or ‘YES’ or
‘NO’ type of decisions, is likely to arrive at a conclusion or a solution faster than
one that needs to handle uncertainty.

Organizing uncertainty is a big challenge for knowledge-processing systems
[46]. In some problems, uncertainty can possibly be neglected, though at the
risk of compromising the performance of a decision support system. However, in
most cases, the management of uncertainty becomes necessary because of critical
system requirements or more complete rules are needed. In these cases, elimi-
nating inconsistent or incomplete information when extracting knowledge from
an information system may introduce inaccurate or even false results, especially
when the available source information is limited. Ordinarily, the nature of un-
certainty comes from the following three sources: incomplete data, inconsistent
data, and noisy data.

Thus, in a proxy cache, the superfluous of logs dataset with the huge number
of records, the frequency of errors (incomplete data), and the diversity of log
formats (inconsistent data) [10] will ground the practical challenges to analyze
it either to cache or not cache objects in the popular documents. Table 1 depicts
the sample of Web log data from Boston University Web Trace [47].

4.1 How Rough Sets Boost Up Web Caching Performance?

Another approach to represent uncertainty is using Rough Set (RS). RS are
based on equivalence relations and set approximations, and the algorithms for
computing RS properties are combinatorial in nature. The main advantages of
RST are as follows [48]:

• It does not need any preliminary or additional information about data;
• It is easy to handle mathematically;
• Its algorithms are relatively simple.
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Table 1. Sample Web log data

bugs 791131220 682449 “http://cs-www.bu.edu/” 2009 0.518815
bugs 791131221 620556 “http://cs-www.bu.edu/lib/pics/bu-logo.gif” 1805
0.320793
bugs 791131222 312837 “http://cs-www.bu.edu/lib/pics/bu-label.gif” 717
0.268006
bugs 791131266 55484 “http://cs-www.bu.edu/courses/Home.html” 3279
0.515020
bugs 791131266 676413 “http://cs-www.bu.edu/lib/pics/bu-logo.gif” 0 0.0
bugs 791131266 678045 “http://cs-www.bu.edu/lib/pics/bu-label.gif” 0 0.0
bugs 791131291 183914 “http://cs-www.bu.edu/students/grads/tahir/CS111/”
738 0.292915
bugs 791131303 477482 “http://cs-www.bu.edu/students/grads/tahir/CS111/
hw2.ps” 41374 0.319514
bugs 791131413 265831 “http://cs-www.bu.edu/students/grads/tahir/CS111/if-
stat.ps” 10202 0.380549
bunsen 791477692 218136 “http://cs-www.bu.edu/” 2087 0.509628
bunsen 791477693 134805 “http://cs-www.bu.edu/lib/pics/bu-logo.gif” 1803
0.286981
bunsen 791477693 819743 “http://cs-www.bu.edu/lib/pics/bu-label.gif” 715
0.355871
bunsen 791477719 107934 “http://cs-www.bu.edu/techreports/Home.html” 960
0.335809
bunsen 791477719 518262 “http://cs-www.bu.edu/lib/pics/bu-logo.gif” 0 0.0
bunsen 791477719 520770 “http://cs-www.bu.edu/lib/pics/bu-label.gif” 0 0.0

Wakaki et al. [48] used the combination of the RS-aided feature selection
method and the support vector machine with the linear kernel in classifying
Web pages into multiple categories. The proposed method gave acceptable accu-
racy and high dimensionality reduction without prior searching of better feature
selection. Liang et al. [49] used RS and RS based inductive learning to assist
students and instructors with WebCT learning. Decision rules were obtained
using RS based inductive learning to give the reasons for the student failure.
Consequently, RS based WebCT Learning improves the state-of-the-art of Web
learning by providing virtual student/teacher feedback and making the WebCT
system much more powerful.

Ngo and Nguyen [50] proposed an approach to search results clustering based
on tolerance RS model following the work on document clustering. The appli-
cation of tolerance RS model in document clustering was proposed as a way to
enrich document and cluster representation to increase clustering performance.
Furthermore, Chimphlee et al. [51] present a RS clustering to cluster web trans-
actions from web access logs and using Markov model for next access prediction.
Users can effectively mine web log records to discover and predict access patterns
while using this approach. They perform experiments using real web trace logs
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collected from www.dusit.ac.th servers. In order to improve its prediction ration,
the model includes a rough sets scheme in which search similarity measure to
compute the similarity between two sequences using upper approximation.

In [52], the authors employed RS based learning program for predicting the
web usage. In their approach, web usage patterns are represented as rules gener-
ated by the inductive learning program, BLEM2. Inputs to BLEM2 are clusters
generated by a hierarchical clustering algorithm that are applied to preprocess
web log records. Their empirical results showed that the prediction accuracy of
rules induced by the learning program is better than a centroid-based method,
and the learning program can generate shorter cluster descriptions.

In general, the basic problems in data analysis that can be undertaken by
using RS approach is as follows [46]:

• Characterization of a set of objects in terms of attribute values;
• Finding the dependencies (total or partial) between attributes;
• Reduction of superfluous attributes (data);
• Finding the most significant attributes;
• Generation of decision rules.

Fig. 1. Framework of the RClass System [46]
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4.2 A Framework of Rough Sets

The RClass system integrates RST with an ID3-like learning algorithm [46] as
shown in Figure 1. It includes three main modules; a consistency analyzer, a rough
classifier and an induction engine. The consistency analyzer analyses the training
data and performs two tasks; elimination of redundant data items, and identifica-
tion of conflicting training data. The rough classifier has two approximators; the
upper approximator and the lower approximator. The rough classifier is employed
to treat inconsistent training data. The induction engine module has an ID3-like
learning algorithm based on the minimum-entropy principle. The concept of en-
tropy is used to measure how informative an attribute is.

5 Rough Sets and Inductive Learning

Rough Set Theory [53] was introduced by Zdzislaw Pawlak as a tool to solve
problems with ambiguity and uncertainty [46]. Typically, data to be analyzed
consists of a set of objects whose properties can be described by multi-valued
attributes. The objects are described by the data that can be represented by a
structure called the information system (S) [54]. An information system can be
viewed as information table with its rows and columns consequent to objects
and attributes.

Given a set E of examples described by an information table T , we classify
objects in two different ways: by a subset C of the condition attributes and by
a decision attribute D in the information table to find equivalence classes called
indiscernibility classes Ω ={Ω1,...,Ωn} [55]. Objects within a given indiscerni-
bility class are indistinguishable from each other on the basis of those attribute
values. Each equivalence class based on the decision attribute defines a concept.
We use Des(Ωi) [49] to denote the description, i.e., the set of attribute values,
of the equivalence class Ωi. RS theory allows a concept to be described in terms
of a pair of sets, lower approximation and upper approximation of the class. Let
Y be a concept. The lower approximation Y and the upper approximation Y of
Y are defined as [49]:

Y = {e ∈ E|e ∈ ΩiandXi ⊆ Y } (1)

Y = {e ∈ E|e ∈ ΩiandXi ∩ Y =∅} (2)

Lower approximation is the intersection of all those elementary sets that are
contained by Y and upper approximation is the union of elementary sets that
are contained by Y .

Inductive Learning is a well-known area in artificial intelligence. It is used to
model the knowledge of human experts by using a carefully chosen sample of
expert decisions and inferring decision rules automatically, independent of the
subject of interest [56]. RS based Inductive Learning uses RS theory to find
general decision rules [57, 58]. These two techniques are nearness to determine
the relationship between the set of attributes and the concept.
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5.1 Rough Set Granularity in Web Caching

In our research, BU Web trace dataset from Oceans Research Group at Boston
University are used [47]. We considered 20 sample objects only, i.e., January 1995
records. In our previous research, we used the same dataset with implementation
of RS [59] and integration of Neurocomputing and Particle Swarm Optimization
(PSO) algorithm [60] to optimize the Web caching performance. Three condi-
tional attributes are taken into consideration; request time (Timestamp, TS ) in
seconds and microseconds, a current CPU usage (Sizedocument, SD) in bytes
and response time (Objectretrievaltime, RT ) in seconds. Consequently, a cache,
CA is chosen as a decision for the information table; 1 for cache and 0 for not
cache. Decision rules are obtained using RS based Inductive Learning [57] for

Table 2. Sample of log files dataset information table

Object
Attributes Decision

TS SD RT CA

S1 790358517 367 0.436018 0

S2 790358517 514 0.416329 0

S3 790358520 297 0.572204 0

S4 790358527 0 0 1

S5 790358529 0 0 1

S6 790358530 0 0 1

S7 790358530 0 0 1

S8 790358538 14051 0.685318 0

S9 790362535 1935 1.021313 0

S10 790362536 1804 0.284184 0

S11 790362537 716 0.65038 0

S12 790363268 1935 0.76284 0

S13 790363270 716 1.050344 0

S14 790363270 1804 0.447391 0

S15 790363329 1935 0.553885 0

S16 790363330 716 0.331864 0

S17 790363330 1804 0.342798 0

S18 790363700 0 0 1

S19 790363700 0 0 1

S20 790363700 1136 0.428784 0
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Web caching. Table 2 depicts the structure of the study: 20 objects, 3 attributes,
and a decision.

Detailed description and analysis are given in Table 3. The domain E and two
concepts Ycache and Ynotcache from the decision attribute (CA) are obtained as
follows:

E= {e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18, e19, e20}
Ycache = {e4,e5,e6,e17}
Ynotcache = {e1,e2,e3, e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e18}

Initially we find the indiscernibility classes based on TS that are {e1, e2}, {e12,
e13}, {e15, e16},{e17, e18}and{e3}, {e4},{e5},{e6},{e7}, {e8},{e9},{e10}, {e11},
{e14}.

The discriminant index of a concept Y is defined using the following formula:

αCi (Y ) = 1 − |Y − Y |/|E| (3)

Consequently, the discriminant index of TS is αC1 (Y ) = 1 − |Y − Y |/|E| =
1-(9-0)/20 = 0.55 determines the effectiveness of the singleton set of attributes
consisting of TS in specifying the membership in Y (the cache concept). Sub-
sequently, the indiscernibility classes of SD is conducted and the results are
{e4, e5, e6, e17},{e10, e12, e15}, {e9, e13, e16},{e8, e11, e14} and
{e1},{e2},{e3},{e7}, {e18}.

The lower approximation is illustrated as
Y = ∪Ωi⊆Y Ωi={e1},{e2},{e3}, {e7},{e18}. The upper approximation is given as
Y = ∪Ωi∩Y �=∅ Ωi= {e4, e5, e6, e17, e10, e12, e15, e9, e13, e16, e8, e11, e14}. Hence, the
discriminant index of SD is αC2 (Y ) = 1 − |Y − Y |/|E|= 1 − (15 − 5)/20 = 0.5.

The indiscernibility classes based on RT are {e4, e5, e6, e17} and {e1},{e2},
{e3},{e7},{e8},{e9},{e10},{e11},{e12},{e13},{e14},{e15},{e16},{e18}. The lower
approximation is given as Y = ∪Ωi⊆Y Ωi=∅. The upper approximation is
Y = ∪Ωi∩Y �=∅ Ωi= {e4, e5, e6, e17}. The discriminant index of RT is αC3 (Y ) =
1 − |Y − Y |/|E|= 1 - (6 - 0)/20 = 0.7.

By comparing the discriminant indices of all attributes, we identify that the
discriminant index of RT has the highest value, αCondition3(Y )= 0.7. This value
determines better membership in Y . Hence, the first rule is obtained as:

R1 : {Objectretrievaltime = 0} ⇒ {Cache = 1}

Since RT is the most important condition attribute, we merge this condition
attribute with other condition attributes to produce a new domain and to execute
new rules (refer to Table 3).

To discover the new domain, initially, the following equation is used to remove
unnecessary elements. (E − Y ) ∪ (Y ) = {e1, e2, e3, e7, e8, e9, e10, e11, e12, e13, e14,
e15, e16} ∪ ∅. The new element set are given as, (E − [(E − Y ) ∪ (Y )] = (E −
{e1, e2, e3, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16} ∪ ∅) = {e4,e5,e6,e17}
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Table 3. Collapsed log files dataset information table

Object
Attributes Decision

Total
TS SD RT CA

e1 790358517 367 0.436018 0 1

e2 790358517 514 0.416329 0 1

e3 790358520 297 0.572204 0 1

e4 790358527 0 0 1 1

e5 790358529 0 0 1 1

e6 790358530 0 0 1 2

e7 790358538 14051 0.685318 0 1

e8 790362535 1935 1.021313 0 1

e9 790362536 1804 0.284184 0 1

e10 790362537 716 0.65038 0 1

e11 790363268 1935 0.76284 0 1

e12 790363270 716 1.050344 0 1

e13 790363270 1804 0.447391 0 1

e14 790363329 1935 0.553885 0 1

e15 790363330 716 0.331864 0 1

e16 790363330 1804 0.342798 0 1

e17 790363700 0 0 1 2

e18 790363700 1136 0.428784 0 1

Table 4. Horizontal selection of collapsed table

Object
Attributes Decision

Total
TS SD RT CA

e4 790358527 0 0 1 1

e5 790358529 0 0 1 1

e6 790358530 0 0 1 2

e17 790363700 0 0 1 2
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Table 5. Further horizontally collapsed reduction table

Object
Attributes Decision

Total
TS CA

e4 790358527 1 1

e5 790358529 1 1

e6 790358530 1 2

e17 790363700 1 2

Subsequently, the horizontal selection of the collapsed information table is
obtained (Table 4). The total number of objects becomes 6.

The illustrations of this selected information table are given as Ycache =
{e4,e5, e6, e17} and Ynotcache= ∅, and the domain is E= {e4,e5, e6, e17}. We
locate the indiscernibility classes based on SD and RT as ∅. The lower ap-
proximation is Y = ∪Ωi⊆Y Ωi=∅ and the upper approximation is Y = ∪Ωi∩Y �=∅
Ωi= {e4, e5, e6, e17}. The discriminant index of SD and RT is αC2,C3 (Y ) =
1 − |Y − Y |/|E|= 1 − (6 − 0)/6 = 0.

The indiscernibility classes based on TS and RT is {e4, e5, e6, e17}. The lower
approximation is Y = ∪Ωi⊆Y Ωi= {e4, e5, e6, e17} and the upper approximation
is Y = ∪Ωi∩Y �=∅Ωi = {e4, e5, e6, e17}. The discriminant index of TS and RT is
αC1,C3 (Y ) = 1 − |Y − Y |/|E|= 1 - (6 - 6)/6 = 1.

By comparing the discriminant indices, we discover that αC1,C3 (Y ) = 1 best
determines the membership in Y . Thus, we attain the sample of second rule:

R2 : {Timestamp = 790358527, Objectretrievaltime = 0} ⇒{Cache
= 1}

Two rules have been found. If new domain is uncovered and new rules are
computed using the same method as previous, then the irrelevant elements can
be removed as (E − Y ) ∪ (Y ) = ∅ ∪ {e4, e5, e6, e17}.

By referring to Table 3, we can see that the first set is empty and the second
set has been handled by rule 2. Hence, the new set of elements becomes (E −
[(E − Y ) ∪ (Y )] = {e4, e5, e6, e17}.

Based on this assumption, we obtain supplementary collapsed information
table in which SD and RT are omitted due to superfluous attributes (see
Table 5).

The rules are fruitfully induced. A question that rises is how much we can
believe in these rules. Therefore, we need to evaluate the strength of the rules
as follows [61, 54]:

# of positive objects covered by the rule
# of objects covered by the rule (including both positive and negative)
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Based on this equation, the first rule has strength of 6/20. It shows that 30%
Classes of e4, e5, e6, ande17 (Table 3) are positive examples covered by the rule.
Class e1 is a negative example covered by the first rule. The second rule has the
strength of 6/6, that is, 100%. In applying the first rule to this object, there is a
30% chance that the reason for cache the object is exclusively the cache of RT .
However, there is a higher probability that the reason for cache is due to extra
timing of TS and RT , due to 100% strength of the second rule. Algorithm 1
illustrates the algorithm of rules induction using RS [57].

Algorithm 1. Rough set algorithm [57]
1: for each decision class do
2: Initialise universe of objects
3: Select decision class
4: Find class relation
5: repeat
6: for each attribute do
7: Select attribute
8: Find equivalence relation
9: Find lower subset

10: Find upper subset
11: Calculate discriminant index
12: end for
13: Select attribute with highest discriminant index
14: Generate rules
15: Reduce universe of objects
16: Reduce class relation
17: until no objects with selected decision class
18: end for

This part presents substantial RS analysis based on Inductive Learning meth-
ods to optimize Web caching performance to probe significant attributes and
generate the decision rules. RS granularity in Web caching allows decision rules
to be induced. These rules are important in optimizing user storage by exe-
cuting caching strategy in specifying the most relevant condition attributes.
This approach provides guidance to the administrator in Web caching regarding
to selection of the best parameters to be cached. Based on this analysis, the
administrator may reorganize the parameter of log data set in proxy caching
accordingly.

6 Experimental Results

In this part describes experimental results of dataset for HTTP requests and
user behavior of a set of Mosaic clients running in the Boston University (BU),
Computer Science Department [47].
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6.1 BU Log Dataset

In this experiment, BU Web Trace collected by Oceans Research Group at
Boston University is employed. BU traces records consist of 9,633 files with
a population of 762 different users, and recording 1,143,839 requests for data
transfer. The data for January 1995 comprises of 11 to 220 users with 33,804
records. However, after data cleaning, only 10,727 dataset is left.

Moreover, in this research RS is exploited to reduce the rules of a log file and
simultaneously to enhance the prediction performance of user behavior. RS is
beneficial in probing the most significant attributes with crucial decision rules
to facilitate intelligent caching and prefetching to safeguard limited bandwidth
and minimize the processing cost.

The dataset is split in two; 70% (7,187 objects) for training and 30% (3,540
objects) for testing. To simplify data representation, a Näıve Discretization
Algorithm (NA) is exploited and Genetic Algorithm (GA) is chosen to generate
the object rules. Next, Standard Voting Classifier (SVC) is selected to classify
the log file dataset. The derived rules from the training are used to test the effec-
tiveness of the unseen data. In addition, 3-Fold Cross Validation is implemented
for validation of our experiment. First fold (K1) the testing data from 1 to 3540,
second fold (K2) from 3541 to 7081 and third fold (K3) from 7082 to 10622.
Data are stored in decision table. Columns represent attributes, rows represent
objects whereas every cell contains attribute value for corresponding objects and
attributes. A set of attributes are URL, Machinename, Timestamp, Useridno,
Sizedocument, Objectretrievaltime, and Cache as a decision.

6.2 Data Discretization and Reduction

Training data is discretized using NA. This discretization technique is imple-
mented a very straightforward and simple heuristic that may result in very many
cuts, probably far more than are desired. In the worst case, each observed value
is assigned its own interval. GA is used for reduct generation [63] as it provides
more exhaustive search of the search space. Reducts generation have two options
[64]; full object reduction and object related reduction. Full object reduction
produces set of minimal attributes subset that defines functional dependencies,
while reduct with object related produce a set of decision rules or general pat-
tern through minimal attributes subset that discern on a per object basis. The
reduct with object related is preferred due to its capability in generating reduct
based on discernibility function of each object.

Table 6 illustrates the comparison results of generation of a log file dataset
in different K-fold (K1, K2 and K3). The highest testing accuracy is 98.46%
achieved through NA discretization method and GA with full reduct method.
Number of reducts for K1, K2 and K3 are equivalent. Object related reduct, 22
and full reduct, 6. In our observation, the highest number of rules are GA with
full reduct, 63311 for K1, K2 and K3 and the highest testing accuracy is GA
with full reduct for K1, 98.46%.
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Table 6. Comparison reduct for K1, K2 and K3

Discretize
Method

Reduct Method K-fold No.of
Reduct

No.of
Rules

Testing
Accuracy
(%)

NA

GA (object related)
K1 22 26758 96.8644

K2 22 26496 96.8644

K3 22 26496 96.8079

GA (full object)
K1 6 63311 98.4618

K2 6 63311 5.76271

K3 6 63311 5.79096

6.3 Rule Derivation

A unique feature of the RS method is its generation of rules that played an
important role in predicting the output. ROSETTA tool has listed the rules
and provides some statistics for the rules which are support, accuracy, coverage,
stability and length. Below is the definition of the rule statistics [64]:

• The rule LHS support is defined as the number of records in the training
data that fully exhibit property described by the IF condition.

• The rule RHS support is defined as the number of records in the training
data that fully exhibit the property described by the THEN condition.

• The rule RHS accuracy is defined as the number of RHS support divided by
the number of LHS support.

• The rule LHS coverage is the fraction of the records that satisfied the IF
conditions of the rule. It is obtained by dividing the support of the rule by
the total number of records in the training sample.

• The rule RHS coverage is the fraction of the training records that satisfied
the THEN conditions. It is obtained by dividing the support of the rule by
the number of records in the training that satisfied the THEN condition.

The rule length is defined as the number of conditional elements in the IF
part. Table 7 shows the sample of most significant rules. These rules are sorted
according to their support value. The highest support value is resulted as the
most significant rules. From the Table 7, the generated rule of {Sizedocument(0)
⇒ Cache(1)} is considered the most significant rules with the outcome of not
cache (output=0) and with cache (output=1). This is supported by 3806 for
LHS support and RHS support value. Subsequently, the impact of rules length
on testing accuracy are evaluated based on rules set from Table 7. Consequently,
the same rules are divided into two groups; 1≤ rules of length ≤2. It seems that
the rules with length ≥1 contribute better classification compared to the rules
with length ≤2.
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Table 7. Sample for sorted of highest rule support values from data decision table for
K1, K2 and K3

Rule LHS
Sup-
port

RHS
Sup-
port

LHS
Length

RHS
Length

K1

Sizedocument(0) ⇒ Cache(1) 3806 3806 1 1

Objectretrievaltime(0.000000) ⇒
Cache(1)

3805 3805 1 1

Sizedocument(2009) ⇒ Cache(0) 233 233 1 1

Sizedocument(717) ⇒ Cache(0) 128 128 1 1

K2

URL(http://cs-
www.bu.edu/lib/pics/bu-logo.gif)
AND Sizedocument(0) ⇒ Cache(1)

1009 1009 2 1

URL(http://cs-
www.bu.edu/lib/pics/bu-logo.gif)
AND Objectretrievaltime(0.00000)
⇒ Cache(1)

1009 1009 2 1

Machinename(beaker) AND Sizedoc-
ument(0) ⇒ Cache(1)

308 308 2 1

Machinename(beaker) AND Objec-
tretrievaltime(0.00000) ⇒ Cache(1)

308 308 2 1

K3

URL(http://cs-
www.bu.edu/lib/pics/bu-logo.gif)
AND Objectretrievaltime(0.00000)
⇒ Cache(1)

989 989 2 1

URL(http://cs-
www.bu.edu/lib/pics/bu-logo.gif)
AND Sizedocument(0) ⇒ Cache(1)

989 989 2 1

Machinename(beaker) AND Sizedoc-
ument(0) ⇒ Cache(1)

306 306 2 1

Machinename(beaker) AND Objec-
tretrievaltime(0.00000) ⇒ Cache(1)

306 306 2 1
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6.4 Classification

From the analysis, it shows that the classification is better. Furthermore, the core
attributes and the significant rules can improve the accuracy of classification.Table
8 shows the result of classification performance of K1, K2 and K3 for the original
table and the new decision table of log file dataset. Hence, Figure 2 depicts an over-
all accuracy for log file, 36.67% for all rules in original decision table and 96.85% for
selected rules in new decision table. This result shows a different of overall accuracy
up to 60.18% between the original decision table and new decision table.

Table 8. Classification performance of K1, K2 and K3 for both original decision table
and new decision table of log file dataset

Decision Table Rule Set K-fold Accuracy
(%)

Overall
Accu-
racy
(%)

New decision table Selected rules
K1 96.8644

96.85K2 96.8644

K3 96.8079

Orig. decision table All rules
K1 98.4618

36.67K2 5.76271

K3 5.79096

Rough Web Caching 22

Fig. 2. Overall classification accuracy for both original decision table and new decision
table of log file dataset
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7 Conclusions

This chapter illustrated the usage of rough set theory for performance enhance-
ment of Web caching. The RClass System framework [46] is used as a knowledge
representation scheme for uncertainty in data for optimizing the performance of
proxy caching that use to store the knowledge discovery of user behaviors in log
format.

Furthermore, substantial RS analysis based on Inductive Learning methods is
presented to optimize Web caching performance to probe significant attributes
and generate the decision rules. RS granularity in Web caching allows decision
rules to be induced. These rules are important in optimizing users’ storage by exe-
cuting caching strategy in specifying the most relevant condition attributes. This
approachprovides guidance to the administrator inWeb caching regarding to selec-
tion of the best parameters to be cached. Based on this analysis, the administrator
may reorganize the parameter of log data set in proxy caching accordingly.

Moreover, an empirical study has been conducted for searching optimal classi-
fication. A RS framework for log dataset is illustrated mutually with an analysis
of reduced and derived rules, with entrenchment of their implicit properties for
better classification outcomes.

In the future, more experiments on huge data will be conducted on hybridiza-
tion of RS and evolutionary computation to deal with multiple knowledge of
Web caching in reducing network latency.
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